
PERSPECTIVE

The rapidly expanding role of LC3-interacting 
regions in autophagy
Brian J. North1�, Dorotea Fracchiolla2�, Michael J. Ragusa3�, Sascha Martens4,5�, and Christopher J. Shoemaker1,6�

LC3-interacting regions (LIRs), or Atg8-interacting motifs (AIMs), are short linear motifs found in unstructured loops or 
intrinsically disordered regions of many autophagy-related proteins. LIRs were initially identified for their role in binding to 
Atg8 family proteins on autophagosomal membranes. However, emerging evidence suggests that LIRs and their surrounding 
residues mediate interactions with a wide array of proteins beyond Atg8s. This broadens the biological significance of LIRs in 
autophagy, rendering them an organizing principle of the autophagy machinery. In this perspective, we explore recent advances 
highlighting the multifunctional roles of LIRs, including their capacity to mediate binding with diverse factors. We discuss 
insights into the mechanisms underlying LIR-mediated interactions and propose an updated model to explain Atg8 
diversification in higher eukaryotes. We conclude by addressing key challenges and outlining future directions for 
understanding LIR biology and its broader implications for cellular homeostasis.

LC3-interacting regions/Atg8-interacting motifs in autophagy: 
Discovery and foundation
Macroautophagy (hereafter autophagy) is a highly conserved 
cellular process that degrades and recycles damaged organelles, 
misfolded proteins, and other cytosolic components (Mizushima, 
2018; Lamark and Johansen, 2021; Dikic and Elazar, 2018; Kirkin, 
2020). During autophagy, cells sequester cargo in a de novo– 
generated double-membrane vesicle—the autophagosome—which 
is then trafficked to the lysosome and degraded (Fig. 1 A). This dy
namic process is orchestrated by a collection of >40 autophagy- 
related (ATG) genes involved in the initiation, expansion, closure, 
and trafficking of autophagosomes (Lamark and Johansen, 2021; 
Yamamoto et al., 2023).

The Atg8 protein family, a conserved group of ubiquitin-like 
modifiers, plays a central role in autophagy. In Saccharomyces 
cerevisiae, this family consists of a single member, Atg8p, while 
in humans, it comprises seven members spanning two sub
families: MAP1LC3 (A, B, B2, and C) and GABARAP (GABARAP, 
GABARAPL1, and GABARAPL2) (Rogov et al., 2023) (hereafter 
collectively referred to as Atg8s). Atg8 proteins undergo lip
idation during autophagy, forming an amide bond between their 
C-terminal glycine and phosphatidylethanolamine in the auto
phagosomal membrane (Ichimura et al., 2000). As a result, 
lipidated Atg8s are a key marker of autophagosomal mem
branes, although Atg8 lipidation also occurs in other cellular 
processes (Nieto-Torres et al., 2021; Deretic et al., 2024), and 
Atg8 proteins can also be conjugated to phosphatidylserine 

(Durgan et al., 2021; Hanada et al., 2007; Sou et al., 2006). The 
interaction between Atg8s and numerous proteins, including 
cargo-specific autophagy receptors, is mediated by short linear 
motifs known as Atg8-interacting motifs (AIMs) in yeast and 
LC3-interacting regions (LIRs) in mammals (hereafter collec
tively referred to as LIRs) (Rogov et al., 2014). The discovery of 
these motifs marks a pivotal advancement in our understanding 
of autophagy, particularly in the context of cargo specificity.

The canonical LIR motif, first observed in the autophagy re
ceptors Atg19 (in yeast) and p62 (in mammals), was validated 
through a series of early foundational studies (Pankiv et al., 
2007; Shintani et al., 2002; Noda et al., 2008). The elucidation 
of additional LIRs in rapid succession enabled the extraction of a 
core sequence motif ([W/F/Y]0-X1-X2-[L/I/V]3), where positions 
X0 and X3 anchor the motif in two hydrophobic pockets on Atg8 
family proteins (Ichimura et al., 2008; Noda et al., 2008; Noda 
et al., 2010; Johansen and Lamark, 2011). This consensus motif 
provided a framework for identifying LIR motifs across a wide 
array of proteins (Chatzichristofi et al., 2023; Jacomin et al., 
2016; Ibrahim et al., 2023), including autophagy receptor pro
teins (for a review on receptors and their interactions with 
Atg8s, see Kirkin and Rogov [2019]; Rogov et al. [2023]).

