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AI-directed voxel extraction and volume EM identify 
intrusions as sites of mitochondrial contact
Benjamin S. Padman1,4�, Runa S.J. Lindblom2,3,4�, and Michael Lazarou1,2,3,4�

Membrane contact sites (MCSs) establish organelle interactomes in cells to enable communication and exchange of materials. 
Volume EM (vEM) is ideally suited for MCS analyses, but semantic segmentation of large vEM datasets remains challenging. 
Recent adoption of artificial intelligence (AI) for segmentation has greatly enhanced our analysis capabilities. However, we 
show that organelle boundaries, which are important for defining MCS, are the least confident predictions made by AI. We 
outline a segmentation strategy termed AI-directed voxel extraction (AIVE), which refines segmentation results and boundary 
predictions derived from any AI-based method by combining those results with electron signal values. We demonstrate the 
precision conferred by AIVE by applying it to the quantitative analysis of organelle interactomes from multiple FIB-SEM 
datasets. Through AIVE, we discover a previously unknown category of mitochondrial contact that we term the mitochondrial 
intrusion. We hypothesize that intrusions serve as anchors that stabilize MCS and promote organelle communication.

Introduction
Organelles allow eukaryotic cells to compartmentalize cellular 
pathways that would normally be incompatible in a shared en
vironment. However, compartmentalization also isolates key 
processes that depend on one another. To link isolated pathways, 
cells dynamically regulate interactions between organelles via 
physical points of contact called membrane contact sites (MCSs) 
(Voeltz et al., 2024) that mediate inter-organelle communica
tion, material exchange, tethering, and structural support 
(Scorrano et al., 2019). For example, cardiolipin synthesis at the 
inner mitochondrial membrane requires the precursor lipid 
phosphatidic acid, which is synthesized by the ER (Flis and 
Daum, 2013); without adequate MCSs between mitochondria 
and the ER, cardiolipin synthesis would halt. MCSs are 
now widely accepted to be essential for cellular homeostasis 
(Schrader et al., 2015), and MCSs have been reported between 
almost every conceivable combination of organelles (Coleman, 
2019; Shai et al., 2016; Venditti et al., 2020; Wang et al., 2022). 
Collectively, the interaction network between these various 
organelles is referred to as the “organelle interactome” (Valm 
et al., 2017).

Meaningful analysis of the organelle interactome poses a 
major technical challenge because MCSs represent small points 
of contact between comparatively large structures. Optical 

microscopy is suitable for imaging large interacting structures, 
but the separation distances of an MCS at 10–35 nm (Jing et al., 
2019) are smaller than the resolvable limits of light. Biochem
ical methods also have limitations, since most sample prepa
ration methods typically remove structural and spatial context 
from the MCS prior to analysis (Huang et al., 2020). This is why 
volume EM (vEM) techniques are frequently referred to as the 
“gold standard” for studying MCS structure (Jing et al., 2019).

vEM methods based on scanning EM (SEM), such as focused 
ion beam SEM (FIB-SEM) or serial block face SEM, enable the 
ultrastructural visualization of membrane structures within 
cellular-scaled volumes. However, analysis of large vEM data
sets poses a major challenge since the structures detected re
quire semantic segmentation (hereafter segmentation) and 
object classification before they can be quantitatively analyzed, 
and this process has historically relied on the manual labeling 
of each organelle membrane by hand to define their bound
aries. This reliance on human input represents a major bot
tleneck in the throughput of vEM methods, and the traditional 
approaches to image segmentation can no longer keep pace 
with the rate of data acquisition (Peng et al., 2018), which in
creases every year (Xu et al., 2020). Given these challenges, it 
can be argued that the rapid adoption of machine learning– and 
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deep learning– based approaches for vEM was inevitable 
(Gallusser et al., 2023; Liu et al., 2022). Artificial intelligence 
(AI)-based image segmentation approaches are now widely 
accepted in the field of vEM, but they are not without their own 
potential flaws when it comes to organelle boundaries. Seg
mentation aims to define where an object is, but it also aims to 
define where an object is not. The transition between the 
presence or absence of an object defines its bounding surface in 
a vEM dataset. The challenge arises when organelle surfaces 
segmented via AI-based approaches represent locations where 
a trained model was equally certain about the presence and 
absence of that object, and this can become problematic for 
MCS analyses.

