Tau is a family of closely related proteins (55,000-62,000 mol wt) which are contained in the nerve cells and copolymerize with tubulin to induce the formation of microtubules in vitro. All information so far has indicated that tau is closely apposed to the microtubule lattice, and there was no indication of domains projecting from the microtubule polymer lattice. We have studied the molecular structure of the tau factor and its mode of binding on microtubules using the quick-freeze, deep-etch method (QF.DE) and low angle rotary shadowing technique. Phosphocellulose column-purified tubulin from porcine brain was polymerized with tau and the centrifuged pellets were processed by QF.DE. We observed periodic armlike elements (18.7 +/- 4.8 nm long) projecting from the microtubule surface. Most of the projections appeared to cross-link adjacent microtubules. We measured the longitudinal periodicity of tau projections on the microtubules and found it to match the 6-dimer pattern better than the 12-dimer pattern. The stoichiometry of tau versus tubulin in preparations of tau saturated microtubules was 1:approximately 5.0 (molar ratio). Tau molecules adsorbed on mica took on rodlike forms (56.1 +/- 14.1 nm long). Although both tau and MAP1 are contained in axons, competitive binding studies demonstrated that the binding sites of tau and MAP1A on the microtubule surfaces are most distinct, although they may partially overlap.

This content is only available as a PDF.