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Surface Morphometrics reveals local membrane 
thickness variation in organellar subcompartments
Michaela Medina1*�, Ya-Ting Chang1*�, Hamidreza Rahmani1�, Mark Frank2�, Zidan Khan3�, Daniel Fuentes1�, Frederick A. Heberle3�, 
M. Neal Waxham4�, Benjamin A. Barad1,2�, and Danielle A. Grotjahn1�

Lipid bilayers form the basis of organellar architecture, structure, and compartmentalization in the cell. Decades of 
biophysical, biochemical, and imaging studies on purified or in vitro–reconstituted liposomes have shown that variations in lipid 
composition influence the physical properties of membranes, such as thickness and curvature. However, similar studies 
characterizing these membrane properties within the native cellular context have remained technically challenging. Recent 
advancements in cellular cryo-electron tomography (cryo-ET) imaging enable high-resolution, three-dimensional views of 
native organellar membrane architecture preserved in near-native conditions. We previously developed a “Surface 
Morphometrics” pipeline that generates surface mesh reconstructions to model and quantify cellular membrane 
ultrastructure from cryo-ET data. Here, we expand this pipeline to measure the distance between the phospholipid head groups 
of the membrane bilayer as a readout of membrane thickness. Using this approach, we demonstrate thickness variations both 
within and between distinct organellar membranes. We show that organellar membrane thickness positively correlates with 
other features, such as membrane curvedness, in cells. Further, we show that subcompartments of the mitochondrial inner 
membrane exhibit varying membrane thicknesses that are independent of whether the mitochondria are in fragmented or 
elongated networks. We also demonstrate that our technique, when applied to three-dimensional data, yields results that 
match existing measurements obtained from two-dimensional data of in vitro samples. Finally, we demonstrate that large 
membrane-associated macromolecular complexes exhibit distinct density profiles that correlate with local variations in 
membrane thickness. Overall, our updated Surface Morphometrics pipeline provides a framework for investigating how 
changes in membrane composition in various cellular and disease contexts affect organelle ultrastructure and function.

Introduction
Eukaryotic cells rapidly remodel their organellar membranes in 
response to a variety of cellular stresses and physiological con
ditions. Lipid bilayers, the core unit of organellar membranes, 
are created through the self-assembly of amphipathic phos
pholipids that orient their hydrophilic head groups to shield 
their hydrophobic tails from the aqueous cytoplasmic envi
ronment. Their dynamic and fluid nature enables membrane 
remodeling required for many diverse cellular processes, in
cluding inter-organellar communication, scaffolding, organelle 
biogenesis, and quality control. In addition to phospholipids, 
integral membrane proteins also dictate the inherent properties 
of organellar membranes. Membrane proteins such as ATP 
synthase dimers have the capacity to deform, bend, and stabilize 
the phospholipid bilayer (Blum et al., 2019). Conversely, mem
brane properties such as stiffness and curvature can impact the 
folding, localization, and function of integral membrane proteins 
(Stamou et al., 2015). Through dynamic remodeling of lipid and 

membrane protein composition, organelles can modulate their 
shape and thus function to facilitate cellular processes, such as 
vesicular trafficking (Bonifacino and Glick, 2004; Watson and 
Stephens, 2005), inter-organellar resource transfer (Sassano 
et al., 2023), and organellar fission and fusion (Westermann, 
2010; Youle and van der Bliek, 2012). Despite this important 
link between membrane remodeling and adaptive function, de
fining local changes to lipids and proteins in their native context 
has remained technically challenging.

Under conditions of low dose and defocus (Heberle et al., 
2023), cryo-electron microscopy (cryo-EM) imaging has the 
resolving power to distinguish the two opposing rows of phos
pholipid head groups (PHG) that comprise the lipid bilayer and 
the proteins embedded within them. Several groups have har
nessed the power of cryo-EM to reveal how different composi
tions of phospholipids, when assembled in unilamellar vesicles, 
can impart distinct membrane properties, including membrane 
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thickness, rigidity, and compressibility (Heberle et al., 2020; 
Heberle et al., 2023; Sharma et al., 2023). In combination with cell 
thinning techniques such as cryo-focused ion beam (FIB) milling, 
it is now possible to obtain high-resolution views of lipid bilayers 
within their native cellular context using cryo-electron tomog
raphy (cryo-ET) imaging. There are also multiple voxel-based 
density sampling strategies developed to analyze protein struc
ture and reveal the organization of the embedded proteins within 
membranes visible in cellular cryo-ET data (Martinez-Sanchez 
et al., 2020; Lamm et al., 2022). However, to date, none of these 
density sampling approaches have been adapted to calculate 
membrane thickness directly and specifically. A recently reported 
voxel segmentation-based approach (Glushkova et al., 2025, Pre
print) estimates membrane thickness by generating and con
verting voxel segmentations of membranes into oriented point 
clouds to approximate the edge points as the membrane “bound
aries.” Ray projections between opposing boundary edge points 
are then used as a proxy to estimate membrane thickness. While 
this approach revealed relative changes in thickness, it led to 
measurements considerably larger than previously reported for 
in vitro vesicles. An approach that allows correlation with other 
features of membrane geometry would be beneficial.

Here, we present a new method for measuring membrane 
thickness using triangulated surface mesh reconstructions to 
calculate voxel density–based line scans across organellar 
membranes. Surface mesh reconstructions provide a more ac
curate model of the inherent geometry of the membrane, inde
pendent of voxel size. By calculating per-triangle density line 
scans across these surface mesh models, we generate plots of local 
membrane density extracted from the tomogram itself. We 
demonstrate that the opposing PHG of the membrane bilayer re
sult in peaks within these line scans; we use the distance between 
these peaks as the membrane thickness, consistent with previous 
studies (Heberle et al., 2020). This model-guided approach also 
integrates with other ultrastructural measurements in the Surface 
Morphometrics pipeline, enabling correlation with geometric 
features such as curvature and intermembrane spacing. We show 
that this approach can be used to detect statistically significant 
differences in membrane thickness across cell types, organelles, 
and their functionally distinct membrane compartments. Impor
tantly, we demonstrate that our method applied to 3D tomo
graphic data yields thickness values consistent with established 
measurements from 2D projection images of purified vesicles. 
Furthermore, we demonstrate that large membrane-associated 
macromolecular complexes exhibit distinct density profiles that 
correlate with local variations in membrane thickness. By inte
grating these density-based measurements within our existing 
Surface Morphometrics pipeline (Barad et al., 2023), we provide 
the first automated approach to measure intracellular membrane 
thickness and correlate it with the rest of the cellular context.

Results
Measuring organellar membrane thickness in cellular cryo- 
electron tomograms
We set out to develop an accurate and automated pipeline for 
measuring organellar membrane thickness from cellular cryo- 

ET data directly (Fig. 1). Our desired measurement of membrane 
thickness is the distance between the two PHG—this measure
ment has been used previously for measurements in in vitro 
vesicles (Heberle et al., 2020; Seneviratne et al., 2023). Because 
many tomograms resolve membrane leaflets, we believe this is 
the most precise method to estimate membrane thickness in situ. 
We generated and collected tilt series of thin (80–150 nm) la
mellae at relatively low defocus (4–6 µm) of vitrified mouse 
embryonic fibroblasts (MEFs) expressing mitochondria-targeted 
GFP (MEFmtGFP) in order to maximize the ability to resolve 
individual leaflets of membranes. We performed automated 
segmentation of all visible membranes (Lamm et al., 2024, Pre
print) and manually separated the different cellular membranes, 
such as the outer and inner mitochondrial membranes (OMM 
and IMM, respectively), endoplasmic reticulum (ER) mem
branes, and vesicles. The resulting voxel segmentation models 
were processed through the Surface Morphometrics pipeline 
(Barad et al., 2023) to generate triangulated surface meshes that 
approximate the mid-surface between the two sides of the bi
layer (Fig. 1, A and B).

To measure thickness, we start from the midpoint of each 
triangle on the surface mesh and then systematically interpolate 
the tomogram density along a 10-nm path in both the positive 
and negative directions along the normal vector (Fig. 1 B). We 
use these measurements to generate a tomogram density line 
scan, which reveals two peaks corresponding to the densities 
associated with the PHG (Fig. 1 C). We estimate the distance 
between these head groups by fitting a dual Gaussian distribu
tion to the two peaks, with the central position of each Gaussian 
defined as one of the PHG. We found that estimating these peaks 
from non-denoised Warp back-projected tomograms is chal
lenging and prone to artifacts due to the low signal-to-noise 
ratio. To enhance signal-to-noise, we performed distance- 
weighted averaging of the signal of triangles within a 12-nm 
radius (Fig. 1 D), hyperparameters which we determined had a 
good balance of local information with robust measurement of 
thickness. We have opted to make this radius user-configurable 
in the Surface Morphometrics pipeline in case different aver
aging is preferred for systems with better or worse signal-to- 
noise. We used this approach to measure PHG distance locally 
across every triangle of each surface mesh reconstruction in our 
dataset and show the different PHG distances between different 
organelles, revealing an apparent increase in thickness in the 
IMM compared with the OMM (Fig. 1 E).