While this motif provides an important framework, it is now 
well recognized that many functional LIRs deviate from the ca
nonical sequence and that binding specificity and affinity de
pend heavily on features beyond the core motif (for review, 
see Rogov et al. [2023]). Local structure also shapes LIR 
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functionality: most LIRs are found in unstructured loops or in
trinsically disordered regions, which allow flexible engagement 
with binding partners (Popelka and Klionsky, 2015; Ibrahim 
et al., 2023), although LIRs embedded in structured domains 
have also been reported (Keown et al., 2018). This sequence and 
contextual flexibility underlies the growing diversity of LIR- 
dependent interactions and reinforces the need to consider se
quence and structural context when evaluating motif function.

Functional flexibility: The versatile binding capabilities of LIRs
While the structural and functional relationship between Atg8s 
and LIRs has been extensively reviewed (Rogov et al., 2023; 
Wesch et al., 2020; Kirkin and Rogov, 2019; Johansen and 
Lamark, 2020), emerging evidence suggests a broader role for 
LIRs beyond Atg8 interactions (Fig. 1). Here, we examine 
growing evidence that LIRs contribute to interactions with a 
wide array of protein partners. Together with their flanking 

residues and accessory motifs—which contribute to the strength 
and specificity of these interactions and are often regulated by 
posttranslational modifications—LIRs emerge as one of the key 
organizing principles in the assembly of the autophagy ma
chinery (Rogov et al., 2023). To structure this discussion, we 
categorize these interactions based on how each LIR, in con
junction with its flanking residues, engages non-Atg8–binding 
partner(s). We define three motif configurations—adjacent, bi
partite, and hybrid—presented in order of increasing overlap 
(Fig. 2 and Table 1). We emphasize that this classification is in
tended as a flexible conceptual framework rather than a rigid or 
exhaustive taxonomy.

Adjacent
Adjacent motifs are neighboring sequence elements that bind 
distinct partners. Rather than defining adjacency by an arbitrary 
distance, we adopt a functional definition, emphasizing whether 

Figure 1. LIR-containing and LIR-binding proteins in autophagy. (A) Schematics of selective autophagy with LIR-containing (magenta) and LIR-binding 
(green) factors highlighted on the autophagosomal structure. Initiation cues—such as cargo recognition or nutrient signaling—recruit the autophagy initiation 
machinery to sites of autophagosome formation, where a de novo membrane structure called the phagophore is generated. The phagophore expands and 
closes, sequestering cytoplasmic components within a newly formed double-membrane vesicle known as the autophagosome. Autophagosomes ultimately 
fuse with lysosomes, where the inner membrane and enclosed cargo are degraded by lysosomal hydrolases. (B) LIR-containing (magenta) and LIR-binding 
(green) proteins are prevalent throughout the autophagy machinery in yeast and humans. Asterisks (*) mark findings from yeast. For details see Pankiv et al. 
(2007); Kirkin et al. (2009); von Muhlinen et al. (2012); Whang et al. (2017); Bauer et al. (2024); North et al. (2025); Wild et al. (2011); Rikka et al. (2011); Novak 
et al. (2010); Chino et al. (2019); Kraft et al. (2012); Alemu et al. (2012); Birgisdottir et al. (2019); Bozic et al. (2020); Yamaguchi et al. (2010); Noda et al. (2008); 
Satoo et al. (2009); An et al. (2019).
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spatially related motifs function as part of a coordinated mech
anism rather than their exact physical distance. Accordingly, 
two motifs are adjacent if (1) they are nonoverlapping, (2) they 
are located within the same intrinsically disordered region, and 
(3) their proximity is likely to influence their function as de
termined through experimental evidence, such as competitive 
binding, or inferred from conserved spatial architecture.

