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When huffing and puffing Ca?* goes global, breast
cancer cells are unmoved

Woo Young Chung!® and Shmuel Muallem'@

In this issue, Militsin et al. (https://doi.org/10.1083/jcb.202411203) reveal how STIM1 and STIM2—beyond their typical role as
ER Ca?* sensors that activate Orail—control IP;R-mediated Ca?* dynamics, thereby regulating breast cancer cell migration and

invasion.

Ca?* signaling mediates numerous cell
functions, including cell proliferation and
migration, and as such plays a dominant role
in many aspects of cancer (1). The canonical
receptor-evoked Ca?* signal is initiated by
activation of PLC that hydrolyzes PI(4,5)P,
to IP; and diacylglycerol. IP; opens IP; re-
ceptors (IP3Rs), releasing Ca?* stored in the
ER to increase cytoplasmic Ca** ([Ca2*];)
rapidly. Ca?* release from the ER causes
unfolding and homo or hetero dimerization
of the ER Ca®* sensors STIMI and STIM2.
STIMI recruits and activates primarily the
Ca?* influx channel Orail. Ca?* influx sus-
tains the intracellular Ca?* signal and
provides the Ca?* needed to replenish the
ER Ca** store. In addition to activating
Orail, STIM proteins tether the ER and PM
to form and stabilize junctions between
them. In fact, the ER/PM junctions are
where Ca?* signaling complexes are formed
and the Ca?* signal is initiated and regulated
(2, 3). The function of all pathways gener-
ating the receptor-evoked Ca?* signal, in-
cluding STIM1 and STIM2, are involved in
the classical and emerging hallmarks of
cancers (1).

Physiologically, most Ca®* signals are in
the form of repetitive short Ca?* increases
called Ca2* puffs that are confined to cellular
domains and which only infrequently glob-
alize to cause a large and sustained increase
in [Ca%*];. Ca®* puffs involve repetitive
transient activation of IP;Rs to transiently
release Ca?* from the ER; the frequency of

Ca?* puffs is determined by the strength of
cell stimulation, and thus the level of IPs.
Confined Ca?* puffs are common in polar-
ized cells like exocrine, neuronal, and
muscle cells, as well as at the leading edge of
migrating cells (4, 5). However, the mech-
anism of transition from Ca2* puffs to glo-
bal Ca?* signals is not well understood, nor
is the role of each form of the Ca?* signal
patterns in cell proliferation, migration,
and tumorigenesis. A study in this issue by
Militsin et al. (6) provides fresh insight on
these two imperative questions.

STIMI and STIM2 play a unique role in
Ca?* signaling by mediating the communi-
cation between the cell surface (PM) and cell
interior (ER) and by dynamically regulating
cell signaling hubs at the ER/PM junctions
(7, 8). Militsin et al. examined the role of
STIM1 and STIM2 in the MDA-MB-231
breast cancer cell line by generating
STIM1-~/- (SIKO), STIM2~/- (S2KO), and
STIM1~/-+STIM2~/~ double knockout (S1/
S2DKO) cancer cells. Measuring in vitro cell
proliferation and colony formation and in
vivo tumor growth revealed that both STIMs
are required for these activities. However, a
surprising observation was made when
comparing the effects of SIKO, S2KO, and S1/
2DKO on cell adhesion, cell migration, and
focal adhesion. While SIKO and S2KO cells
showed reduced activity, S1/2DKO cells
showed normal cell adhesion, migration,
and focal adhesion. Interestingly, cell
migration and focal adhesion indicate

formation of polarized cell domains, which
are controlled by dynamic ER/PM junction
gradients (9), in which the STIM isoforms
have critical roles (7, 8).