To test the robustness of this approach to different data 
processing conditions, we performed this analysis on a range 
of binned tomograms (6.65, 9.98, and 13.30 Å/pixel) (Fig. S1, 
A–C). We found that using binned tomograms (9.98 Å/pixel) 
yielded segmentation outputs that faithfully segmented the 
underlying membrane density visible in the tomogram, 
without artifacts due to protruding membrane proteins or 
blurring of the two membrane leaflets (Fig. S1 C). Therefore, 
we concluded that, for this set of data, tomograms re
constructed to 9.98 Å/pixel provide the best balance between 
accuracy of segmentation and clear resolution of lipid bi
layers. Upon inspection of the generated surfaces, we ob
served less reliable thickness measurements at the edges of 
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Figure 1. Extending Surface Morphometrics to measure lipid bilayer thickness within tomograms. (A) Tomograms were reconstructed and segmented 
to produce voxel segmentations that labeled distinct cellular membranes. Voxel segmentations were processed through the Surface Morphometrics pipeline 
(Barad et al., 2023) to generate triangulated surface meshes. The tomogram density was interpolated systematically from the midpoint of each triangle on the 
surface mesh, following the normal vector in both the positive and negative directions (dashed arrows). These measurements are used to generate a voxel line 
scan, which reveals two peaks corresponding to the densities associated with the PHG (dashed vertical lines). We calculated the distance between these peaks 
as a readout of membrane thickness. Line scans that are extended beyond the lipid bilayer show additional peaks representing protein macromolecules (pink 
arrowhead). (B) Triangle mesh models for both IMM (orange) and OMM (lavender) are overlaid on top of the binned tomogram reconstruction, which is of 
sufficient resolution to distinguish lipid head groups visually. The meshes can be used to generate local vectors for density line scan analysis within the to
mogram. (C) Line scans generated by sampling along the normal vectors can be combined across a surface to generate a smooth plot with peaks corresponding 
to the two head groups of the bilayer (blue line). We fit the curve with a dual Gaussian model (orange dashed line, individual Gaussians, pink and green) and used 
the peak-to-peak distance as the bilayer distance. (D) Local thickness variation analysis was determined via a local weighted averaging scheme, in which the line 
scan of the central triangle (red) is combined with neighboring triangles up to 12 nm away with weights that decrease with distance from the center. (E) Using 
per-triangle thickness measurements, we identified the differences in the distribution of thicknesses within different membranes, as depicted in a triangle area– 
weighted histogram, whose y axis measures the relative area of membrane in each thickness bin.
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the surface meshes due to artifacts caused by the missing 
wedge (Fig. S1, D and E). To ensure that we only included 
membranes that had reliable thickness estimations, we im
plemented an edge exclusion feature to exclude all triangles 
within 8 nm of the edge of the original surface. This led to robust 
and accurate membrane thickness measurements that are free 
from artifacts inherent to cryo-ET data. All reported membrane 
thickness measurements were generated with edge filtering 
applied to the surface mesh reconstructions.

Cellular membranes display significant differences in 
membrane thickness
Previous biochemical and structural analyses of purified and 
reconstituted membranes have demonstrated that membranes 
with unique lipid and protein compositions result in changes to 
the biophysical properties of the lipid bilayer, such as thickness 
(Andersen and Koeppe, 2007). To assess whether these differences 
are observed in the native cellular environment, we applied our 
pipeline to calculate membrane thickness on a per-triangle basis 
across all triangles within each surface mesh for every organellar 
membrane in our dataset. Plotting the spatial distribution of 
these thicknesses directly on the surfaces (Fig. 2, A and B; and 
Fig S2) and the combined distribution of thicknesses for all 
surface mesh triangles on a histogram (Fig. 2 C) revealed subtle 
differences in thickness across cellular organelles. Assessing 
the median thicknesses as individual observations for each 
organelle showed significant differences in membrane thick
ness across cellular compartments (Fig. 2 D). Interestingly, our 
results show that the OMM is significantly thinner (3.2 ± 0.10 
nm) compared with the IMM (3.6 ± 0.07 nm), demonstrating 
that variations in membrane thickness exist even within the 
same organelle. The OMM also showed statistically significant 
reductions in membrane thickness relative to ER (3.7 ± 0.05 
nm) membranes.

To further assess the performance of our pipeline across 
distinct organellar membranes and cell types, we calculated 
membrane thickness on tomograms of yeast (Saccharomyces 
cerevisiae) cell lamella with visible plasma membrane, vacuole 
membrane, and nuclear envelope bilayers from both new data 
and a previously published dataset (Electron Microscopy 
Public Image Archive [EMPIAR] 12534) (Chang et al., 2025). 
Consistent with our analysis in MEF cells, we detected sig
nificant differences in membrane thickness among various 
cellular membranes (Fig. 2, E–H). We observed a similar trend 
in membrane thickness variations in yeast as in MEF cells, 
with OMM (2.8 ± 0.27 nm) being significantly thinner than 
IMM (3.4 ± 0.13 nm), ER (3.8 ± 0.15 nm), and vesicles (4.1 ± 
1 nm). In addition, we observe membrane thickness variations 
across the bilayers of the plasma membrane (4.2 ± 0.16 nm), 
vacuole membrane (4.1 ± 0.18 nm), and nuclear envelope (3.5 ± 
0.23 nm), with the plasma membrane exhibiting the largest 
thickness values. Taken together, we show that different or
ganellar membranes exhibit significant differences in average 
membrane thickness in multiple species, demonstrating the 
power of our approach to quantify subnanometer-level differ
ences in membrane thickness across membranes visualized in 
their native environment.

Subcompartments of the IMM vary in membrane thickness
We next asked whether variations in membrane thickness are 
observed across functionally distinct regions within the same 
organellar membrane. Specialized lipids and proteins influence 
the shape of the IMM and help fold it into distinct sub
compartments, including the regions closely appressed to 
the OMM, termed the inner boundary membrane (IBM), the 
protruding regions called the crista body, and the transition 
zones between these regions, called the crista junctions. We 
previously showed that our Surface Morphometrics pipeline 
can automatically classify between these distinct compart
ments based on their distance from the OMM (Barad et al., 
2023). We performed a similar subclassification procedure 
on the IMM in this dataset and measured the membrane 
thickness locally within each of these subcompartments 
(Fig. 3 A). Interestingly, we observed significant differences 
in the thickness of these compartments, with the crista body 
exhibiting significantly thicker membranes (3.8 ± 0.04 nm) 
relative to the crista junction and IBM compartments (Fig. 3, 
B and C). While subtle, this significant change in membrane 
thickness across the contiguous membrane suggests that 
these differences may reflect an additional structural regu
lation of IMM subcompartment specialization.

Like the IMM, the ER membrane can be further subdivided 
into two spatially and structurally distinct compartments: the 
rough ER, comprised of sheetlike structures studded with co
translating ribosomes, and the smooth ER, which forms tubular 
projections that often make functional contacts with other or
ganelles (Wang et al., 2015; Garfield and Cardell, 1987). We lev
eraged these distinct structural characteristics to classify the two 
types of membranes in our dataset based on the presence of 
membrane-docked ribosomes (rough ER) or the absence of ri
bosomes (smooth ER) (Fig. 3 D). In contrast to the subcompart
ments of the IMM, we detected no significant differences 
between the smooth and rough ER, with membrane thicknesses 
of 3.7 ± 0.09 nm and 3.7 ± 0.22 nm, respectively (Fig. 3, E and F).

Given the observed IMM compartment-specific differences, 
we wondered whether other aspects of mitochondrial structure 
are associated with changes in membrane thickness. Mito
chondria form large, dynamic networks that can exhibit 
distinct cellular distributions, including highly elongated 
(i.e., hyperfused) or fragmented networks. We previously 
demonstrated that these distinct network morphologies are 
associated with significantly distinct membrane ultra
structures that vary in inter- and intramembrane spacing, 
curvature, and orientation (Barad et al., 2023). We set out to 
understand whether a similar connection exists between bulk 
mitochondrial morphology (i.e., elongated versus fragmented) 
and mitochondrial membrane thickness. We performed cryo- 
fluorescence microscopy to classify the network morphology of each 
cell prior to cryo-FIB milling and cryo-ET acquisition (Fig. S3 A) 
(Barad et al., 2023). We calculated the average membrane thickness 
across mitochondrial membrane surfaces and observed no statisti
cally significant differences in the thickness of the OMM or IMM 
(and IMM subcompartments) based on network morphology 
(Fig. S3 B), in contrast with previous work showing differences 
in intermembrane spacing and curvature (Barad et al., 2023).
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Figure 2. Membrane thickness varies across organelles. (A) Global per-triangle measurements across different organelle classes are mapped to the 
different organelle classes observed in a single tomogram from a lamella generated from a MEF cell. (B) Local per-triangle measurements across different 
organelle classes are mapped to the different organelle classes observed in a single tomogram from MEF. (C) Per-triangle median thickness histograms 
highlight the difference in thickness distributions between different physiological organelles in MEF. (D) Violin plot of per-surface median thickness reveals 
statistically significant differences in thickness between different organelles in MEF. IMM: n = 15; OMM: n = 15; ER: n = 12; vesicle: n = 7. P values from the Mann– 
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Membrane thickness positively correlates with 
membrane curvature
Previous studies using in vitro–reconstituted membranes dem
onstrated that membrane rigidity (i.e., the resistance to curva
ture) increases with thickness (Bermúdez et al., 2004). We 
observe significant variability in the curvature of the IMM, with 
the crista junction and the crista “tip” exhibiting the highest 
degree of curvature relative to the crista body and IBM (Fig. 4 A) 
(Barad et al., 2023). Therefore, we wondered whether increases 
in membrane curvature are associated with thinner membrane 
regions in organellar membranes within the native cellular 
environment. To test this, we calculated the curvature of all 
triangles within the IMM surface mesh reconstructions and 
partitioned the curvature values into separate quantile ranges 
for comparison (0–0.5, 0.5–0.9, 0.9–0.95, 0.95–0.99, 0.99–1). 
Interestingly, plotting the membrane thickness for each tri
angle within the curvature quartiles showed that triangles with 
the highest curvature (0.99–1 quantile) were associated with 
significantly thicker membranes relative to medium and low 
curvature regions (Fig. 4 B).

