Serotonin neurons in 14-d embryonic rat brain stem were identified by peroxidase-antiperoxidase immunocytochemistry with an affinity-purified antiserotonin antibody. Brain-stem tissue was dissected from 14- or 15-d embryonic rats, dissociated and grown in cell culture for up to 5 wk, and serotonin neurons were identified by immunocytochemistry. Within 24 h of plating, serotonin immunoreactivity was present in 3.3% of neurons. Immunoreactivity in neuronal cell bodies decreased with time, whereas staining of processes increased. The number of serotonin-immunoreactive neurons remained constant at 3-5% over the first 14 d in culture. From 14 to 28 d, the total number of neurons decreased with little change in the number of serotonin neurons, such that, by day 28 in culture, up to 36% of surviving neurons exhibited serotonin immunoreactivity. Similar percentages of cultured brain stem neurons accumulating 3H-serotonin were identified by autoradiography. Uptake was abolished by the serotonin-uptake inhibitor, clomipramine, but was unaffected by excess norepinephrine, or by the norepinephrine-uptake inhibitor, maprotiline. Synthesis of 3H-serotonin was detected after incubation of cultures with 3H-tryptophan, and newly synthesized serotonin was released by potassium depolarization in a calcium-dependent manner. More than 95% of serotonin neurons were destroyed after incubation of cultures with 5,6-dihydroxytryptamine. Brain-stem cultures contained virtually no neurons with the ability to accumulate 3H-norepinephrine or 3H-dopamine. Approximately 40% of brain-stem neurons were labeled with gamma-aminobutyric acid (3H-GABA). However, there was almost no overlap in the surface area of neurons accumulating 3H-serotonin or 3H-GABA.

This content is only available as a PDF.