Protein metabolism of Yoshida ascites hepatoma cells was studied in the early phase of logarithmic proliferation and in the following stage in which cell mass remains constant (resting phase). The rate of protein synthesis was measured by a short-time incorporation of [8H]lysine, while degradation was concurrently assessed by following the decrease of specific activity of [14C]lysine-labeled proteins. Most of the labeled amino acid injected intraperitoneally into the animal was immediately available for the tumor cells, with only a minor loss towards the extra-ascitic compartment. It was thus possible to calculate the dilution of the isotope in the ascitic pool of the lysine, which increased concurrently with the ascitic plasma volume. Amino acid transport capacity did not change in the log vs. the resting cells. This fact permitted the correction of the specific activity of the proteins synthesized by tumors in the two phases, taking into account the dilution effect. Protein synthesis was found to proceed at a constant rate throughout each of the two phases, although it was 30% lower during the resting as compared to the log phase. When cell mass attained the steady-state, protein degradation occurred at such a level as to balance the synthesis. Throughout the resting phase the amount of lysine taken up by the cells and renewed from the blood remained unchanged. Protein turnover, as studied in subcellular fractions, exhibited a similar rate in nuclei and microsomes, where it proceeded at a higher level than in mitochondria. On the whole, the results encourage the use of the Yoshida ascites hepatoma as a suitable model for studying protein turnover in relation to cell growth in vivo.

This content is only available as a PDF.