Given that ATP synthase dimers have the capacity to induce 
and localize to regions containing high degrees of membrane 
curvature (Davies et al., 2012), we wondered whether the pres
ence of ATP synthase in our datasets was associated with local 
changes in membrane thickness. In species like Chlamydomonas 
reinhardtii, ATP synthase is primarily organized as dimer rows 
enriched at the crista tip regions. In our dataset, we observe clear 
densities for ATP synthase that are assembled in a mixture of 
dimers and monomers, both in the crista tip and in the crista 
body regions (Fig. 4 C). To investigate the association of these 
ATP synthase complexes with regions of high curvature and 
membrane thickness, we manually selected 8,993 ATP synthase 
monomers from a larger dataset and performed subtomogram 
averaging to refine the position and orientation of these par
ticles. This resulted in a structure (resolved to 13 Å) resembling 
ATP monomers from previous reports (Nesterov et al., 2020) 
(Fig. 4 D and Fig. S3 C). We applied a “patch-based” analysis 
(Chang et al., 2025) to subselect local patches of surface mesh 
reconstructions that correspond to the membrane “footprint” of 
ATP synthase on the crista body region of the IMM, where ATP 
synthases are predominantly localized. In brief, this involved 
identifying the nearest IMM surface triangles of each ATP syn
thase particle coordinate and extracting the surrounding tri
angles within a radius of 120 Å of those nearest triangles (Fig. 4 
E). Calculating membrane thickness locally at each ATP synthase 
patch region revealed no significant differences in membrane 
thickness compared with patches generated at random positions 
within the crista body (Fig. 4 F). However, in the context of 
curvature, we observed that those ATP synthase patches at high- 

curvature regions were also associated with thicker membranes, 
compared with what would be expected from random chance 
(Fig. 4 G). This suggests that individual ATP synthase particles 
associated with high-curvature regions are also found in regions 
of greater membrane thickness.

Thickness measurements from the Surface Morphometrics 
pipeline on 3D reconstructed data closely match those from 
previous approaches on 2D data of an in vitro vesicle sample
To determine the degree to which changes might be due to ar
tifacts from tomography data collection and to benchmark our 
measurements against alternative imaging modalities, we per
formed thickness calculations on a sample of in vitro–extruded 
vesicles from untilted (2D projections) cryo-EM micrographs 
using previously described approaches (Heberle et al., 2020; 
Heberle et al., 2023) and on tomographic data (3D reconstructions) 
using our Surface Morphometrics pipeline (Fig. 5). To ensure 
consistency across imaging and sample conditions, we col
lected these data from the same sample deposited on the same 
electron microscopy (EM) grid. Both methods revealed thickness 
variations between 3 and 4 nm, though more variation was 
measured in the tomographic data, likely due to increased de
focus, artifacts from tomogram reconstruction, and reduced 
signal-to-noise (Fig. 5, B–E). Despite these differences in varia
tion, the two techniques showed remarkably similar overall 
thickness measurements, with a median of 3.56 nm for cryo-EM 
and 3.52 nm for cryo-ET. This results in a difference of <2%, 
suggesting that the measurements made by the Surface Mor
phometrics pipeline are consistent with state-of-the-art techni
ques for measuring bilayer thickness using other imaging 
modalities. Because these in vitro vesicles contained no proteins, 
we used them to test the degree to which thickness and curva
ture correlate in the absence of protein factors (Fig. 5, G and H). 
We observed no statistically significant correlation between 
local membrane curvature and overall vesicle radius, suggest
ing that the increased thickness at high curvature in Fig. 4 G
may be a specific feature of cellular membranes, possibly due to 
curvature-associated lipids or proteins.

Local changes in membrane thickness are colocalized with 
membrane-associated proteins that exhibit unique density line 
scan profiles
Unique to our approach is the ability to accurately identify local 
variability in membrane thickness on a locally averaged per- 
triangle basis (Fig. 2 B, Fig. 6 A, and Fig. S2). Within our 
surfaces, we isolated the local patches that exhibited the most 
increased or reduced membrane thickness relative to the 
surrounding areas (Fig. 6 A and Fig. S4). Mapping these local 
regions back to their locations within the tomogram revealed 

Whitney U test are indicated. ****P < 0.001. (E) Global per-triangle measurements across different organelle classes are mapped to the different organelle 
classes observed in a single tomogram from yeast (S. cerevisiae). (F) Local per-triangle measurements across different organelle classes are mapped to the 
different organelle classes observed in a single tomogram from yeast cell lamellae. (G) Per-triangle median thickness histograms highlight the difference in 
thickness distributions between different physiological organelles in yeast cell lamellae. (H) Violin plot of per-surface median thickness reveals statistically 
significant differences in thickness between different organelles in yeast. IMM: n = 11; OMM: n = 11; ER: n = 11; plasma membrane: n = 9; vacuole: n = 6; vesicle: 
n = 5; nucleus: n = 5. P values from the Mann–Whitney U test are shown in the table. PM, plasma membrane.
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Figure 3. Average membrane thickness varies within subcompartments of the same organelle. (A) OMM distance-based classification automatically 
segments the IBM (purple), CJ (green), and CB (blue) in surface mesh models. (B) Area-weighted histogram of per-triangle thickness measurements shows 
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that they often colocalize with large, membrane-embedded 
complexes (Fig. 6 B). Surprisingly, given our previous analysis, 
we observe ATP synthase localizing to thicker regions even in 
regions with low apparent curvature (Fig. 6 B). Strikingly, we 
detect several macromolecules localized to regions of thinner 
membrane (Fig. 6 B). Although it is challenging to unambigu
ously identify all these macromolecules, based on their size and 
localization within the crista body, a subset likely represents 
components of the oxidative phosphorylation machinery.

To further investigate the unique structural properties of 
these macromolecules, we extended our patch-based (Chang 
et al., 2025) density scans to encompass regions beyond the 
IMM, extending into the mitochondrial matrix. All line scans 
show the characteristic double Gaussian peaks of the IMM, with 
additional peak profiles observed at greater distances away from 
the IMM surface (Fig. 6 C). For ATP synthase, this corresponds to 
an additional broad peak spanning from 7 to 17 nm, corre
sponding to the diameter of the F1 catalytic domain. Comparing 
the average of several line scans of ATP synthase with those 
generated using randomized patches along the IMM caused this 
peak to disappear (Fig. 6 D). This suggests that this patch-based 
line scan approach can uniquely identify distinct signatures of 
macromolecules, paving the way for future applications aimed at 
subclassifying distinct membrane-associated molecules in cells.

Discussion
The diversity of organellar membranes has been extensively 
studied through lipidomics (Jacquemyn et al., 2017; Cortie and 
Else, 2015), proteomics (Rezaul et al., 2005; Rath et al., 2021), 
light microscopy (Schroeder et al., 2019), and EM (West et al., 
2011; Ding et al., 2012). However, recent advances in cryo-ET 
have enabled the direct visualization of these membranes 
within cells with higher resolution than ever before. We de
scribe an automated and robust method to measure organellar 
membrane thickness directly from observed density in cellular 
cryo-electron tomograms. A substantial body of work has used 
contour-based density scanning in single-tilt images of in vitro 
membrane bilayers (Heberle et al., 2020); our method advances 
these measurements into three dimensions within cells by tak
ing advantage of our previously developed tools to automatically 
model membranes as triangle meshes in tomograms (Barad 
et al., 2023). These surface meshes serve as a scaffold to per
form hundreds of thousands of voxel-based density line scans 
across entire organellar membranes (Fig. 1).

