The actin-activated Mg(2+)-ATPase activities of the three myosin I isoforms in Acanthamoeba castellanii are significantly expressed only after phosphorylation of a single site in the myosin I heavy chain. Synthetic phosphorylated and unphosphorylated peptides corresponding to the phosphorylation site sequences, which differ for the three myosin I isoforms, were used to raise isoform-specific antibodies that recognized only the phosphorylated myosin I or the total myosin I isoform (phosphorylated and unphosphorylated), respectively. With these antisera, the amounts of total and phosphorylated isoform were quantified, the phosphomyosin I isoforms localized, and the compartmental distribution of the phosphomyosin isoforms determined. Myosin IA, which was almost entirely in the actin-rich cortex, was 70-100% phosphorylated and particularly enriched under phagocytic cups. Myosins IB and IC were predominantly associated with plasma membranes and large vacuole membranes, where they were only 10-20% phosphorylated, whereas cytoplasmic myosins IB and IC, like cytoplasmic myosin IA, were mostly phosphorylated (60-100%). Moreover, phosphomyosin IB was concentrated in actively motile regions of the plasma membrane. More than 20-fold more phosphomyosin IC and 10-fold more F-actin were associated with the membranes of contracting contractile vacuoles (CV) than of filling CVs. As the total amount of CV-associated myosin IC remained constant, it must be phosphorylated at the start of CV contraction. These data extend previous proposals for the specific functions of myosin I isozymes in Acanthamoeba (Baines, I.C., H. Brzeska, and E.D. Korn. 1992. J. Cell Biol. 119: 1193-1203): phosphomyosin IA in phagocytosis, phosphomyosin IB in phagocytosis and pinocytosis, and phosphomyosin IC in contraction of the CV.

This content is only available as a PDF.