Here, we demonstrate that the least certain model predictions 
made via AI-based image segmentation occur predominantly at 
the bounding surface of an object, which is the most important 
location for MCS analyses. This boundary uncertainty causes 
variable results between AI models and directly impacts the 
reliability and accuracy of ultrastructural measurements. We 
outline and benchmark a strategy called AI-directed voxel ex
traction (AIVE) designed to negate this limitation. Through a 
series of benchmarking experiments, we demonstrate AIVE’s 
capacity to reduce the variability between different AI models 
and confer greater consistency in MCS analyses in cultured cells 
and tissues alike. We conduct a comprehensive analysis of FIB- 
SEM datasets acquired from HeLa cells, revealing the existence 
of a previously undescribed morphological category of mito
chondrial MCSs that we term mitochondrial intrusions. The 
benefits of mitochondrial intrusions include increased surface 
area of membrane contacts between organelles that may serve as 
an anchor to enhance cross talk efficiency.

Results
AI-based approaches for the segmentation of vEM data
AI-based image segmentation uses information learned from 
training data to create statistical or deductive frameworks 
(termed a model) so that predictions can be made about new 
unseen data. Given the large datasets that can be generated 
using FIB-SEM imaging of cells, there are clear advantages in 
using AI-based approaches to automate membrane segmenta
tion (Nguyen et al., 2021). To demonstrate, we used a test da
taset of ∼3.5 µm3 in volume (dimensions: X, 2.4 µm [740 px]; Y, 
1.2 µm [370 px]; Z, 1.2 µm [121 slices]), which originates from a 
larger 655=µm3 dataset that will be discussed later in greater 
detail (Figs. 4, 5, 6, 7, and 8). The test dataset was used to train a 
random forest (RF) model to identify cellular membranes de
tected via FIB-SEM imaging (Fig. 1, A and B). This trained model 
generated probability (P) values indicating the likelihood that a 
membrane is present at each voxel in the dataset (Fig. 1 C). To 
complete the segmentation of these membranes (Fig. 1, D and 
E), the scalar P values were binarized by assigning a probability 
threshold (Fig. 1 D) or an isosurface value (Fig. 1 E) to generate a 
3D result. The decision threshold is a critical parameter in AI- 
based image segmentation because it defines the boundary of 
each segmented object, thereby defining an object’s volume, 
surface area, and contact with other objects. When selecting a 

threshold value, a midpoint P value of 50% appears to be a logical 
choice (Fig. 1, D and E), but 50% probability values represent 
where the model was equally certain about the presence and 
absence of an object, making it the least certain prediction. Deep 
learning methods like convolutional neural networks (CNNs) do 
not use a pre-chosen decision threshold, but the output layer of a 
CNN learns parameters akin to a threshold to generate a binary 
result (Richard and Lippmann, 1991; Rumelhart et al., 1986). 
Regardless of the methods used to predict and binarize results, 
the decision thresholds control the ultimate conclusions drawn 
by a model and, by extension, the boundary of each object.

When presented with the same data, different AI algorithms 
make different predictions about the boundaries of an object, 
and these differences can affect interpretations of organelle ul
trastructure and membrane contacts (Wang et al., 2020). To 
demonstrate this, we trained six machine learning models based 
on different algorithms of varying complexity to detect mem
branes in the same test dataset from Fig. 1 B. All six models were 
trained in the detection of membranes using the exact same 
training samples and feature data before application to the same 
test dataset (Fig. 1 F), and therefore any variability between re
sults would be due to their algorithmic differences. Each model 
was capable of membrane detection (Fig. 1 F), but key differences 
existed between their results. By visualizing the differences in 
predicted values (ΔV) from each model (Fig. 1 G; ΔV), it can be 
demonstrated that most of the predictions agree between mod
els, but the disagreements that do occur are almost exclusively 
localized to the membrane boundaries (Fig. 1 G). This uncer
tainty about the position of a membrane boundary would neg
atively impact the reliability of any organelle contact analysis, 
since it confounds the measurement of membrane separation 
distances.

