A high molecular weight polypeptide, identified as an ATPase subunit by direct ultraviolet photoaffinity labeling, has been shown to be a component of nuclear envelope-enriched fractions prepared from a variety of higher eukaryotes (Berrios, M., G. Blobel, and P. A. Fisher, 1983, J. Biol. Chem., 258:4548-4555). In rat liver as well as Drosophila melanogaster embryos, this polypeptide appears to be a form of myosin heavy chain. This conclusion is based on both immunochemical and immunocytochemical data, as well as on the results of CNBr and chymotryptic peptide map analyses. In Drosophila, the identification of this myosin heavy chain-like polypeptide as a nuclear envelope component has been corroborated in situ by indirect immunofluorescence analyses using permeabilized whole cells, mechanically extruded nuclei, and cryosections obtained from a number of larval tissues. Localization appears to be restricted to the nuclear periphery in a manner similar to that observed for the nuclear lamins and the pore complex glycoprotein. Antibodies directed against the Drosophila nuclear envelope ATPase have also been shown to decorate mammalian and higher plant cell nuclei in situ. Implications for intracellular nuclear mobility and for nucleocytoplasmic exchange of macromolecules in vivo are discussed.

This content is only available as a PDF.