Hormonal control of hepatic glycogen and blood glucose levels is one of the major homeostatic mechanisms in mammals: glycogen is synthesized when portal glucose concentration is sufficiently elevated and degraded when glucose levels are low. We have studied initial events of hepatic glycogen synthesis by injecting the synthetic glucocorticoid dexamethasone (DEX) into adrenalectomized rats fasted overnight. Hepatic glycogen levels are very low in adrenalectomized rats, and DEX causes rapid deposition of the complex carbohydrate. Investigation of the process of glycogen deposition was performed by light and electron microscopic (EM) radioautography using [3H]galactose as a glycogen precursor. Rats injected with DEX for 2-3 h and [3H]galactose one hour before being killed displayed an increasing number of intensely labeled hepatocytes. EM radioautography revealed silver grains over small (+/- 1 micron) ovoid or round areas of the cytosome that were rich in smooth endoplasmic reticulum (SER) and contained a high concentration of small dense particles. These distinct areas or foci of SER and presumptive glycogen (SERGE) were most numerous during initial periods of glycogen synthesis. After longer exposure to DEX (4-5 h) more typical deposits of cytoplasmic glycogen were evident in the SERGE regions. Several criteria indicated that the SERGE foci contained glycogen or presumptive glycogen: resemblance of the largest dense particles to beta-glycogen particles in EM; association of 3H-carbohydrate with the foci; removal of particles and label with alpha-amylase; and positive reaction with periodic acid-chromic acid-silver methenamine. The concentration of SER in the small foci and the association of newly formed glycogen particles with elements of SER suggest a role for this organelle in the initial synthesis of glycogen.

This content is only available as a PDF.