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Reevaluating the roles of PPARs and nuclear
receptors in human peroxisome biology

Fred D. Mast»2@®, Richard A. Rachubinski*®, and John D. Aitchison®2*@®

Peroxisome biogenesis in humans is not governed by PPARa, overturning a paradigm established in rodents. PPARa agonists
fail to induce canonical peroxisomal genes, and functional response elements are absent from key promoters. Human
peroxisomes nonetheless expand through PPAR-independent pathways, positioning them as organelles tuned to
immunometabolic and redox demands and redefining strategies for therapeutic intervention.

Introduction

Peroxisome proliferator-activated receptors
(PPARs) are nuclear receptor transcription
factors that regulate lipid metabolism and
energy homeostasis. Their discovery was
linked to the ability of xenobiotic peroxi-
some proliferators to drive peroxisome bio-
genesis in rodents, establishing a paradigm in
which PPAR activation was presumed to be the
principal determinant of peroxisome abun-
dance. However, while this model holds across
many mammalian species, evidence has chal-
lenged its applicability to humans. Here, we
revisit the historical basis of PPAR-mediated
peroxisome regulation and propose that
while human peroxisomes are inducible, the
extent and nature of their induction have
diverged significantly from this classical
PPAR-driven paradigm established in rodents.
Resolving these species-specific differences is
critical for understanding peroxisomal con-
tributions to human metabolism, disease pa-
thology, and therapeutic intervention.

Peroxisome proliferation as a

druggable target

The biochemical identity of peroxisomes
became inseparable from their morphological
plasticity when hypolipidemic agents—
compounds that lower circulating lipid
levels—induced a striking expansion of per-
oxisomes in rodent livers to the point that
peroxisomes displaced other organelles (Fig. 1)
(Svoboda and Azarnoff, 1966). This expansion

suggested a functional link between perox-
isomes and lipid metabolism, an idea substan-
tiated by the discovery of peroxisomal
B-oxidation (Lazarow and de Duve, 1976). The
capacity to induce peroxisome proliferation
pharmacologically implied a level of molecular
regulation beyond passive metabolic demand,
catalyzing efforts to exploit peroxisomal con-
trol as a therapeutic avenue for metabolic
disease. Structurally diverse peroxisome pro-
liferators, including fibrates, phthalate ester
plasticizers, herbicides, and long-chain fatty
acids, initiate both peroxisome expansion and
the coordinated upregulation of peroxisomal
enzymes. This response suggested that perox-
isome abundance was transcriptionally con-
trolled rather than dictated by metabolic flux
alone. The search for mediators of this regula-
tion converged on nuclear receptors, revealing
a mechanism in which peroxisome biogenesis
is transcriptionally programmed, rather than
passively accumulated, in response to envi-
ronmental and physiological cues.

The regulatory logic of

peroxisome biogenesis

Nuclear receptors form a superfamily of
ligand-activated transcription factors that
coordinate gene expression in response to
metabolic and hormonal cues. PPARs belong
to a subclass of orphan nuclear receptors
that are responsive to fatty acids and their
derivatives, thereby coupling directly tran-
scriptional control to lipid metabolism.

The identification of PPARs revealed a
transcriptional framework in which perox-
isome abundance adjusts dynamically to
metabolic demand (Issemann and Green,
1990). In simpler eukaryotes, a single tran-
scription factor pair suffices to activate
B-oxidation genes in response to fatty acids
(Fig. 1). In mammals, the expansion of lipid
metabolic networks is coupled to a diversi-
fication of the nuclear receptor repertoire,
yielding three PPAR isoforms that partition
transcriptional control over distinct meta-
bolic programs (Evans and Mangelsdorf,
2014).