A flagship example of adjacent motifs comes from early 
studies on the yeast autophagy receptor Atg19 (Shintani et al., 
2002). Atg19 delivers the aminopeptidase ApeI to the yeast 
vacuole—the functional equivalent of the lysosome in mam
malian cells—and requires a critical six–amino acid region 
(410LTWEEL415) that binds to yeast Atg8p (identified initially as 
Aut7). 14 amino acids upstream, an additional eight–amino acid 
sequence (389DSSIISTS396) is required for binding Atg11 (formerly 
Cvt9), a key scaffolding factor in the selective autophagy pathway. 
While neither motif was fully characterized at the time, both are 
individually required for the vacuolar delivery of Ape1. Thus, this 
study marked the first description of both a LIR and an Atg11- 
binding region, notably in close proximity. Two additional LIR 
motifs in Atg19, located immediately upstream of the Atg11- 
binding site, were later identified (Sawa-Makarska et al., 2014), 
revealing a total of four distinct but interrelated motifs within a 
∼40–amino acid region, each contributing to autophagic flux.

These findings were quickly extended to additional yeast 
cargo receptors, including Atg30 (Farré et al., 2008), Atg32 
(Aoki et al., 2011; Okamoto et al., 2009; Kanki et al., 2009), Atg34 
(Suzuki et al., 2010), and Atg36 (Farré et al., 2013; Motley et al., 
2012). In each case, mutually exclusive binding of Atg11 occurs 
within 62 amino acids of a LIR and is critical for lysosomal de
livery (Farré and Subramani, 2016). Moreover, many Atg8- 
and Atg11-binding motifs are phospho-regulated, suggesting a 
mechanism by which cells can temporally regulate these inter
actions (Pfaffenwimmer et al., 2014; Farré et al., 2013; Kanki 
et al., 2013; Tanaka et al., 2014; Aoki et al., 2011). Together, 
these findings establish a role for adjacent motifs in coordinating 
the function of yeast cargo receptors.

Adjacent motifs are also found in mammalian cargo receptors 
such as NBR1. Independent studies have shown that NBR1 in
teracts both with Atg8 family proteins and with an alternative 
cargo receptor, TAX1BP1 (Ohnstad et al., 2020; Turco et al., 
2021). These interactions rely on the LIR motif of NBR1 to bind 

to Atg8s and a second motif immediately downstream of the LIR 
(736LPECF740) to bind to TAX1BP1 (North et al., 2025; Bauer et al., 
2024). Despite nonoverlapping motifs, the binding of Atg8s and 
TAX1BP1 is mutually exclusive, likely due to steric constraints 
(Bauer et al., 2024). Separation-of-function mutations— 
including NBR1F740A, which impairs TAX1BP1 binding, and 
NBR1Y732A, which disrupts Atg8 binding—reveal distinct roles 
for these motifs in NBR1 turnover. TAX1BP1 binding promotes 
NBR1 turnover by facilitating the recruitment of a TAX1BP1: 
NAP1:FIP200 ternary complex (Zhang et al., 2024a), which 
initiates autophagosome formation around cargo condensates 
(Bauer et al., 2024; Turco et al., 2021; Ohnstad et al., 2020; North 
et al., 2025). As a result, failure to recruit TAX1BP1 impedes the 
transition from cargo collection to autophagosome biogenesis. In 
contrast, LIR mutants (e.g., NBR1Y732A) arrest autophagy at a 
later stage (Kirkin et al., 2009), likely during membrane ex
pansion. These findings suggest that adjacent motifs within 
NBR1 independently contribute to its autophagic function. The 
spatial proximity of these motifs likely enables coordinated 
molecular interactions to fine-tune autophagic progression, 
ensuring efficient turnover of cellular components.