A key advantage of this method is that it is agnostic to the 
approach used for generating the initial voxel-based segmenta
tion, due to the combination of the surface mesh model and the 
direct sampling of the original tomogram for thickness 
measurements. Various techniques exist for isolating or 

segmenting membranes from cryo-tomograms into binarized 
volumes that can subsequently be attributed to specific organ
elles. These range from watershed transforms (Volkmann, 2002) 
to computer vision-based methods such as tensor voting (e.g., 
TomoSegMemTV [Martinez-Sanchez et al., 2014], ColabSeg 
[Siggel et al., 2024]), and more recent approaches using 2D/3D 
U-net architectures (e.g., EMAN2 [Chen et al., 2017], MemBrain- 
Seg [Lamm et al., 2024, Preprint], DeepFinder [de Teresa-Trueba 
et al., 2023]). To address segmentation challenges posed by low 
signal-to-noise ratios, many of these methods prioritize voxel 
intensity connectivity to generate visually complete membrane 
segmentations. While appropriate for visualization, this can lead 
to variations in membrane width. The expanded Surface Mor
phometrics pipeline overcomes these limitations by directly 
performing voxel-based line scans on the underlying density 
visible in the tomographic data. Additionally, tomograms can be 
interchanged with different binning or additional postprocess
ing with denoising or contrast enhancement algorithms as long 
as the tomogram’s relative dimensions remain consistent, al
lowing for rapid adaptation of workflows (Fig. S1).

We applied our method to analyze organellar membranes 
within both mammalian and yeast cell types, and identified 
statistically significant differences across various physiological 
membranes (Fig. 2). Although the nominal values differ, we 
observe similar trends in the relative thickness of the OMM and 
IMM across both mammalian and yeast cells, with the OMM 
consistently exhibiting lower thickness (Fig. 2). The IMM is one 
of the most protein-rich membranes in the cell, having been 
reported as containing 60–70% protein content by mass (Krebs 
et al., 1979). In contrast, the OMM is reported to have a much 
lower protein content—45% protein content by mass (Sperka- 
Gottlieb et al., 1988). In addition to protein differences, the OMM 
and IMM also have distinct lipid compositions, with the IMM 
being enriched in cardiolipin, promoting higher curvature and 
stabilizing large protein complexes (Ikon and Ryan, 2017), which 
may also contribute to the observed differences in membrane 
thickness within the same organelle.

In tomograms of yeast cell lamellae, we frequently captured a 
wider variety of organellar membrane types within a single field 
of view. This is likely due to the compact organization and 
smaller size of yeast cells, which often allow multiple cells and 
organelles to be imaged simultaneously within the same lamella. 
This feature provided us with an opportunity to explore thick
ness variations across a more diverse set of organellar mem
branes within tomograms of yeast cell lamellae. Within these 
data, we observe that the plasma membrane is the thickest (4.2 
nm) when compared to other organellar membranes. Our find
ings agree with reported computational modeling of the plasma 
membrane, which is predicted to have a larger head-to-head 
distance (4.3–4.4 nm) (Monje-Galvan and Klauda, 2015). Room 

variation between different mitochondrial subcompartments. (C) Violin plot of per-tomogram median thickness shows statistically significant variations 
between mitochondrial subcompartments. IBM: n = 15; CJ: n = 15; CB: n = 15. P values from the Mann–Whitney U test are indicated. **P < 0.01, ****P < 0.001. 
(D) Tomogram showing rough and smooth ER. Classification based on the presence or absence of bound ribosomes on the ER membrane, respectively. (E) Area- 
weighted histogram of per-triangle thickness measurement across ER subcompartment. (F) Violin plot of per-tomogram median thickness of each ER sub
compartment. Rough ER: n = 7; smooth ER: n = 14. CB, crista bodies; CJ, crista junctions.
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Figure 4. Membrane thickness is positively correlated with membrane curvature. (A) Representative membrane surface reconstruction of mitochondria 
colored by IMM curvedness. (B) Quantification of IMM thickness by curvedness quantile shows that higher curvature significantly correlates with thicker 
membrane. P values from the Mann–Whitney U test are indicated. *P < 0.05, ***P < 0.005. (C). ATP synthases (highlighted by pink dashed lines) are located at 
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temperature EM in concert with quantitative lipidomics of yeast 
organelles further supports this trend, showing that the plasma 
membrane has the thickest membrane and the highest level of 
ergosterol, which may contribute to its greater membrane 
thickness (Zinser et al., 1993; Schneiter et al., 1999). We mea
sured the vacuole as the second thickest membrane, which is 
consistent with the room temperature EM data (Schneiter et al., 
1999). The ability to directly measure membrane thickness in 
cells preserved in a frozen-hydrated state, without the use of 
chemical fixatives or stains, enables a more direct assessment of 
native membrane properties within the cellular context. Strik
ingly, we observe high variability in the thickness of intracel
lular vesicles. This could be because we are unable to distinguish 
between different vesicle types (which would typically need 
specialized CLEM approaches); therefore, we may be capturing 
thickness variations that reflect functional differences in vesicle 
subtypes that vary in both lipid content and membrane- 
associated cargo. Further studies of vesicles with specified ori
gins, as well as with vesicle-originating organelles such as the 
plasma membrane and the Golgi apparatus, will help to differ
entiate these possibilities, as will studies of in vitro vesicles with 
defined lipid and protein composition.

Beyond differences in thickness between organelles, we de
tected local variation in thickness within physiologically distinct 
organelle subcompartments. In the IMM, we identified variation 
between the IBM, crista junctions, and crista bodies. These have 
sequentially increased thicknesses, with the crista body signif
icantly thicker than either of the other two compartments 
(Fig. 3). Given the continuous membrane bilayer connecting 
these subcompartments, this local variation is likely due to a 
combination of local lipid enrichment and differences in protein 
content within the different subcompartments. In contrast, 
when comparing the differences between rough and smooth ER, 
the small apparent thickness difference was not statistically 
significant, though this may be due to the limited number of 
surfaces measured (smooth ER: n = 14 surfaces, rough ER: n = 7 
surfaces). ER structures are diverse (Terasaki et al., 2013; Obara 
et al., 2023), and we anticipate that differences in thickness may 
often be found in physiologically distinct membrane sub
compartments with local enrichments of both lipid and protein 
factors.

We found enhanced bilayer thickness in the most curved 
segments of the IMM (Fig. 4). This is in sharp contrast to in vitro 
biophysical studies, which reported that membrane resistance to 
curvature increases quadratically with bilayer thickness—the 
“thicker sandwich” is harder to bend (Bermúdez et al., 2004). 
This increase in thickness at the top 1% most curved triangles of 
the highest degrees of curvature is biophysically unfavorable, as 
thicker membranes are more rigid. This suggests that additional 

forces, such as membrane-shaping proteins, may contribute to 
the increase in membrane thickness locally at these high- 
curvature regions. To address the possible sources of variation 
in thickness, we tested the measurements of thickness on to
mograms collected on an in vitro vesicle sample, by comparing it 
with measurements made using existing techniques in two di
mensions using cryo-EM from the same grid (Fig. 5). These data 
gave two major insights: first, our measurements with Surface 
Morphometrics varied by around 1.2% from the existing state-of- 
the-art method for measuring thickness in in vitro samples, 
suggesting that our technique can make both accurate and 
precise measurements of thickness in these conditions, as well 
as within cells. Second, we demonstrated that in these in vitro 
conditions, there is no correlation between thickness and cur
vature, suggesting that the difference we observe is a feature 
specific to the cellular environment, whether due to protein 
localization or the presence of specific curvature-inducing lipids 
such as cardiolipin. A limitation of this interpretation is that the 
very high curvatures we observed in cells were never observed 
with the vesicles—very small radius (8 nm or less) vesicles 
would be needed to observe such curvatures in vitro.

We reason that this difference from biophysical principles 
must be due to either specific lipids (cardiolipin, in particular, 
may increase both curvature and thickness together) (Golla 
et al., 2024) or membrane-bending proteins involved in gener
ating that increased thickness. To address these possibilities, we 
attempted to evaluate the role of ATP synthase, one of the best 
characterized proteins involved in driving membrane curvature 
in cristae (Fig. 5). Consistent with its role, we show that regions 
of extremely high curvature in the IMM are associated with ATP 
synthase molecules. However, when comparing membrane re
gions in the presence and absence of ATP synthase, we did not 
identify any significant changes in membrane thickness. One 
potential explanation is that, within our dataset, we observe a 
mixture of ATP synthase monomers and dimers, and analyzing 
this heterogeneous population may obscure differences in 
membrane thickness.

