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Beyond selection: How chromosome 12 gain
dominates stem cell genomes

Orléna Benamozig'® and Ofer Shoshani'®

Trisomy of chromosome 12 is frequently observed across many pluripotent stem cell lines. In this issue, Narozna et al. (https://
doi.org/10.1083/jcb.202501231) reveal that trisomy 12 in human-induced pluripotent stem cells (iPSCs) is driven by ongoing
missegregation events due to sub-telomeric erosion, which, coupled with a modest growth advantage, results in rapid

population takeover.

The rise of trisomy 12: Beyond

simple selection

The gain or loss of entire chromosomes or
chromosome segments designated as aneu-
ploidy is a defining feature of many human
cancers (1). Yet, how such aneuploidy nat-
urally emerges remains unclear. Most ex-
perimental systems rely on transformed
or tumor-derived cells, which already har-
bor extensive chromosomal abnormalities,
making it difficult to study the origins and
consequences of aneuploidy. To overcome
this limitation, Narozna et al. (2) turned
to human-induced pluripotent stem cells
(iPSCs), which spontaneously acquire
chromosomal abnormalities in roughly one
third of cultures. Among these changes,
trisomy 12 is one of the most common
whole-chromosome gains, traditionally at-
tributed to arbitrary replication or segre-
gation errors, followed by selection for cells
whose extra chromosome provides a pro-
liferative advantage (3, 4). Here, Narozna
et al. challenge this paradigm by showing
that selection alone cannot explain the
rapid takeover of trisomy 12 in iPSC cul-
tures (5). Using dual-color centromeric
DNA-FISH (for chromosomes 12 and 10),
they examined samples from the AICS-0012
iPSC line obtained across 170 days in culture
(57 passages). This enabled them to precisely
define the critical window in which chro-
mosome 12 status shifted from near diploidy
(~6% trisomy) to almost complete trisomy
(~100%). Surprisingly, this shift required

~13 passages in culture, contradicting the
rate obtained from theoretical computation,
which predicted only 38% of the cells to be-
come trisomic by this time. This discrepancy
revealed that selection alone cannot account
for the abrupt culture-wide increase in the
frequency of trisomy 12, suggesting a mecha-
nism driving ongoing missegregation events is
at play.

Missegregation and micronuclear
capture: Chromosome 12 route

to trisomy

To investigate this, Narozna et al. examined
mitotic figures of cells during the transition
to near-complete trisomy 12. Remarkably,
chromosome 12 specifically exhibited a high
frequency of anaphase bridging, represent-
ing ~55% of all bridges during key transition
passages, and a 13-fold enrichment over
random expectation (~4.3%). In contrast,
such events were rare in pre-transition
(diploid) passages, where chromosome 12
bridges accounted for only 3% of anaphase
cells. Given the high missegregation rate
of chromosome 12, they hypothesized that
it might frequently be sequestered into
micronuclei, a well-known signature of
chromosome instability in cancer cells (6).
Tracking missegregation over time, they
found a striking enrichment of chromosome
12 (12.9%) into micronuclei specifically dur-
ing the transition passages compared with
only 4.4 % for chromosome 10 (which served
as a control). Thus, they identified a critical

window in which chromosome 12 was es-
pecially susceptible to micronuclear capture.
These micronuclei were large and predomi-
nantly decorated by lamin Bl, indicative of
an intact membrane structure (7). Notably,
chromosome 12 bridges were preferentially
found in the periphery of the metaphase
plate during mitosis, a location more sus-
ceptible to micronucleation (8). The lack
of 5-ethynyl-2'-deoxyuridine labeling in
micronuclei indicated that chromosome 12
does not undergo DNA replication when
missegregated, although it has been re-
ported that micronuclei from peripheral
chromosomes do not exhibit replication
defects (9). Consistent with this observa-
tion, mitotic figures of cells during the
trisomic transition window showed a 3:2
ratio of chromosome 12 signals separat-
ing during anaphase. Importantly, some
mitotic events had the third chromosome
12 at a distance from the metaphase plate,
as would be expected from the joining of
an unpaired and unreplicated single
chromatid originating from a previous
micronucleation event.

Fragile ends, big consequences: From
sub-telomeric loss to trisomy 12
dominance

In light of the above, a critical question re-
mained: why is chromosome 12 susceptible
to anaphase bridging? Prior studies have
shown that chromosome 12p (short arm
of chromosome 12) harbors some of the
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Figure 1. Cascade of events leading to trisomy 12 dominance in iPSCs. The different steps (1-8) illustrate how replication stress at the tip of the 12p arm
(due to its shorter telomere length) could trigger anaphase bridges and micronucleation of a single chromatid (steps 1-5). The reincorporation of chromosome
12 into the primary nucleus during the subsequent mitosis results in the formation of chromosome 12 trisomic cells (steps 6-8). As this process occurs si-
multaneously in many cells, and together with the mild proliferative advantage of trisomic cells, the population rapidly becomes near-complete trisomic.

shortest telomeres in the genome (10),
making it more susceptible to genomic in-
stability and DNA replication stress-induced
erosion. Such telomere shortening could
underlie its higher tendency for bridging
during anaphase. By focusing on anaphase
bridges, Narozna et al. identified that
bridging preferentially occurred at the p
arms rather than the q arms of chromosome
12. In line with this observation, they
identified that as cell divisions proceed
and the trisomic population rises during
critical transition passages, ~16% of 12p
had lost some of their sub-telomeric re-
gion. Finally, hydroxyurea treatment ac-
celerated the accumulation of chromosome
12 trisomy by almost twofold, directly linking
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replication stress with chromosome 12p
instability. These experiments shed light
on the cascade of events that drives tri-
somy 12 dominance (Fig. 1). First, replica-
tion stress intensifies in the shorter
telomeres found in 12p, leading to sub-
telomeric erosion. This leads to a surge in
chromosome 12-specific bridging during
anaphase with subsequent missegregation
of one chromatid into a micronucleus.
In the subsequent mitosis, the micro-
nucleated, unreplicated, single chromatid
joins the segregating chromosomes to form
a trisomic cell. Occurring simultaneously in
many cells during a specific timeframe, this
sequence of events seeds a wave of trisomic
cells that, aided by a modest growth

advantage, rapidly establishes and sustains
trisomy 12 dominance.

By tracking a transient biological
process, the authors of this ambitious and
well-executed study were able to provide
a glimpse into how genomes can evolve.
The observations and mechanisms de-
scribed in this work open many ques-
tions, such as: why does chromosome 12
provide a selective advantage? What is
the molecular mechanism that drives
sub-telomeric erosion of chromosomes
with shorter telomeres, such as chromo-
some 12p? And is this instability found in
both chromosome 12 haplotypes? The latter
question is of importance, as if both
haplotypes are equally missegregated, it
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would be expected that the allelic ratio of the
trisomic cell populations would deviate from
the expected 2:1 ratio (and will be closer to
1:1). It would be interesting to see if such
deviations in allelic ratio could be identified
in the genomes of cancer patients, hinting on
the mechanistic origins of some of cancer-
related trisomies. More broadly, this work
links telomere biology to whole-chromosome
instability, highlighting how the discovery of
trisomy 12 dynamics in iPSCs can reshape our
understanding of aneuploidy in congenital
disorders or cancer.
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