To determine whether specific asparagine-linked (N-linked) oligosaccharides present in cell surface glycoproteins are required for cell-cell interactions within the peripheral nervous system, we have used castanospermine to inhibit maturation of N-linked sugars in cell cultures of neurons or neurons plus Schwann cells. Maximally 10-15% of the N-linked oligosaccharides on neuronal proteins have normal structure when cells are cultured in the presence of 250 micrograms/ml castanospermine; the remaining oligosaccharides are present as immature carbohydrate chains not normally found in these glycoproteins. Although cultures were treated for 2 wk with castanospermine, cells always remained viable and appeared healthy. We have analyzed several biological responses of embryonic dorsal root ganglion neurons, with or without added purified populations of Schwann cells, in the presence of castanospermine. We have observed that a normal complement of mature, N-linked sugars are not required for neurite outgrowth, neuron-Schwann cell adhesion, neuron-induced Schwann cell proliferation, or ensheathment of neurites by Schwann cells. Treatment of neuronal cultures with castanospermine increases the propensity of neurites to fasciculate. Extracellular matrix deposition by Schwann cells and myelination of neurons by Schwann cells are greatly diminished in the presence of castanospermine as assayed by electron microscopy and immunocytochemistry, suggesting that specific N-linked oligosaccharides are required for the expression of these cellular functions.

This content is only available as a PDF.