Although ATP synthase did not significantly colocalize with 
membrane thickness, we discovered that many of the thickest 
and thinnest sections of membranes are associated with large 
membrane-associated protein complexes (Fig. 6). This aligns 
with our current understanding of protein–lipid interactions, 
which proposes that specific microdomains help stabilize and 
regulate protein complexes, such as the respiratory complexes 
(Friedman et al., 2015). This is suggestive that membrane bilayer 
variation may be a sensitive signature to help identify chal
lenging-to-find membrane proteins within tomograms. In sup
port of this concept, we extended our line scan approach beyond 
the lipid bilayer into the space around the membrane and 

the IMM (orange) with distinct curvature. The left panel shows an ATP synthase positioned at a curved crista tip, and the right panel shows one on a flat crista 
body. (D) 3D subtomogram average structure of ATP synthase monomer positioned on IMM with its F1 catalytic head and central stalk highlighted by arrows. 
(E) ATP synthase (outlined by pink dashed lines) and the corresponding membrane patch (cyan) representing its local footprint on IMM (orange). 
(F) Quantification of average thickness of ATP synthase patches and randomized patches on crista bodies for each mitochondrion. ATP synthase 
patches show no significant difference in thickness compared with randomized patches. Quantification of ATP synthase patch number n = 984 and ran
domized patch number n = 984 is shown. (G) 2D histogram of average thickness and log10 (curvedness) for ATP synthase patches and randomized patches 
on crista bodies. ATP synthase patches show a positive correlation between thickness and curvature.
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Figure 5. Thickness measurements of in vitro lipid bilayers match closely between cryo-EM and cryo-ET. (A) Representative untilted 2D cryo-EM 
micrograph of in vitro–extruded vesicles with varying radii. (B) Thickness of vesicle bilayers, measured as previously described (Sharma et al., 2024), revealed in 
untilted micrographs, shown as color on the micrograph, reveals the thickness variation in the micrograph. The scale bar is 150 nm. (C) Histogram of thicknesses 
across contours in the micrographs showing the median thickness of 3.56 nm. (D) Representative slice of a reconstructed tomogram of in vitro vesicles acquired 
from the same grid. The scale bar is 150 nm. (E) Surface map shows the variation of thickness measured by the Surface Morphometrics pipeline. (F) Histogram 
of thickness across triangles in the tomograms shows the median thickness of 3.52 nm, <2% different than the in vitro micrographs, despite larger defocus and 
reduced signal-to-noise leading to increased variance across triangles. n = 3 tomograms, 47 vesicles. (G) 2D histogram showing no significant correlation 
between curvature and thickness in in vitro vesicles. (H) Average thickness per vesicle is plotted against vesicle radius, with a linear regression line in red, 
showing no significant correlation between vesicle radius and thickness. R2 = 0.096.
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Figure 6. Local variations in membrane thickness correspond to the presence of membrane-associated proteins. (A) Representative membrane surface 
reconstruction of mitochondria colored by IMM membrane thickness. (B) Enlarged images of the corresponding boxed regions shown in A reveal the local 
membrane thickness and the colocalized membrane-associated macromolecules (outlined by dashed lines). Scale bars = 25 nm. (C) Line scan profiles along the 
green dashed arrow line in B of membrane-associated macromolecule patches show double Gaussian peaks (orange dashed line) corresponding to IMM (orange 
arrows), along with additional peaks representing protein macromolecules (green arrows). (D) Averaged line scan density profile across all ATP synthase 
patches (blue) shows a distinct peak compared with randomized patches (green).
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showed that complexes like ATP synthase exhibit distinct line 
scan profiles. This opens the door to incorporating membrane 
mesh-guided density sampling as an assistive tool in protein 
localization and identification within tomograms.

In summary, our model-guided density-based approach to 
measuring membrane thickness reveals variation between or
ganelles and within distinct organelle subcompartments, as well 
as within organelles in correlation with ultrastructural features 
such as curvature. Furthermore, this new and robust tool for 
measuring bilayer thickness has been incorporated into the 
Surface Morphometrics pipeline, enabling measurement of 
thickness from segmented tomograms in a fully automated 
manner in concert with other features such as membrane– 
membrane distances, curvature, and orientation. In this way, 
it will be straightforward for microscopists to measure the as
sociation of bilayer thickness with features such as membrane 
contact sites or curvature-separated subcompartments. We have 
already demonstrated the value of an early version of this ap
proach in recent collaborative work studying ER-budded repli
cation organelles in arbovirus-infected cells (Dahmane et al., 
2024, Preprint). We look forward to seeing the discoveries 
made by other researchers using this new tool in the Surface 
Morphometrics pipeline.

Materials and methods
Preparation of vitrified MEFs on cryo-EM grids
MEFs expressing mitochondrially localized GFP (MEFmtGFP) 
(Wang et al., 2012) were cultured in Dulbecco’s modified Eagle’s 
medium + GlutaMAX (Gibco) additionally supplemented with 
HiFBS (10%) and glutamine (4 mM) on fibronectin-treated (500 
µg/ml, Corning) and UV-sterilized R ¼ Carbon 200-mesh gold 
EM grids (Quantifoil Micro Tools). After 15–18 h of culture, 
MEFmtGFP cells were plunge-frozen in a liquid ethane/propane 
mixture using a Vitrobot Mark 4 (Thermo Fisher Scientific). The 
Vitrobot was set to 37°C and 100% relative humidity, and blotting 
was performed manually from the back side of grids using 
Whatman #1 filter paper strips through the Vitrobot humidity/ 
temperature chamber side port.

Preparation of vitrified yeast (S. cerevisiae) cells
While most yeast data for this work have been previously 
published in EMPIAR-12534, we applied this analysis to an 
additional tomogram from the same dataset, which we have 
deposited as part of EMPIAR-13056. The preparation details are 
as follows: the yeast strain used in this study is a derivative of 
the S. cerevisiae strain BY4741, which contains Su9-mCherry- 
Ura3 and TIM50-GFP-His3MX6 (Lee et al., 2013). Yeast liquid 
cultures with an OD600 of 0.8 were four times diluted to an 
OD600 of 0.2 with the medium supplemented with 133 μg/ml 
CHX. The final concentration of CHX was 100 μg/ml. Yeast 
liquid cultures were incubated with CHX for 2 min, and then, 
4 μl of the sample was applied to the glow-discharged R1/4 
Carbon 200-mesh gold EM grid (Quantifoil Micro Tools). The 
EM grid was incubated in the chamber of Vitrobot (Vitrobot Mark 
4; Thermo Fisher Scientific) for another 2 min before it was 
plunge-frozen in a liquid ethane/propane mixture. The Vitrobot 

was set at 30°C with 100% relative humidity, and the blotting was 
performed manually from the back side of grids using Whatman 
#1 filter paper strips through the Vitrobot chamber side port.

Cryo-fluorescence microscopy and mitochondrial network 
morphology scoring
Fluorescence and bright-field tiled image maps (atlases) of EM 
grids containing vitrified cellular samples that were acquired 
with a Leica CryoCLEM microscope (Leica DM6 Fixed Stage 
Fluorescence Microscope fit with a cryo-stage and an objective 
HC PL APO 50×/NA 0.9 CRYO CLEM) were collected using Leica 
LAS X software (25 µm Z stacks with system-optimized steps, 
GFP channel ex: 470, em: 525). Z stacks were stitched together in 
LAS X navigator to provide a single mosaic of maximum pro
jections of the GFP signal, enabling rapid identification of the 
bulk mitochondrial morphology for each cell. For classification 
of mitochondrial network morphologies, max projections of in
dividual tiles within fluorescence atlases of MEFmtGFP cells were 
randomized and blinded. Five researchers classified the cells as 
containing primarily elongated or fragmented mitochondria. 
Atlases were then exported from LAS X and loaded into MAPS 
software (Thermo Fisher Scientific) for fluorescence-guided 
milling.

Fluorescence-guided milling of mouse embryonic fibroblasts
Cryo-FIB milling of lamellae was performed using an Aquilos 
dual-beam cryo-FIB/SEM instrument (Thermo Fisher Scientific) 
operated by xT software (Thermo Fisher Scientific). The fluo
rescence atlases were overlaid and aligned to SEM atlases of the 
same grid to target milling of MEFmtGFP cells with distinct mi
tochondrial network morphologies, as determined during blind 
classification (described above). MEFmtGFP cell targets were 
chosen based on their position within grid squares, the thick
ness of the ice in their vicinity, and their bulk morphology as 
assessed by the GFP fluorescence channel. Prior to milling, EM 
grids were coated with an organometallic platinum layer using 
a gas injection system for 3–4 s using an automation script 
(Barad, 2022), followed by a layer of platinum sputter. Targeted 
cells were milled using an automated cryo-preparation work
flow (Buckley et al., 2020). Upon completion of final polishing of 
lamellae, an 8-s layer of platinum sputter was added to deposit 
platinum (bead) fiducials for downstream tilt series alignment. A 
total of two grids were milled for further tomography analysis.

Fluorescence-guided milling of S. cerevisiae
Cryo-FIB milling of lamellae was performed using Aquilos 
2 cryo-FIB/SEM (Thermo Fisher Scientific) operated by software 
xT, Maps, and AutoTEM (Thermo Fisher Scientific). Before 
milling, the EM grid was first subjected to a layer of platinum 
sputter for 15 s (1 kV, 20 mA, 10 Pa). Next, the grid was coated 
with an organometallic platinum layer using a gas injection 
system for 45 s and finally sputter-coated for 15 s (1 kV, 20 mA, 
10 Pa). Automated milling was performed in AutoTEM using a 
previously detailed protocol (Chang et al., 2025). After the 
automatic milling and thinning process, a polishing step was 
manually executed using an ion beam of 50 pA and targeted 
for the thickness of lamella under 200 nm.