AIVE: A tool for accurate automated segmentation of 
cellular membranes
To improve the accuracy of membrane boundaries obtained 
from AI segmentation methods and to generate greater con
sensus across different AI algorithms, we developed an approach 
termed AIVE (Lee et al., 2024; Nguyen et al., 2021). AIVE com
bines the automated segmentation outputs of an AI model with 
the ground truth of the vEM data. Applying AIVE involves two 
major steps: (1) Segmentation of cellular membranes with an AI 
(as in Fig. 1), and then (2) multiplication of the AI membrane 
prediction with the original EM data to extract only those voxels 
belonging to a membrane. This multiplication is conducted using 
the raw probabilistic model predictions, although we note that 
earlier iterations of AIVE used binary segmented data for this 
stage (Nguyen et al., 2021). The benefit of AIVE for membrane 
boundary detection is that the regions of uncertain AI prediction 
are accounted for by the intensity of signals in the EM data. For 
example, at a boundary where the AI is uncertain, if the EM 
voxels have little to no intensity, then the AI prediction of the 
uncertain region will not contribute to the output (Fig. S1 A). 
Unlike methods that use EM signals to augment AI performance 
or training (Brion et al., 2021; Liu and Ji, 2021), the core stages of 
AIVE occur downstream of AI-based image segmentation with
out influencing the training or behavior of the AI model. This is 
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an important distinction because it means that AIVE can be 
applied to any existing data without requiring adjustments to 
preexisting trained models for that data.

To demonstrate the overall AIVE approach, the sample EM 
data and preexisting AI predictions from Fig. 1 were applied to 
the AIVE workflow. First, the AI prediction was smoothened by 
applying a 3D Gaussian blur to reduce variability between 

predictions (Fig. S1 C). The EM data were processed using con
trast limited adaptive histogram equalization (CLAHE) (Fig. 2 C) 
to normalize differences in image contrast that can occur be
tween different data acquisitions and median blurred to reduce 
signal shot noise. In the final step, the voxel values from the AI 
predictions and the raw EM data (Fig. 2, B and C) were multiplied 
to generate the AIVE output (Fig. 2 D). By multiplying voxel 

Figure 1. Variable AI predictions predominantly occur at object boundaries during segmentation. (A–E) 3D test data acquired via FIB-SEM imaging, 
showing an (A) overview and (B) inset 2D slice from the dataset with (C) corresponding predictions generated by a random forest classifier trained to detect 
membranes, alongside (D) 2D binary segmentation and (E) 3D surfaces based on the membrane predictions. (F) 2D slices depicting raw membrane predictions 
for the test dataset (from Fig. 1 B) with values (V) shown as percentages of their total dynamic range (0–1), made using six different machine learning algorithms 
(also provided as 3D renders in Fig. S2 A); RF, J48, MLP (multilayer perceptron), DT (decision table), JRip, and PART (projective adaptive resonance theory). 
(G) Visual depiction of the absolute difference in voxel values (ΔV) between each prediction from F, showing the average value difference for each two-way 
value comparison as a percentage of the total dynamic range (0–1). Scale bars; A, 1,000 nm; B–G, 200 nm.
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values from two independent dynamic ranges (Fig. S1 A), any 
input voxels with a value of zero were automatically excluded 
from the output, whereas electron signals predicted by the 
model to represent membranes were retained for segmentation 
(Fig. 2 D and Fig. S1 A). Importantly, this strategy is not limited to 
membranes, since any cellular content that generates an 
electron signal can be isolated (Fig. S1 B). Like any other 
segmentation technique, a threshold value is required to 
generate 3D surfaces from the AIVE dataset (Fig. S2, A–C). It 
is important to note that values near the center of the output 
dynamic range (50%; 8-bit value of 128) are not equivalent 
to the 50% probability threshold value discussed earlier 
(Fig. 1 D). This is because AIVE results are the product of 
multiplying two independent dynamic ranges (Fig. S1 A), so 
the center of both dynamic ranges is in fact 25% (50% × 50% = 
25%; 8-bit value of 64). The premise of AIVE is therefore akin 
to a signal masking strategy, in which electron signals de
tected during EM are used for the segmentation of object 
boundaries instead of using AI predictions alone (Fig. 1 G). 
Doing so improves the accuracy, precision, and consistency 
of membrane segmentation, as we will demonstrate through 
a series of benchmarking experiments.

