By growing cells in alternating periods of light and darkness, we have found that the synchronization of phototrophically grown Chlamydomonas populations is regulated at two specific points in the cell cycle: the primary arrest (A) point, located in early G1, and the transition (T) point, located in mid-G1. At the A point, cell cycle progression becomes light dependent. At the T point, completion of the cycle becomes independent of light. Cells transferred from light to dark at cell cycle position between the two regulatory points enter a reversible resting state in which they remain viable and metabolically active, but do not progress through their cycles. The photosystem II inhibitor dichlorophenyldimethylurea (DCMU) mimics the A point block induced by darkness. This finding indicates that the A point block is mediated by a signal that operates through photosynthetic electron transport. Cells short of the T point will arrest in darkness although they contain considerable carbohydrate reserves. After the T point, a sharp increase occurs in starch degradation and in the endogenous respiration rate, indicating that some internal block to the availability of stored energy reserves has now been released, permitting cell cycle progression.

This content is only available as a PDF.