Medina et al. Journal of Cell Biology 13 of 19 
Measuring local membrane thickness in cells https://doi.org/10.1083/jcb.202505059 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/225/3/e202505059/1956846/jcb_202505059.pdf by guest on 10 February 2026



Tilt series data collection
EM grids containing lamellae were transferred into a 300 keV 
Titan Krios microscope (Thermo Fisher Scientific), equipped 
with a K3 Summit direct electron detector camera (Gatan), and a 
BioQuantum energy filter (Gatan). Individual lamellae from both 
MEFs and S. cerevisiae were montaged with low dose (1 e−/Å2) at 
high magnification to localize cellular regions containing mito
chondria, which were identified by their distinctive IMM and 
OMM. Data were collected to maximize the number of non
overlapping fields of view containing mitochondria, with no 
targeting of specific observed membrane ultrastructure. Tilt series 
were acquired using parallel cryo-ET (PACE-tomo) (Eisenstein 
et al., 2023), which is a set of Python-based SerialEM (Mastronarde, 
2005) allowing multiple tilt series collection in parallel on the 
same lamella using beam shift. Tilt series were acquired at 
magnification 53,000× with a pixel size of 1.662 Å and a nom
inal defocus range between −4 and −6 µm. Data collection was 
done in a dose-symmetric scheme with 3° steps between −60° 
and +60° centered on −11° pretilt. Data were collected with dose 
fractionation, with 10 0.3001 e/Å2 frames collected per second 
for MEF and 10∼11 0.28–0.33 e/Å2 frames for yeast. The total 
dose per tilt was ∼3.0 e/Å2, and the total accumulated dose for 
the tilt series was under 123 e/Å2.

Tilt series processing and reconstruction
Dose-fractionated tilt series micrograph movies underwent CTF 
estimation and motion correction in Warp (Tegunov and 
Cramer, 2019) and combined into averaged tilt series for align
ment. Fractionated tilt series then were aligned using bead 
alignment using the post polish platinum fiducials in etomo 
(Mastronarde and Held, 2017). In some cases, the coverage of the 
platinum fiducials on the tilt series position was not amenable 
for bead tracking and patch tracking in etomo was used with 
4 times binning and 36 binned pixel patches. Resulting contours 
were manually curated to remove poorly aligning patches, and 
the remaining contours were used for alignment and imported 
into Warp. Reconstruction was completed with Warp (Tegunov 
and Cramer, 2019) back-projection into 4, 6, and 8 times binned 
tomograms (corresponding to tomograms reconstructed at 
6.65, 9.98, and 13.3 Å/pixel, respectively). Fiducial platinum 
“beads” were erased using a BoxNet model in Warp (Tegunov 
and Cramer, 2019). Tomogram thicknesses ranged from 80 to 
150 nm.

Membrane tracing, voxel segmentation, and 
surface generation
All reconstructed tomograms with eight and six times binning 
(voxel dimensions for MEF:13.30 × 13.30 × 13.30 Å; voxel di
mensions for yeast: 9.98 × 9.98 × 9.98 Å) were processed by 
MemBrain-Seg (Lamm et al., 2024, Preprint), which is an ad
vanced machine learning software based on U-Net architecture 
for tracing and segmenting cellular membranes. The binarized 
volumes of the traced membranes were then input into AMIRA 
(Thermo Fisher Scientific) for manual curation. All organellar 
membranes were designated as different labels using the 3D 
magic wand tool MEF (OMM, IMM, ER, smooth ER, rough 
ER, vesicles) and yeast (OMM, IMM, ER, nucleus, plasma 

membrane, vacuole, and vesicles). Manual clean-up of organ
ellar membranes was performed using the 2D paintbrush tool. 
Final voxel segmentations were confirmed by visual inspection 
in AMIRA in comparison with the original tomogram. The 
voxel segmentation membrane label files were then exported 
from AMIRA and input into Surface Morphometrics (Barad 
et al., 2023). The labels of each membrane voxel segmenta
tion were reconstructed as smooth surface meshes using the 
“segmentation_to_mesh.py.” The surfaces were generated with 
a maximum of 200,000 triangles, a reconstruction depth of 8 
(MEF) and 9 (yeast), and an extrapolation distance of 1.3 nm 
(MEF) and 1.5 nm (yeast). Curvature estimations of triangulated 
surface meshes were run using “run_pycurv.py.” Inter- and intra- 
organelle distances were measured using “membrane_distance_ 
orientation.py.” Surfaces were subdivided into individual segments 
based on the connected components of the membrane graph to get 
“per-component” analyses to establish reasonable estimates of in
dependent samples within each tomogram.

Thickness measurement
For each triangle in a surface mesh, the density in the 9.98 Å/px 
tomogram (except in Fig. S1, where 6.65 and 13.30 Å/px were 
tested) was interpolated at along the normal vector at 0.25-nm 
increments ranging from 10 nm below the triangle to 10 nm 
above to produce a “line scan” revealing the electron density 
normal to the surface, revealing the areas of increased density 
corresponding to the head groups of each leaflet of the phos
pholipid bilayer. These line scans are generated in the “thick
ness_scan.py” script. These individual scans are very noisy due 
to the low signal-to-noise inherent to tomography data; to gen
erate scans that could consistently fit, we applied two averaging 
strategies. For global thickness measurement, all line scans in a 
surface were averaged before fitting with a dual Gaussian dis
tribution. For local measurements, each triangle’s line scan was 
averaged with all neighboring triangles within 12 nm of the 
original triangle, with weighting that decreased with the dis
tance from the central triangle by the following formula: 
weight = 1

1+distance (nm). In this way, closer triangles counted more 
for the assessment of thickness, minimizing the loss of local 
detail while enhancing signal-to-noise. With these averaged line 
scans, the PHG were modeled by fitting a pair of Gaussians to the 
line scan, with no correction applied for the white banding 
caused by defocus; despite this assumption, the fits are reason
ably robust with an initial position guess estimated based on the 
peak position on each side of the midline. The measured thick
ness was determined by the difference in the means of the two- 
fit Gaussians. These thickness calculations were accomplished 
with the “thickness_plots.py” script. For each surface, the me
dian thickness was calculated using weights corresponding to 
the area of each triangle, accounting for triangle size variation.

Statistical inference
For all measurements, including thickness, curvature, and ver
ticality, distributions were measured using a previously de
scribed area-weighted histogram technique to account for 
variance in the size of each segment being measured. For indi
vidual connected components, the area-weighted median of each 
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quantification was used as the overall measurement for that 
surface, to overcome issues with correlation of measurements 
between neighboring triangles causing overestimation of sig
nificance when per-triangle statistics are used. The mean and 
standard error–based 95% confidence interval of these per- 
surface measurements were reported, and all statistical com
parisons of different surface types used the Mann–Whitney U 
test (Mann and Whitney, 1947), since in many cases the dis
tributions of these measurements were visually non-normal. 
These statistics rely on standard tools in the “morphometrics_ 
stats.py” component of the Surface Morphometrics toolbox and 
were generated in the “thickness_stats.py” script.

Patch-based analysis
To analyze the local environment of ATP synthase, we defined 
ATP synthase-associated patches as regions on the IMM surface 
where ATP synthase particles localize (Blum et al., 2019). ATP 
synthase coordinates were obtained from the starfiles corre
sponding to each tomogram. The IMM surface coordinates and 
thickness for each mitochondrion were from triangle graph files 
(.gt) generated by the Surface Morphometrics pipeline. To 
identify patches for each mitochondrion, we first located the 
nearest IMM surface triangle to each ATP synthase particle us
ing a k-dimensional tree Python function. To avoid cross- 
assignment ATP synthase from other mitochondria in the 
same tomogram, we excluded any nearest IMM triangles located 
farther than the height of an ATP synthase particle (24 nm). The 
remaining nearest IMM surface triangles were designated as 
“patch centers.” Around each patch center, we searched for 
triangles within a 12-nm radius to define the ATP synthase– 
associated patch. Randomized ATP synthase–associated 
patches for each mitochondrion were generated based on the 
following criteria: (1) the number of randomized patches 
matched the number of ATP synthase–associated patches, and 
(2) the distances between randomized patch centers were >12 
nm. This process was performed using “find_IMM_patches_ 
for_ATP_synthase.py.” The average thickness for each ATP 
synthase–associated patch and each randomized patch was 
calculated by “average_thickness_calculation_per_patch.py” 
and visualized as a violin plot. The Mann–Whitney U test was 
applied to assess the statistical significance of differences. The 
generation of the violin plot and statistical test was performed 
using Prism. The average curvature for each ATP synthase– 
associated patch and each randomized patch was calculated 
by “average_curvature_calculation_per_patch.py.” The average 
thickness and log10 curvedness are plotted as a 2-dimensional 
histogram by “2dhist_curvedness_thickness.py.”

To obtain the average ATP synthase line scanning density 
profile, we extracted ATP synthase–associated patches from 
multiple mitochondria as individual patch surfaces, preserving 
the coordinates and normal vectors of each surface triangle, 
using the script “extract_single_patch.py.” Before performing 
line scanning, the normal vectors of the surface triangles in each 
patch were curated to ensure they pointed in the same direction 
as the vector from the patch center to the corresponding ATP 
synthase particle center. These curated patch surfaces were then 
correlated with the tomogram and served as the reference for the 

line scanning process. For each ATP synthase, a line scanning 
density profile was generated by sampling tomogram intensity 
values along the direction of the curated normal vectors. The 
scan extended from −10 nm (toward the inner membrane space) 
to +30 nm (toward the matrix) with 0.25 nm steps. The average 
ATP synthase line scanning density profile was then obtained by 
averaging the intensity profiles (IPs) across all ATP synthases. 
To obtain the line scanning profile for the other membrane- 
associated proteins, we picked the protein candidates as par
ticles in ArtiaX and identified the corresponding patches with a 
12-nm radius by the same approaches as ATP synthase. We 
performed line scans ranging from −10 to 30 nm on individual 
membrane-associated protein patches, using particle-curated 
vectors to obtain the density profile for each membrane- 
associated protein.