Benchmarking AIVE
AIVE enables outputs to be compared between different 
AI algorithms
We had observed large discrepancies between membrane 
boundary positions segmented by different AI models in the 
same EM dataset (Fig. 1 F). To benchmark AIVE and demon
strate its benefits, the same AI model predictions shown in 
Fig. 1 F were applied to the AIVE workflow (Fig. 2 E). Upon 
application of AIVE, the difference in values (ΔV) between each 
model greatly reduced (compare Fig. 1, F and G to Fig. 2, E and 
F). Quantitation of the ΔV per image slice also demonstrated 
that the variability between results can be more than halved by 
AIVE, though we note that some of this improvement was due 
to the initial blurring of the predictions (Fig. S1 C). We also note 
that the principles of AIVE are applicable to 2D imaging 
methods such as transmission EM (TEM). Similar to the 3D 
AIVE analyses (Figs. 1 and 2), 2D application of AIVE re
duced the variability between results generated by different 
AI models (Fig. S3).

Next, we assessed how the differences between bound
aries from each model would affect 3D spatial measure
ments. This was done by selecting 30 random points near 
membranes (distance probes; Fig. 2 H; see also Video 1), then 
measuring the distance between each point and its nearest 
membrane (Fig. S2 D). By measuring the range (Fig. 2 I) and 
relative absolute deviation (Fig. 2 J) of distance values re
corded between models for each probe, the reliability of 
measurements under each condition can be quantified. By 
both measures (Fig. 2, I and J), AIVE processing greatly im
proved the consistency of measurements between models, 
outperforming the AI predictions alone with or without the 
application of a Gaussian blur. Together, these analyses 
show that AIVE enables greater consensus between AI 
models at regions of uncertainty (membrane boundaries) 

and that AIVE can be applied with any AI model chosen by 
a user.

AIVE improves the accuracy and precision of organelle classification
The accuracy of organelle membrane segmentation is funda
mentally important for the analysis of organelle interactions. 
The AIVE framework can easily integrate organelle classification 
prior to the voxel extraction (VE) step. This simply requires the 
preparation of binary labels that map the identity of organelles. 
For example, if a mitochondrion of interest were present in the 
dataset, its identity can be defined by drawing a label around 
that approximate region (Fig. 3 A). While this process may seem 
identical to conventional classification, AIVE differs in that it 
does not use these classification labels to define the boundaries 
of any organelles. Instead, the class labels are used to mask re
gions of the AI predictions and merely identify them as be
longing to a specific organelle (Fig. 3, B and C). The resulting data 
are then processed via AIVE, resulting in segmentation of mem
branes belonging to a specific organelle, which in the sample case 
is a mitochondrion (Fig. 3, D and E).