A final example of adjacent motifs comes from the autophagy 
receptor p62, which harbors a KEAP1-interacting region (KIR; 
347DPSTGE352) immediately downstream of its LIR (Komatsu 
et al., 2010; Jain et al., 2010). Under basal conditions, KEAP1 
targets the transcription factor NRF2 for proteasomal degrada
tion. However, binding of the p62 KIR to KEAP1 displaces NRF2, 
preventing its degradation and enabling the activation of NRF2- 
driven genes. At the same time, p62 also targets KEAP1 for au
tophagy, further stabilizing NRF2. As with other adjacent motifs, 
interactions involving the p62 LIR and KIR are mutually exclu
sive and coordinated by phosphorylation (Ichimura et al., 2013). 
This example further illustrates that adjacent motifs can func
tion as coordinated modules—in this case, coupling selective 
autophagy with broader stress-responsive signaling pathways.

Bipartite
Unlike adjacent motifs—which are spatially close but function
ally distinct—bipartite motifs integrate a LIR with an additional 
N- or C-terminal element. These bimodular motifs thereby en
hance the specificity and versatility of LIR-mediated interactions 
through coordinated, dual-site recognition.

Figure 2. Configurations of LIR motifs within pro
tein interaction hotspots. A single representative ex
ample of each configuration is shown below. Additional 
examples corresponding to each category are listed in 
Table 1. (a) Adjacent: Distinct motifs located in close 
proximity, allowing independently mediated interactions 
with two or more binding partners. Due to their prox
imity and/or conformational requirements, these inter
actions often exhibit cooperative or competitive binding. 
The NBR1 interaction with Atg8s and TAX1BP1 is an 
example of competitive binding. (b) Bipartite: Binding 
requires both the LIR motif and additional residues, ei
ther N- or C-terminal, surrounding the LIR. (c) Hybrid: 
Overlapping binding sites enable interactions with multiple 
partners. This configuration often involves a tradeoff in 
binding specificity or affinity.
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A notable bipartite motif is found in BNIP3 and BNIP3L/NIX, 
mitophagy receptors that bind both Atg8s and WIPI family 
proteins (Adriaenssens et al., 2024, Preprint; Bunker et al., 2023). 
Through their association with WIPIs, BNIP3 and NIX indirectly 
recruit the FIP200 initiation complex and induce selective mi
tophagy (Adriaenssens et al., 2024, Preprint). Structural pre
dictions reveal that BNIP3 binding to WIPIs involves two distinct 
binding interactions: one mediated by the LIR and another by a 
sequence ∼20–30 residues downstream, termed the minimal 
essential region (MER) (Adriaenssens et al., 2024, Preprint). 
Consistent with this model, mutations in either the LIR or MER 
disrupt WIPI binding, highlighting that the LIR motif is neces
sary, but not sufficient, for WIPI recruitment in this context 
(Adriaenssens et al., 2024, Preprint; Bunker et al., 2023). Cor
respondingly, mutation of either motif significantly impairs 
WIPI clustering and BNIP3/NIX-mediated mitophagy in vivo, 
highlighting the physiological relevance of this bipartite inter
action. Intriguingly, additional autophagy receptors, including 
FKBP8 and TEX264, also recruit WIPI proteins (Adriaenssens 
et al., 2024, Preprint). Whether these receptors similarly rely 
on bipartite LIR motifs or engage through alternative mecha
nisms remains an open question.

A second instance of bipartite motifs is found in extended LIR 
motifs, which play a critical role in determining the specificity of 
LIRs for LC3 or GABARAP subfamilies. In such cases, extended 
contacts (that is, residues N- or C-terminal to the core LIR) alter 
binding affinity and dictate specificity by providing secondary 
interactions that complement the primary LIR-docking site. For 
example, the LIR of FYCO1 contains a short C-terminal helix that 
confers specificity for LC3A and LC3B (Olsvik et al., 2015; Cheng 
et al., 2016), while proteins such as AnkG, AnkB, and FAM134B 
utilize an extended helix to enhance binding to all Atg8s (Li et al., 
2018). C-terminal residues similarly contribute to the binding 
preferences of PCM1, ULK1, and ATG13, even without a helical 
structure (Wirth et al., 2019). These examples further illustrate 
how bipartite motifs can modulate the interaction landscape of 
LIRs, enhancing their functional versatility.