Subcompartment analysis
Rough ER and smooth ER were separated on entire surfaces by 
visual inspection of the tomogram, identifying ribosome-bound 
ER membranes. For subcompartment analysis of IMMs, the in
ner membrane surface was subdivided based on additional dis
tance from the OMM beyond the mode intermembrane distance 
measured for each surface, which corresponds to average 
spacing between the OMM and the IBM. All triangles <4 nm 
beyond this distance were classified as IBM. Triangles between 4 
and 14 nm beyond this distance were classified as junctions. All 
triangles >4 nm beyond this distance were classified as crista 
bodies.

In vitro comparative analysis
Phospholipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 
(DPPC), 1-(12S-methylmyristoyl)-2-(13-methylmyristoyl)- 
sn-glycero-3-phosphocholine (a15-i15-PC), and 1-palmitoyl-2- 
oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) 
(POPG) were purchased from Avanti Polar Lipids. Cholesterol 
was purchased from Nu-Chek-Prep. All lipids were suspended in 
HPLC-grade chloroform and stored at −20°C until use. Concen
trations of phospholipid stocks were determined using a color
imetric inorganic phosphate assay (Kingsley and Feigenson, 
1979) (and the concentration of the cholesterol stock was deter
mined gravimetrically). Large unilamellar vesicles (LUVs) 
composed of DPPC/a15-i15-PC/POPG/Chol (40/35/5/20 mol%) at 
a concentration of 3 mg/ml were prepared by first mixing the 
required volumes of lipid stocks in chloroform using a glass 
Hamilton syringe. The solvent was then evaporated using an 
inert gas stream, and the sample was kept under vacuum over
night. Dried lipid films were hydrated with ultrapure water 
preheated to 45°C and incubated for 1 h with vortex mixing every 
15 min, followed by five freeze/thaw cycles between liquid ni
trogen and a 45°C water bath. This suspension was then ex
truded 31 times through a 100-nm polycarbonate filter using a 
handheld mini-extruder (Avanti Polar Lipids) maintained at 
45°C. The size and polydispersity of the LUVs were determined 
using dynamic light scattering (LiteSizer 100, Anton Paar 
U.S.A.) immediately after preparation and again before cryo- 
preservation, which was performed 1 day after LUV prepara
tion. Cryo-preservation was performed by adding 4 μl of LUVs to 
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a Quantifoil 2/2 carbon-coated 200-mesh copper grid (Electron 
Microscopy Sciences) that was glow-discharged for 30 s at 
20 mA in a Pelco Easi-Glow discharge device (Ted Pella, Inc.). 
This was followed by manual blotting at room temperature, 
after which the grids were plunged into liquid ethane cooled 
with liquid nitrogen. The cryo-preserved grids were stored in 
liquid nitrogen.

In vitro vesicle cryo-EM
Cryo-EM image collection was performed at ∼2 μm underfocus 
on a Titan Krios operated at 300 keV equipped with a Gatan K2 
Summit direct electron detector operated in counting mode. 
Data collection was conducted in a semi-automated fashion us
ing Serial EM software operated in low-dose mode. Briefly, areas 
of interest were identified visually, and 8 × 8 montages were 
collected at low magnification (2,400×) at various positions 
across the grid, with desired areas marked for automated data 
collection. Data were collected at 2.7 Å/pixel. Movies of 
30 dose-fractionated frames were collected at each target site 
with the total electron dose being kept to <20 e−/Å2. Dose- 
fractionated movies were drift-corrected with MotionCor2. 
Defocus and astigmatism were assessed with CTFFind4 
(Rohou and Grigorieff, 2015, Preprint). Finally, a high-pass fil
ter was applied along with phase flipping using the “mtffilter” 
and “ctfphaseflip” routines in the IMOD v4.11 software package 
(Mastronarde, 2024).

In vitro vesicle tomography collection
Electron cryo-tomography data were collected on a different 
region of the same grid in attempts to minimize potential in
tergrid variability for comparisons with the LUV projection data. 
Regions of interest were identified as above, and points of ac
quisition for tilt series were placed across the grid square using 
Tomo5 (Thermo Fisher Scientific). Data were collected in super- 
resolution mode (1.36 Å/pixel) at tilt series ranging through ±52° 
at 3° tilt increments in dose-symmetric mode. Total electron 
dose was ∼ 80 e−/Å2. The data were acquired using a Gatan 
BioQuantum energy filter in zero-loss mode with a 20 eV filter 
on a K2 Summit camera in counting mode.

2D data thickness analysis
Projection images of vesicles were analyzed in Wolfram Math
ematica v. 13 (Wolfram Research, Inc.) as previously described 
(Sharma et al., 2024) to obtain spatially resolved IPs in the di
rection normal to the bilayer. Briefly, vesicle contours (i.e., the 
set of points corresponding to the midplane of the projected 
bilayer as defined by a relatively bright central peak) were first 
generated using a neural network–based algorithm (MEMNET) 
that is part of the TARDIS software package (Kiewisz et al., 2024, 
Preprint). Vesicles meeting any of the following criteria were 
omitted from analysis due to the possibility of artifacts: (1) 
contact with the edge of the well; (2) location at the edge of the 
image; (3) containing internal debris, nested vesicles, or multi
ple lamellae; and (4) sufficiently nonspherical in shape. For each 
selected vesicle, the MEMNET contour was resampled at arc 
length intervals of 5 nm, resulting in a polygonal representation 
of the 2D contour. For each polygon, all pixels within a 5 nm × 20 

nm rectangular region of interest centered at the face were se
lected, and their intensities were binned at 1 Å intervals in the 
long dimension (i.e., normal to the face) and subsequently av
eraged in the short dimension to produce a local segment IP. The 
local bilayer thickness, DTT, was calculated as the distance be
tween the two minima of the local IP. Two methods were used to 
locate the minima: (1) a “model-free” method, in which a local 5- 
point Gaussian smoothing was first performed, and the distance 
between the two absolute minimum intensity values on either 
side of the central peak was determined; (2) a “model-fit” 
method that fits the profile as a sum of four Gaussians and a 
quadratic background, with the troughs corresponding to the 
two absolute minimum intensity values on either side of the 
central peak. The two methods typically agree to within 1 Å; the 
average of the two measurements was taken as the raw segment 
thickness. The final reported segment DTT values were obtained 
by local 4-point Gaussian smoothing of the raw segment thick
ness values.

Subtomogram averaging of mitochondrial ATP 
synthase complexes
ATP synthase complexes were picked using a two-point direc
tional picking strategy on a larger dataset of 43 tomograms from 
MEFmtGFP cells that were either treated with degraded thapsi
gargin (500 nM, cat# 50-464-295; Thermo Fischer Scientific)— 
condition uncertain—or vehicle. Tomograms of binning 4 (6.65 
Å) were postprocessed with a median filter in z direction (one 
iteration and kernel size of 11 pixels) and an mtf filter and used to 
manually particle pick prohibitin complexes using the software 
package i3 (Winkler, 2007). These particle picks were then 
converted to star files, and then, the warp2dynamo package was 
used to create dynamo tables (Burt et al., 2025). These particles 
were refined in dynamo for 5 cycles using the global refinement 
preset, and then, the rotation angles were randomized using 
dynamo_table_randomize_azimuth to avoid aligning all the par
ticles on the missing-wedge artifact. This randomized table was 
then converted to star files using warp2dynamo package, and 
particles were extracted using Warp and refined in Relion (re
lion_autorefine) to achieve the resolution of 19 Å (Zivanov et al., 
2022). Half-maps were postprocessed and refined in M and 
reached the resolution of 12.9 Å (Tegunov et al., 2021). ArtiaX 
module in ChimeraX was used to visualize these particles in the 
original tomograms (Pettersen et al., 2021; Ermel et al., 2022).

Online supplemental material
Fig. S1 shows considerations for membrane thickness meas
urements in cryo-electron tomograms. Fig. S2 shows gallery of 
local thickness variations in organelles. Fig. S3 shows membrane 
thickness is not correlated with network morphology. Fig. S4
shows extreme thickness measurements reside in the mito
chondrial cristae.