As revealed primarily in rodent models,
PPARa, enriched in oxidative tissues, such
as liver, heart, and muscle, induces perox-
isomal and mitochondrial [-oxidation,
coupling lipid catabolism to energy de-
mand. PPARy regulates adipocyte differ-
entiation and lipid uptake, promoting
storage and insulin sensitivity (Fig. 1).
PPARS finely tunes systemic lipid utiliza-
tion, governing P-oxidation and thermo-
genesis in muscle and brown adipose
tissue. All three PPAR isoforms are con-
tingent on obligate heterodimerization
with retinoid X receptors (RXRs), imposing
a transcriptional logic characteristic of
asymmetric self-upregulation (Ratushny
et al., 2012) (Fig. 1). Here, PPARs serve as
metabolic sensors responding to lipid-
derived ligands, while RXR provides a
constitutive regulatory scaffold insulated
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Figure 1. The dynamics of peroxisome proliferation and species-specific transcriptional control of peroxisome biogenesis. (A) Saccharomyces cer-
evisiae cells expressing Potl-GFP, a peroxisomal protein, were imaged after 2 and 20 h of oleic acid induction. Peroxisome number and size increase markedly
over time, reflecting transcriptional activation of the biogenic program. Image area: 30 x 30 um. Reproduced from Saleem et al. (2008). (B) Transmission electron
micrographs of rodent hepatocytes under basal conditions (left) and after treatment with the peroxisomal proliferator Wy-14,643 (right), showing robust induction of
peroxisome proliferation. Modified from (Reddy, 2004), with permi. (C) Immunofluorescence microscopy of huh7 cells treated with 4-phenylbutyrate (4-PBA) or
mock (DMSO) control. Peroxisomes (green) are markedly increased in number following 4-PBA treatment. Image area: 16 x 16 um. (D-F) Transcriptional circuits
regulating peroxisome abundance in yeast and rodents and adipocyte differentiation in humans. Altered from Ratushny et al. (2012). (D) In yeast, fatty acids activate
Oafl, which heterodimerizes with Pip2 to induce expression of peroxisomal genes. (E) In rodents, the hypolipidemic drug clofibrate activates PPARa, which forms a
heterodimer with RXRa to stimulate transcription of peroxisomal genes. (F) In humans, oxidized lipids activate PPARy, which dimerizes with RXRa to primarily

regulate the expression of genes involved in adipogenesis; PPARy activation does not robustly drive peroxisome biogenesis.

from feedback. This architecture confers a
robust and tunable response, buffering
transcriptional output against variations in
heterodimer affinity while preserving
sensitivity to ligand availability.

Still, PPARs do not function in isolation.
Their transcriptional programs intersect
with broader nuclear receptor networks that
shape peroxisome function (Evans and
Mangelsdorf, 2014). These interactions es-
tablish peroxisomes as metabolic-responsive
organelles, attuned to nuclear receptor
transcriptional logic and to shifting physio-
logical and environmental demands.

The PPAR-peroxisome paradigm is
mechanistically coherent, its phenotypic
effects in rodents unmistakable, and its logic
pervasive enough to feel universal. And yet,
in humans, it fails.

Beyond universality: The

reconfiguration of human peroxisomes
and PPAR function

The assumption that nuclear receptors
universally govern peroxisome biogenesis
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does not hold in hominids. In rodents,
PPARa couples fasting to lipid oxidation,
transcriptionally coordinating peroxisomal
B-oxidation with systemic metabolic de-
mand. In contrast, human hepatocytes fail
to mount this response, peroxisome pro-
liferators do not induce peroxisomal ex-
pansion, and canonical peroxisomal genes
remain unresponsive to PPARa activation.
Yet peroxisomes in humans remain inducible
(Fig. 1). Their abundance and protein compo-
sition vary by tissue and developmental con-
text (Mast et al, 2020), supporting roles
in liver regeneration, cardiomyogenesis, au-
ditory protection, skeletal muscle lipid me-
tabolism, and macrophage-related myelin
clearance. Peroxisomes adapt to immunologic
context as well, remodeling in response to viral
infection and contributing to the architecture
of signaling platforms such as MAVS and
mTOR. The regulatory disconnect is not due to
receptor loss but to a fundamental reconfigu-
ration of peroxisomal gene regulation.
Peroxins (PEX proteins) constitute the
core machinery for peroxisome biogenesis.