Hybrid
A hybrid motif integrates the binding preferences of two or more 
motifs within a single locus, enabling interactions with multiple 
partners. Such overlap generally necessitates a tradeoff in 
binding affinity, as enhancing interaction with one partner often 
reduces binding to the other. Nevertheless, both interactions are 

Table 1. Multifunctional LIRs and their non-Atg8–binding partners

Model LIR non-Atg8 partner Sequence

Adjacent Atg19 (3x) Atg11 371 ASQEPFYSFQIDTLPELDDSSIISTSISLSYDGDDNEKALTWEEL 415

Atg30 Atg11 68 TDNSEWILFSPENA..[24]..YNEDDILSSSRRSSEDVY 123

Atg32 Atg11 81 SISGSWQAIQPLDL..[12]..TTNGSILSSSDTSEEEQE 124

Atg36 Atg11 28 DEESLFEVLELSEE..[48]..SDEIAILSISSDSNKNSP 107

NBR1 TAX1BP1 727 ASSEDYIIILPECFDTSRP 745

CCPG1 FIP200 9 DSSCGWTVISHEGSDIEMLNSVTP 32

p62 KEAP1 333 GGDDDWTHLSSKEVDPSTGELQSLQ 357

Bipartite BNIP3 WIPIs 13 SLQGSWVELHFSNN..[14]..GDMEKILLDAQHESGRSS 58

NIX WIPIs 31 GLNSSWVELPMNSS..[24]..GDMEKILLDAQHESGQSS 86

Hybrid OPTN FIP200 173 SSEDSFVEIRMAEG 186

p62 FIP200 333 GGDDDWTHLSSKEV 346

TNIP1 FIP200 120 GTSSEFEVVTPEEQ 133

NDP52 FIP200 129 NEEDILVVTTQGEV 142

NAP1 FIP200 4 LVEDDICILNHEKA 17

STBD1 FIP200 198 VDHEEWEMVPRHSS 211

BCL2L13 FIP200 271 LGPESWQQIAMDPE 284

FUNDC1 FIP200 13 SDDDSYEVLDLTEY 26

CCPG1 FIP200 101 SDDSDIVTLEPPKL 114

NBR1 FIP200 727 ASSEDYIIILPECF 740

C53 (4x) UFM1 (3x) 269 AAADSIDWDITVETPEIDWDVS..[11]..GSYEIVNA..[21]..SEISWDVSVET 341

Uba5 UFM1 335 IHEDNEWGIELVSEVSEEELKN 356

Atg19 (3x) Atg5 (3x) 371 ASQEPFYSFQIDTLPELDDSSIISTSISLSYDGDDNEKALTWEEL 415

Multifunctional LIR motif sequences are shown, with the core LIR (underlined), non-Atg8 motifs (bold), and overlapping motifs (underlined and bold) indicated. 
Only the core LIR residues are marked, although flanking residues often contribute critically to LIR function. Motifs are categorized by how each non-Atg8 motif 
is integrated with its corresponding LIR—adjacent, bipartite, and hybrid—in order of increasing overlap.
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necessary for function, highlighting the delicate balance these 
motifs must achieve.

Hybrid motifs are well illustrated by mammalian FIP200- 
interacting regions (FIRs). FIRs are highly prevalent in mam
malian autophagy receptors, where they recruit the CLAW 
domain of FIP200 to initiate autophagosomes around cargo 
(Turco et al., 2019). The FIR consensus consists of an acidic se
quence followed by a hydrophobic motif resembling a LIR: (I/V/ 
L/W/F/Y)–X1–X2–(I/L/V) (Zhou et al., 2021). Consequently, 
many—but not all—LIRs overlap with FIRs. Examples of pro
teins with overlapping LIRs and FIRs include OPTN (Zhou et al., 
2021), p62 (Turco et al., 2019), TNIP1 (Le Guerroué et al., 2023; 
Wu et al., 2024), NDP52 (Fu et al., 2021), NAP1/SINTBAD 
(Ravenhill et al., 2019), STBD1 (Zhang et al., 2024b), BCL2L13 
(Adriaenssens et al., 2024, Preprint), FUNDC1 (Adriaenssens 
et al., 2024, Preprint), CCPG1 (Zhou et al., 2021), NBR1 (North 
et al., 2025), and ATG16L1 (Pan et al., 2024, Preprint).