These findings not only reveal the par-
ticipation of STIM isoforms in breast cancer
initiation, migration, and invasion but also
raise the question of why removing the two
STIM isoforms restored, rather than elimi-
nated, their involvement in these activities.
Both pharmacological inhibitors and genetic
modifications demonstrated that the unex-
pected results in S1/2DKO cells were due to
altered IP3R function (6). Moreover, analysis
of the pattern of Ca2* signals evoked by IPsR
activation in cells expressing the various
STIM combinations revealed a novel mech-
anism of STIM-mediated IP;R gating. Addi-
tionally, the Ca?* signal pattern had a novel
and remarkable role in cell migration and
cancer invasion (6). As illustrated in Fig. 1,
controlled IPsR activation in WT breast
cancer cell lines resulted in periodic Ca2*
puffs that never globalized. By contrast,
similar IP;R activation in S1KO and S2KO
resulted in Ca?* puffs that rapidly globalized
to generate a diffuse Ca®* pattern. Notably,
IP;R activation in S1/2DKO resulted in pe-
riodic Ca?* puffs that never globalized.
Overall, the findings by Militsin et al. pro-
vide strong support that STIM1 and STIM2
facilitate the opening of IP;Rs, in addition to
their well-established role in opening Orai
channels. By opening IP;R, STIMs set the
Ca?* signaling pattern to either Ca?* puffs or
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Figurel. STIM1and STIM2 gate IP3Rs opening. The model depicts the pattern of the Ca?* signal observed in the presence and absence of the STIM isoforms
during controlled increase in IP3. A limited and local release of IP3 evokes Ca* puffs that never globalize (left panel). Deletion of either STIM1 or STIM2 partially
reduced ER Ca?* level, and the same IP; stimulus causes the Ca2* puffs to globalize into a diffuse Ca2* signal (middle panel). Surprisingly, in the absence of both
STIM1and STIM2, the IP;-mediated Ca?* puffs never globalize (right panel). In breast cancer cells, Ca?* puffs stimulate cell migration and invasion, while diffuse
Ca?* signals restrict cell migration and tumorigenesis.

adiffuse global increase in [Ca2*];. In cancer,
the Ca?* puff pattern supports cell migration
and invasion, while global [Ca®*]; induction
restricts cell migration.

The findings by Militsin et al. also raise
the key questions of how STIMs regulate
IP;Rs and why Ca** signaling in S1/2DKO
cells does not globalize. The authors suggest
STIMs indirectly regulate IP;R gating
since the two proteins could not be co-
immunoprecipitated in MDA-MB-231 cell
lysates. However, co-immunoprecipitation
of native STIMI-IP;Rs and FRET between
the expressed proteins as part of a signaling
complex has been reported in several studies
(for example, [3]). Therefore, modification
of IP;R function by the N terminus of STIM1
and STIM2, which has been described in
colorectal cancer (10), may partly account
for STIM-mediated IP;R gating. An addi-
tional mechanism can be IPsR sensitization
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by PI(4,5)P,, which facilitates Ca?* release
(11). STIMs assemble Ca?* signaling com-
plexes at PI(4,5)P,-rich domains that may be
necessary for PI(4,5)P,-mediated sensiti-
zation of IP;Rs and globalization of the
Ca?* signal. Finally, the most vital mech-
anism may be the control of ER Ca?* con-
tent by STIMs. ER Ca?* content controls
STIM clustering (7) and IP3R activity (12),
whereas STIM deletion reduces ER Ca?*
content (6). Reduced ER Ca2* would, there-
fore, be expected to cluster STIM1 and
STIM2 homodimers at the ER/PM junctions
to facilitate and enhance IP;R-mediated Ca?*
release and globalize the Ca2* signal (Fig. 1,
middle).

Altered IP;R clustering may account for
the puzzling observations in S1/2DKO cells.
IP;-mediated Ca?* release increases with
increased IP5R clustering (4). IPsR clustering
takes place at the ER/PM junctions (3), and

STIM proteins have a major role in ER/PM
junction formation and stabilization (7, 8).
In S1/2DKO cells, the complete absence of
STIM proteins reduces ER/PM junction
formation, thereby preventing IP;R clus-
tering. This mechanism may underlie
the failure of Ca%* puffs to globalize in
complete STIM deficiency (Fig. 1, right),
although other mechanisms may also
contribute. Considering the critical role
of STIM in regulation and shaping Ca?*
signal patterns in cancer and the obser-
vation that STIM expression changes
during tumorigenesis (10), it is impor-
tant and clinically relevant to further
explore the mechanisms by which STIMs
gate IP;Rs to shape Ca?* signals.
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