In humans, the expression of PEX genes is
driven by promoters that lack functional
peroxisome proliferator response elements
(PPRES), thereby severing peroxisomal gene
expression from direct transcriptional acti-
vation by PPARs, particularly PPARa. In ro-
dents, PPARa agonists drive robust induction
of genes for acyl-CoA oxidase (ACOXI), the
peroxisomal ATP-binding cassette trans-
porter ABCD3, and other peroxisomal pro-
teins; yet in cynomolgus monkeys and
humans, the ACOX1 promoter retains a pu-
tative PPRE that remains unresponsive to
PPARa agonists active in other organisms
(Kane et al., 2006). Even when PPARa is
overexpressed to supraphysiological levels in
human HepG2 cells, peroxisomal gene ex-
pression remains unaltered (Lawrence et al.,
2001). The failure of rat PPARa to restore
peroxisomal gene activation in human hep-
atocytes also underscores that the regulatory
autonomy of human peroxisomes arises not
from insufficient receptor availability but
from a broader transcriptional reorganiza-
tion (Ammerschlaeger et al., 2004).
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Genome-wide analysis of PPARa binding
in human hepatocytes reveals extensive
chromatin occupancy by PPARa upon ago-
nist stimulation, yet peroxisomal genes are
conspicuously absent from its target reper-
toire (van der Meer et al., 2010). Instead,
PPARa is repurposed toward mitochondrial
lipid metabolism, governing ketogenesis,
cholesterol homeostasis, and fatty acid
oxidation. The mechanistic basis of this re-
alignment remains unresolved, but inter-
actions of PPARa with SREBP, STAT, and
C/EBPa suggest that peroxisomal control
has been redistributed across alternative
transcriptional programs (van der Meer
et al., 2010). Through this rewiring, PPARa
retains its metabolic role in lipid metabolism
but relinquishes direct peroxisomal control,
thereby transitioning from a peroxisome-
proliferating agent to a regulator of mito-
chondrial oxidative capacity.

PPARy may retain a limited regulatory
foothold over select peroxisomal genes,
though its role appears highly context-
dependent. PPARY agonist treatment re-
sults in mild induction of the peroxisome
biogenic genes PEX3 and PEX16 in kerati-
nocytes, suggesting that peroxisome for-
mation is influenced directly or indirectly by
nuclear receptor activation in select epi-
thelial and mesenchymal lineages (Karnik
et al., 2009). A similar effect is observed in
fibrotic lung fibroblasts, where PPARy acti-
vation partially rescues peroxisomal biogen-
esis following TGF-f1 suppression, restoring
PEX13 and catalase levels. These findings
suggest that while PPARY has not supplanted
PPARa as a primary regulator of peroxisomes
in humans, PPARy retains a residual influ-
ence on peroxisomal maintenance in certain
cellular contexts. Whether this reflects
immune-metabolic specialization or vestigial
regulatory function of PPARy remains unre-
solved, but the attenuation of PPARa control
over peroxisomal genes marks a fundamental
divergence in peroxisome regulation be-
tween rodents and humans.

Although human peroxisomes are un-
coupled from canonical PPARa-mediated
control, they remain metabolically respon-
sive via alternative pathways. For example,
4-phenylbutyrate stimulates peroxisome
proliferation independently of PPAR acti-
vation, underscoring the existence of
compensatory pathways. Likewise, over-
expression of PPARy coactivator 1-alpha, a
transcriptional coactivator best known for
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regulating mitochondrial biogenesis, ele-
vates PEX11A, PEX13, and PEX16 expression
in human U20S cells (Bagattin et al., 2010).
Whether this reflects direct transcriptional
engagement of peroxisome genes or arises
secondarily from elevated mitochondrial
oxidative demand remains unresolved. Im-
portantly, these findings, together with the
putative context-dependent role of PPARy,
illustrate that peroxisome regulation in hom-
inids is not organized as a linear transcrip-
tional hierarchy but rather as an integrated
signal-responsive system. This distinction
has been obscured by the assumption of con-
served PPAR-centric control.

Decoupling peroxisomes and PPARs:
Evolutionary constraints

and specialization

What evolutionary pressures drove dis-
mantling of nuclear receptor control over
peroxisomes in hominids?