Recently, a comparative analysis of 100 LIR motifs revealed 
an unexpectedly modest correlation between FIP200 and Atg8 
binding, reaffirming that not all LIRs are FIRs despite their 
overlapping motifs (North et al., 2025). This discordance sug
gests that the preferred motifs for FIP200 and Atg8s are not 
identical; instead, many LIRs are likely hybrid motifs that bal
ance affinities between the two. To this end, mammalian LIRs 
and FIRs are also modulated through phosphorylation, providing 
cells with an additional mechanism to control these interactions 
and ensure precise directionality in autophagic processes (Wild 
et al., 2011; Zhou et al., 2021; Rogov et al., 2023).

Another example of a hybrid motif is found in Arabidopsis 
thaliana C53, an ER-phagy receptor that interacts with both 
Atg8s and another ubiquitin-like modifier, UFM1, involved in a 
posttranslational modification pathway known as UFMylation 
(Stephani et al., 2020). C53 binds to these partners through one 
canonical LIR and three noncanonical motifs, called “shuffled 
AIMs” (sAIMs) (Picchianti et al., 2023; Stephani et al., 2020). 
While the canonical LIR is selective for Atg8, sAIMs bind both 
Atg8s and UFM1. Moreover, sAIMs exhibit a direct tradeoff in 
binding between Atg8s and UFM1, with stronger binding of one 
coming at the expense of the other (Picchianti et al., 2023). 
Critically, both interactions are important for C53 function, 
suggesting that the tradeoff in binding enables C53 to integrate 
multiple cues to fine-tune ER-phagy in vivo (Picchianti et al., 
2023).

Similar findings have been reported for UBA5, another 
component of the UFMylation machinery. UBA5 contains a 
noncanonical LIR motif (EWGIELV) that enables binding to both 
Atg8s and UFM1 (Habisov et al., 2016; Huber et al., 2020; Padala 
et al., 2017). In this context, Atg8 binding localizes UBA5 to the 
ER (Huber et al., 2020), while interactions with UFM1 enable 
UFMylation (Habisov et al., 2016; Padala et al., 2017). These 
findings further underscore the dual-binding capability of hy
brid motifs and indicate a role in coordinating autophagy and 
UFMylation pathways.

A final example of hybrid motifs is found in the yeast- 
selective autophagy receptor, Atg19. Atg19 employs its three 
LIR motifs to bind both Atg8 and Atg5, a core autophagy factor 
required for Atg8 lipidation (Fracchiolla et al., 2016). By 

recruiting Atg5, Atg19 couples the lipidation of Atg8 to the 
presence of cargo. As Atg8 accumulates, it displaces Atg5, 
keeping the autophagosomal membrane close to the cargo. No
tably, the interaction between Atg19 and Atg5 was among the 
earliest documented examples of LIR interactions with non-Atg8 
proteins. This observation led to early speculation that such 
dual-binding capabilities of LIRs could represent a broader 
phenomenon (Fracchiolla et al., 2017)—a prediction substanti
ated by the many above examples.

Section summary
What were once scattered observations of “promiscuous” LIR 
interactions are coalescing into a broader understanding: LIRs— 
and their surrounding sequences—are far more than simple 
one-to-one binders of Atg8 family proteins. Rather, LIRs serve as 
versatile platforms that coordinate multiple, functionally sig
nificant interactions (Table 1). As research continues, additional 
interactors and layers of complexity will undoubtedly emerge, 
further expanding the central role of LIRs in autophagy.

A potential role for non-Atg8 binding in Atg8 diversification
The role of Atg8 is evolutionarily conserved, but the number of 
Atg8 orthologs varies widely between species. Yeast has a single 
homolog (Atg8p), Caenorhabditis elegans and Drosophila have two 
(LGG-1/LGG-2 and Atg8a/Atg8b, respectively), humans have 
seven, and some plants up to 22 (Rogov et al., 2023; Kellner et al., 
2017). A straightforward hypothesis for this expansion is that 
diversification provides redundancy, thereby increasing path
way resiliency. However, unique functions among certain Atg8 
homologs suggest functional specialization as an additional 
driving force behind Atg8 expansion (Fig. 3).

