The synthesis and oligosaccharide processing of the glycoproteins of SA11 rotavirus in infected Ma104 cells was examined. Rotavirus assembles in the rough endoplasmic reticulum (RER) and encodes two glycoproteins: VP7, a component of the outer viral capsid, and NCVP5, a nonstructural protein. A variety of evidence suggests the molecules are limited to the ER, a location consistent with the high mannose N-linked oligosaccharides modifying these proteins. VP7 and NCVP5 were shown to be integral membrane proteins. In an in vitro translation system supplemented with dog pancreas microsomes, they remained membrane associated after high salt treatment and sodium carbonate-mediated release of microsomal contents. In infected cells, the oligosaccharide processing of these molecules proceeded in a time-dependent manner. For VP7, Man8GlcNAc2 and Man6GlcNAc2 were the predominant intracellular species after a 5-min pulse with [3H]mannose and a 90 min chase, while in contrast, trimming of NCVP5 halted at Man8GlcNAc2. VP7 on mature virus was processed to Man5GlcNAc2. It is suggested that the alpha-mannosidase activities responsible for the formation of these structures reside in the ER. In the presence of the energy inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP), processing of VP7 and the vesicular stomatitis virus G protein was blocked at Man8GlcNAc2. After a 20-min chase of [3H]mannose-labeled molecules followed by addition of CCCP, trimming of VP7 could continue while processing of G protein remained blocked. Thus, an energy-sensitive translocation step within the ER may mark the divergence of the processing pathways of these glycoproteins.

This content is only available as a PDF.