One possibility is that loss of PPAR-
mediated peroxisomal expansion in hu-
mans parallels another metabolic shift,
i.e., the inactivation of urate oxidase, the
peroxisomal enzyme required for purine
catabolism. Unlike other lost enzymes that
were reassigned to other pathways, urate
oxidase was lost without replacement,
leaving xanthine oxidase as the terminal
peroxisomal enzyme in purine degradation
and elevating systemic uric acid (Friedman
et al., 1985). Despite being linked to diseases
like gout, hypertension, and metabolic syn-
drome, the relative abundance of uric acid
may have benefits to humans that include
enhanced redox buffering, metabolic adap-
tations to fructose-rich diets, and immuno-
modulatory effects. Thus, its evolutionary
persistence suggests that uric acid may serve
a meaningful adaptive function that extends
beyond passive metabolic redundancy
(Alvarez-Lario and Macarrén-Vicente,
2010). Like PPAR regulation, the loss of ur-
ate oxidase is not an isolated event but part
of a broader evolutionary shift that re-
positions peroxisomes within a distinct hu-
man regulatory landscape, uncoupling their
function from ancestral metabolic con-
straints and integrating them into emerg-
ing immunometabolic and redox networks.

This shift extends beyond peroxisomes,
reflecting a broader evolutionary reorgani-
zation of metabolic control in hominids. Just
as peroxisomes have shed their dependence
on nuclear receptor control, PPARs themselves
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have undergone evolutionary specialization
(Xie et al., 2025). In rodents, PPARa couples
fasting with peroxisomal B-oxidation,
whereas in humans, PPARa is repurposed
for mitochondrial metabolism, ketogenesis,
and cholesterol homeostasis. The key dis-
tinction is not whether rodent peroxisomes
have immunometabolic roles, because they
do, but rather what is gained by decoupling
peroxisomal expansion from systemic
transcriptional control in hominids.

We propose that this decoupling, coin-
cident with urate oxidase loss, enabled
peroxisome specialization within hominid
immunometabolic niches (Di Cara et al.,
2023; Ye et al.,, 2025). In this context, per-
oxisomes act more as locally tuned redox-
lipid regulators than as uniformly proliferat-
ing metabolic organelles. In tissue macro-
phages and neutrophils, peroxisomes buffer
urate-driven danger signaling by detoxifying
H,0, and modulating NLRP3 inflammasome
thresholds, thereby calibrating sterile
inflammation—the inflammatory response
triggered by endogenous danger signals
rather than microbes. Within the inflam-
matory milieu, peroxisomal B-oxidation of
w-oxidized eicosanoids promotes resolution
by generating specialized pro-resolving
mediators, a class of lipid-derived signals
that actively turn off inflammation and drive
tissue repair, thereby restraining collateral
damage. Peroxisome-phagosome contacts
further optimize lipid composition and ROS
balance during pathogen killing, while in
T cells and memory lymphocytes, peroxi-
somal fatty acid oxidation and acetyl-unit
export reinforce persistence (sustained sur-
vival and function) and trained immunity
(epigenetically programmed innate immune
memory). In the central nervous system, mi-
croglial and astrocytic peroxisomes integrate
uric acid’s priming effects with local redox
buffering, protecting synapses, and long ax-
ons from runaway inflammation. In each case,
the selective advantage derives not from bulk
proliferative capacity but from context-
specific control, embedding peroxisomes
within immune circuits that support barrier
defense, adaptive memory, and neuro-
immune resilience, at the cost of heightened
susceptibility to gout, sterile inflammation,
and neurodegeneration.

Whether this transition conferred a net
advantage or constraint to humans remains
unresolved. The evolutionary specialization
and differential control of peroxisomes in
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humans may have led to a greater precision
in what peroxisomes do by localizing per-
oxisomal function within specialized niches
and enabling selective regulation under de-
fined conditions. The challenge is to decode
the molecular architecture that governs
human peroxisomes so as to determine
whether their adaptability can be thera-
peutically harnessed to combat peroxisomal,
infectious, and metabolic diseases.
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