Atg8 specialization is best illustrated in the differences be
tween the LC3 and GABARAP subfamilies. Early RNAi studies 
demonstrated that GABARAPs and LC3s perform nonoverlap
ping functions, with GABARAPs functioning downstream of 
LC3s (Weidberg et al., 2010). Subsequent studies corroborated 
this model and highlighted a more critical role for GABARAPs, 
particularly in autophagosome-lysosome fusion (Nguyen et al., 
2016; Vaites et al., 2018). These functional differences can be 
attributed partially to distinct LIR preferences for LC3s and 
GABARAPs (Wirth et al., 2019; Rogov et al., 2017; Wu et al., 2015), 
which enable differential recruitment of effector proteins (Wang 
et al., 2016; Wang et al., 2015; Nguyen et al., 2016). Additionally, 
LC3 and GABARAP homologs contain intrinsic differences in 
their ability to facilitate membrane tethering and hemifusion 
due to distinct N-terminal helical regions (Weidberg et al., 2011; 
Iriondo et al., 2023). Similar distinctions in binding and mem
brane fusion have also been reported for C. elegans LGG-1 and 
LGG-2, reinforcing that Atg8 diversification enabled functional 
specialization across evolution (Wu et al., 2015).

Although less well characterized, there is also evidence for 
specialization within subfamilies, such as differences between 
LC3A and LC3B (Nguyen et al., 2016), as well as LC3C (von 
Muhlinen et al., 2012). Accordingly, the interactomes of hu
man Atg8 homologs are strikingly divergent (Le Guerroué et al., 
2017), suggesting further specialization remains to be uncov
ered. Collectively, these findings challenge the redundancy only 
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model and support an alternative explanation for Atg8 expan
sion: functional specialization (Fig. 3, top). However, additional 
studies are needed to fully refine our understanding of the 
functional differences between closely related orthologs.

As an alternative, another driving force behind Atg8 expan
sion may have been the increasing need for LIRs to facilitate 
interactions with non-Atg8 proteins (Fig. 3, bottom). To this end, 
Atg8 diversification likely enabled a parallel expansion of the 
LIR sequence space, increasing the range of possible LIR se
quences. A broader LIR repertoire could allow LIRs to engage 
non-Atg8 partners while retaining interactions with at least one 
Atg8 member. While speculative, this model suggests that the 
evolutionary expansion of the Atg8 family could have been at 
least in part driven by the need for a more diverse LIR sequence 
space that enables multifunctional LIRs.

In summary, the expansion of Atg8 homologs likely reflects 
multiple concurrent pressures: (1) the need for pathway re
dundancy, (2) functional specialization among Atg8s, and (3) the 
capacity to accommodate multifunctional LIRs. These models are 
not mutually exclusive. Quite possibly, Atg8 expansion reflects a 
balance between all three. Future studies will be needed to un
ravel how these mechanisms interact and further identify the 
evolutionary pressures that have shaped the Atg8 system.

Implications and emerging directions in LIR biology
Once thought to function solely by binding Atg8 family proteins, 
LIR motifs are emerging as general organizing elements within 
the autophagy network. One key practical implication of this is 
that LIR mutations may disrupt more than just LIR:Atg8 inter
actions. For example, mutating the LIR motif in BNIP3 
(BNIP3W18A/L21A) impairs the interactions of both BNIP3:Atg8 
and BNIP3:WIPI2/3 (Adriaenssens et al., 2024, Preprint; Bunker 

et al., 2023). Even in proteins whose LIR motifs are thought to 
bind only Atg8s, it remains possible that such motifs also en
gage additional, unidentified binding partners. Thus, while 
canonical Atg8 interactions remain a central function for many 
LIRs, studies should also consider that LIR mutations may 
disrupt other critical interactions.

