Central spindles from five dividing cells (one metaphase, three anaphase, and one telophase) of Diatoma vulgare were reconstructed from serial sections. Each spindle is made up of two half-spindles that are composed almost entirely of polar microtubules. A small percentage of continuous microtubules and free microtubules were present in every stage except telophase. The half-spindles interdigitate at the midregion of the central spindle, forming a zone of overlap where the microtubules from one pole intermingle with those of the other. At metaphase the overlap zone is fairly extensive, but as elongation proceeds, the spindle poles move apart and the length of the overlap decreases because fewer microtubules are sufficiently long to reach from the pole to the zone of interdigitation. At telophase, only a few tubules are long enough to overlap at the midregion. Concurrent with the decrease in the length of the overlap zone is an increase in the staining density of the intermicrotubule matrix at the same region. These changes in morphology can most easily be explained by assuming zone mechanochemical interaction between microtubules in the overlap zone which results in a sliding apart of the two half-spindles.

This content is only available as a PDF.