Oocyte nuclei of Xenopus laevis contain two major karyoskeletal proteins characterized by their resistance to extractions in high salt buffers and the detergent Triton X-100, i.e. a polypeptide of 68,000 mol wt which is located in the core complex-lamina structure and a polypeptide of 145,000 mol wt enriched in nucleolar fractions. Both proteins are also different by tryptic peptide maps and immunological determinants. Mouse antibodies were raised against insoluble karyoskeletal proteins from Xenopus oocytes and analyzed by immunoblotting procedures. Affinity purified antibodies were prepared using antigens bound to nitrocellulose paper. In immunofluorescence microscopy of Xenopus oocytes purified antibodies against the polypeptide of 145,000 mol wt showed strong staining of nucleoli, with higher concentration in the nucleolar cortex, and of smaller nucleoplasmic bodies. In various other cells including hepatocytes, Sertoli cells, spermatogonia, and cultured kidney epithelial cells antibody staining was localized in small subnucleolar granules. The results support the conclusion that this "insoluble" protein is a major nucleus-specific protein which is specifically associated with--and characteristic of--nucleoli and certain nucleolus-related nuclear bodies. It represents the first case of a positive localization of a karyoskeletal protein in the nuclear interior, i.e. away from the pore complex-lamina structure of the nuclear cortex.

This content is only available as a PDF.