The remaining work to fully elucidate which LIRs are mul
tifunctional and which are physiologically relevant is extensive. 
While significant progress has been made in identifying and 
characterizing canonical LIR motifs (e.g., studies separating 
the binding preference of LC3s and GABARAPs [Wirth et al., 
2019; Rogov et al., 2017]), most studies have relied on low- 
to medium-throughput approaches (e.g., peptide arrays, co- 
immunoprecipitations, etc.). There is likely still much to learn 
about the subtle sequence variations that drive specificity for 
different Atg8 family members and the motifs that enable in
teraction with additional binding partners. High-throughput 
approaches, such as proteomics or deep mutational scanning, 
could help uncover previously unappreciated determinants of 
LIR selectivity. Additionally, comprehensively mapping how 
these preferences change in response to cellular cues, such as 
phosphorylation or oxidative stress, will provide a more dy
namic view of LIR functionality.

The overlap of LIRs, FIRs, and other autophagy motifs re
mains an active area of investigation, raising important ques
tions about multifunctional LIRs’ evolutionary and functional 
advantages. One potential benefit is that by centering autophagy 
interactions around LIR motifs, autophagy gains directionality: 
during autophagy, Atg8 proteins locally accumulate, displacing 
upstream machinery. This coupling is thought to drive several 
key transitions in autophagy (Turco et al., 2019; Zhou et al., 2021; 
Fracchiolla et al., 2016; Bauer et al., 2024). Another possible 

Figure 3. Models of Atg8 functional diversification beyond redundancy. Atg8 functional specialization (top). LIRs dictate which Atg8 homolog(s) are 
recruited, which in turn drives specific autophagic functions. Different functions for different Atg8s enable diverse autophagic processes to be invoked in 
different instances. Multifunctional LIRs (bottom). The evolution of Atg8 homologs expanded the diversity of the LIR sequence space, enabling the emergence of 
multifunctional LIRs.
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advantage is that by serving as a central interaction hub, LIRs 
offer an opportunity to dynamically cluster the autophagy 
machinery—bringing multiple components together in a flex
ible, reversible manner that facilitates efficient assembly and 
function. One may further hypothesize that by using a limited 
number of motifs, the same kinases could simultaneously in
crease the interaction between multiple autophagy factors 
during autophagy initiation. While this is presently speculative, 
the regulation of complex cellular pathways by a limited number 
of motifs is not without precedent (e.g., see Schmid and 
McMahon [2007]). Finally, computational simulations suggest 
that heterotypic (one-to-many) interactions enhance the effi
ciency of phase transitions within cellular condensates (Riback 
et al., 2020; Krishnan et al., 2022). With the growing recognition 
of liquid condensates in autophagy regulation (Fujioka and 
Noda, 2021), multifunctional LIRs may enable the formation of 
higher-order condensates critical for autophagy.

Another intriguing possibility—though largely unexplored— 
is that LIR motifs may reside within structured regions of folded 
proteins, buried in the hydrophobic core and normally inac
cessible to the cellular environment. These domains are often 
rich in aromatic and hydrophobic residues, the same chemical 
features that define canonical LIR motifs. Upon partial unfolding 
or misfolding, such buried motifs could become exposed, acting 
as “eat me” signals for the autophagy machinery. These cases 
may be underexplored due to the well-established role of the 
proteasome in degrading misfolded proteins, but a similar mech
anism could plausibly contribute to aggrephagy. It is tempting to 
speculate that LIR motifs may have originally evolved from such 
generic damage-associated signatures, later acquiring adjacent 
polar residues or posttranslational modifications to increase 
specificity and regulatory potential.

In sum, recognizing that LIR motifs anchor protein interac
tion hotspots opens new avenues of investigation into au
tophagy regulation. Given that LIR-mediated interactions are 
typically low affinity, it is likely that even more interactors 
have been overlooked. As new interactors are identified, it 
will be necessary to dissect these interactions systematically. 
The future of LIR biology lies in unraveling these complex 
interaction networks and translating this knowledge into 
mechanistic insights and therapeutic strategies targeting 
autophagic processes.
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