Data availability
All tilt series, reconstructed tomograms, voxel segmentations, and 
reconstructed mesh surfaces used for quantifications were de
posited in the EMPIAR under accession codes EMPIAR-13056. The 
tilt series and reconstructed tomograms from lamellae generated 
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from yeast cells were previously deposited under accession codes 
EMPIAR-12534. All subtomogram averages were deposited in the 
Electron Microscopy Data Bank (EMDB) under accession codes 
EMD-72321. The scripts used for patch analysis are available at 
https://github.com/GrotjahnLab/patch_analysis. All scripts used 
for Surface Morphometrics are available at https://github.com/ 
grotjahnlab/surface_morphometrics.
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Bermúdez, H., D.A. Hammer, and D.E. Discher. 2004. Effect of bilayer 
thickness on membrane bending rigidity. Langmuir. 20:540–543. 
https://doi.org/10.1021/la035497f

Blum, T.B., A. Hahn, T. Meier, K.M. Davies, and W. Kühlbrandt. 2019. Dimers 
of mitochondrial ATP synthase induce membrane curvature and self- 
assemble into rows. Proc. Natl. Acad. Sci. USA. 116:4250–4255. https://doi 
.org/10.1073/pnas.1816556116

Bonifacino, J.S., and B.S Glick. 2004. The mechanisms of vesicle budding and 
fusion. Cell. 116:153–166. https://doi.org/10.1016/S0092-8674(03)01079-1

Buckley, G., G. Gervinskas, C. Taveneau, H. Venugopal, J.C. Whisstock, and A. 
de Marco. 2020. Automated cryo-lamella preparation for high- 
throughput in-situ structural biology. J. Struct. Biol. 210:107488. 
https://doi.org/10.1016/j.jsb.2020.107488

Burt, A., L. Gaifas, J. Hooker, J.Elferich, H. Liu, A.R. Lowe, A. Schenk, B. Johnston, 
EuanPyle, G. Gaullier, et al. 2025. teamtomo/starfile: v0.5.12. Zenodo.

Chang, Y.-T., B.A. Barad, J. Hamid, H. Rahmani, B.M. Zid, and D.A. Grotjahn. 
2025. Cytoplasmic ribosomes on mitochondria alter the local membrane 
environment for protein import. J. Cell Biol. 224:e202407110. https://doi 
.org/10.1083/jcb.202407110

Chen, M., W. Dai, S.Y. Sun, D. Jonasch, C.Y. He, M.F. Schmid, W. Chiu, and S.J. 
Ludtke. 2017. Convolutional neural networks for automated annotation 
of cellular cryo-electron tomograms. Nat. Methods. 14:983–985. https:// 
doi.org/10.1038/nmeth.4405

Cortie, C.H., and P.L. Else. 2015. An antioxidant-like action for non- 
peroxidisable phospholipids using ferrous iron as a peroxidation initi
ator. Biochim. Biophys. Acta. 1848:1303–1307. https://doi.org/10.1016/j 
.bbamem.2015.03.002

Dahmane, S., E. Schexnaydre, J. Zhang, E. Rosendal, N. Chotiwan, B.K. Singh, 
W.-L. Yau, R. Lundmark, B. Barad, D.A. Grotjahn, et al. 2024. Cryo- 
electron tomography reveals coupled flavivirus replication, budding 
and maturation. bioRxiv. https://doi.org/10.1101/2024.10.13.618056
(Preprint posted October 13, 2024).

Davies, K.M., C. Anselmi, I. Wittig, J.D. Faraldo-Gómez, and W. Kühlbrandt. 
2012. Structure of the yeast F1Fo-ATP synthase dimer and its role in 
shaping the mitochondrial cristae. Proc. Natl. Acad. Sci. USA. 109: 
13602–13607. https://doi.org/10.1073/pnas.1204593109

de Teresa-Trueba, I., S.K. Goetz, A. Mattausch, F. Stojanovska, C.E. Zimmerli, 
M. Toro-Nahuelpan, D.W.C. Cheng, F. Tollervey, C. Pape, M. Beck, et al. 
2023. Convolutional networks for supervised mining of molecular 
patterns within cellular context. Nat. Methods. 20:284–294. https://doi 
.org/10.1038/s41592-022-01746-2

Ding, W.-X., M. Li, J.M. Biazik, D.G. Morgan, F. Guo, H.-M. Ni, M. Goheen, E.- 
L. Eskelinen, and X.-M. Yin. 2012. Electron microscopic analysis of a 
spherical mitochondrial structure. J. Biol. Chem. 287:42373–42378. 
https://doi.org/10.1074/jbc.M112.413674

Eisenstein, F., H. Yanagisawa, H. Kashihara, M. Kikkawa, S. Tsukita, and R. 
Danev. 2023. Parallel cryo electron tomography on in situ lamellae. Nat. 
Methods. 20:131–138. https://doi.org/10.1038/s41592-022-01690-1

Ermel, U.H., S.M. Arghittu, and A.S. Frangakis. 2022. ArtiaX: An electron 
tomography toolbox for the interactive handling of sub-tomograms in 
UCSF ChimeraX. Protein Sci. 31:e4472. https://doi.org/10.1002/pro.4472

Friedman, J.R., A. Mourier, J. Yamada, J.M. McCaffery, and J. Nunnari. 2015. 
MICOS coordinates with respiratory complexes and lipids to establish 
mitochondrial inner membrane architecture. Elife. 4:e07739. https://doi 
.org/10.7554/eLife.07739

Garfield, S.A., and R.R. Cardell, Jr.. 1987. Endoplasmic Reticulum: Rough and 
Smooth. In Cytology and Cell Physiology. G.H. Bourne, editor. Elsevier. 
pp. 255–273.

Medina et al. Journal of Cell Biology 17 of 19 
Measuring local membrane thickness in cells https://doi.org/10.1083/jcb.202505059 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/225/3/e202505059/1956846/jcb_202505059.pdf by guest on 10 February 2026

https://github.com/GrotjahnLab/patch_analysis
https://github.com/grotjahnlab/surface_morphometrics
https://github.com/grotjahnlab/surface_morphometrics
https://chat.openai.com/
https://doi.org/10.1146/annurev.biophys.36.040306.132643
https://doi.org/10.5281/zenodo.7576550
https://doi.org/10.1083/jcb.202204093
https://doi.org/10.1021/la035497f
https://doi.org/10.1073/pnas.1816556116
https://doi.org/10.1073/pnas.1816556116
https://doi.org/10.1016/S0092-8674(03)01079-1
https://doi.org/10.1016/j.jsb.2020.107488
https://doi.org/10.1083/jcb.202407110
https://doi.org/10.1083/jcb.202407110
https://doi.org/10.1038/nmeth.4405
https://doi.org/10.1038/nmeth.4405
https://doi.org/10.1016/j.bbamem.2015.03.002
https://doi.org/10.1016/j.bbamem.2015.03.002
https://doi.org/10.1101/2024.10.13.618056
https://doi.org/10.1073/pnas.1204593109
https://doi.org/10.1038/s41592-022-01746-2
https://doi.org/10.1038/s41592-022-01746-2
https://doi.org/10.1074/jbc.M112.413674
https://doi.org/10.1038/s41592-022-01690-1
https://doi.org/10.1002/pro.4472
https://doi.org/10.7554/eLife.07739
https://doi.org/10.7554/eLife.07739
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Figure S1. Considerations for membrane thickness measurements in cryo-electron tomograms. (A) Area-weighted histograms of per-triangle thickness 
measurements of IMM thickness measurements performed on tomograms reconstructed at different pixel sizes. (B) Table of peak histogram values for 
membrane thickness calculations across distinct organellar membranes (OMM, IMM, and ER) performed on tomograms reconstructed at different pixel sizes. 
(C) Comparison of the resulting voxel segmentation output from MemBrain-Seg (Lamm et al., 2024, Preprint) performed on tomograms reconstructed at 
different pixel sizes 6.65, 9.98, and 13.3 Å/pixel. Voxel segmentations derived from tomograms reconstructed at 13.3 and 9.98 Å/pixel performed similarly 
accurately label the underlying membrane density visible in the tomogram. Voxel segmentations generated from tomograms reconstructed at 6.65 Å/pixel 
exhibit inaccuracies, such as voxels corresponding to membrane-protruding proteins mistakenly labeled as membrane. (D) 2D histogram of thickness mea
surement versus verticality of membrane shows no correlation between these measurements, suggesting that the missing wedge, which may artificially impact 
the thickness of membranes in these regions, is not driving significant errors in our data. (E) Triangulated surface mesh before edge filtering (left) and after edge 
filtering (right). The wire mesh shows the region of surface within 8 nm nearest to the edge of the membrane mesh that is artificially removed. Arrows highlight 
areas where measurements could not be made at all.
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Figure S2. Gallery of local thickness variations in organelles. (A) Local thickness variations of individual physiological organelles are observed within a 
single tomogram, highlighting the variations both within and between organelles.
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Figure S3. Membrane thickness is not correlated with network morphology. (A) Cryo-fluorescence microscopy of elongated and fragmented mito
chondrial networks in MEFmitoGFP cells. (B) Violin plots displaying membrane thickness across different mitochondrial membranes and IMM subcompartments 
based on cellular mitochondrial network morphologies. (C) FSC curve of ATP synthase structure.
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Figure S4. Extreme thickness measurements reside in the mitochondrial cristae. (A) Per-triangle local thickness variation within a tomogram can be used 
to generate patches with the 50 thinnest (green patches) and thickest (blue patches) triangles within each tomogram; these patches can be used for visually 
assessing protein content at these locations.
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