Class labels can be assigned manually by a human, auto
matically by AI, or any combination of those two strategies via 
“human-in-the-loop” type approaches (Budd et al., 2021). This is 
a valuable feature of AIVE, as it allows human experts to con
tribute their domain knowledge when an AI encounters struc
tures that it cannot classify, without requiring the training of an 
entirely new classification model. To demonstrate the flexible 
classification requirements of AIVE, we assessed the classifica
tion labels generated by a human analyst and two U-Net CNNs in 
the detection of one mitochondrion (Fig. 3 F) from the test da
taset in Fig. 1 A. Classification by a human analyst was conducted 
manually on two consecutive days, while the two U-nets differed 
in their randomization seed during training. Mitochondrial la
beling was generally similar between the classification ap
proaches (Fig. 3 F), but the human classifications tended to 
extend further than necessary beyond the perimeter of mito
chondria, whereas the U-Nets occasionally appeared to miss 
portions of the mitochondrion (Fig. 3 F; arrowheads).

To benchmark the benefits of AIVE, the binary class labels 
from Fig. 3 F were used for organelle segmentation using four 
different approaches: (1) Traditional instance segmentation, in 
which binary class labels are used to define object boundaries 
(Fig. 3 G); (2) AI extraction (AIE), where the class labels are used 
to mask the AI predictions without VE (Fig. 3 H); (3) direct VE, 
which uses the class labels to mask the normalized EM data 
without using AI predictions (Fig. 3 I); and (4) AIVE (Fig. 3 J).

To understand the reconstruction results, we must first ad
dress the characteristics and limitations of conventional 3D 
segmentation. Specifically, 3D surfaces generated using binary 
segmentation alone (Fig. 3 G) demonstrate a noteworthy artifact 
called “terracing” (Fig. 3 G; see 3D insets), which presents as 
artificial plateaus (Gibson, 1998). The terracing is caused by 
abrupt (binary) changes in voxel value, which affect the local 
shape since contours can only be represented by a limited pool of 
surface topologies (28; 256) (Lorensen and Cline, 1987), of which 
only 15 are unique (Kim et al., 2017). The rigid pool of surface 
topologies imposes a limit on the smallest nonzero distance that 
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Figure 2. AIVE minimizes the influence of variable AI predictions. (A–D) Flow chart depicting the technical basis of AIVE, in which (A) raw 3D data from the 
FIB-SEM are used to (B) train and apply a classifier model to generate probability maps depicting the location of cellular membranes (dynamic range, 0–1), while 
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can be measured between any two objects, which would be 2.3 
nm for our data (see Fig. S1, G–I). In contrast, the additional 
information present within 8-bit scalar datasets, such as those 
generated by AIE, VE, and AIVE (Fig. 3, H–J), allows surface 
vertices to be positioned at any point between voxel centers, 
theoretically allowing for >1.8 × 1019 (2568) different unique 
polygon configurations. These polygon configurations can also 
adopt fractional angles that have spatial anisotropy with the 
voxel grid (Kim et al., 2017), thus removing the limit on the 
smallest measurements that can be made between objects. 
Therefore, by moving from binary labels to scalar values, we 
can generate a more natural contour from our voxel grid, as 
shown by the surface details shown in Fig. 3, H–J compared 
with Fig. 3 G.

Next, we benchmarked AIVE against VE and AIE. VE pre
vents terracing (Fig. 3 H), but the scalar data also include irrel
evant electron signals. Similarly, AIE reduces terracing (AIE; 
Fig. 4 I), but the disadvantages of relying on AI predictions alone 
for membrane boundaries have already been outlined (Figs. 
1 and 2). To directly show how the different approaches influ
ence the reliability of contact site analyses, we quantified the 
variability of distance measurements between classification la
bels for each of the scalar 3D datasets (Fig. 3, H–J). We conducted 
3D measurements (Fig. 3 K) using a new set of 3D distance probes 
nearer to a mitochondrion (Fig. S1 D; see also Video 2), since the 
original 3D probe locations had no relation to a specific organelle 
(Fig. 2 H). As demonstrated by the range (Fig. 3 L) and relative 
absolute deviation (Fig. 3 M) of distance values recorded by each 
3D probe, the distance measurements recorded for AIVE datasets 
were very consistent between each of the differing class labels as 
opposed to VE and AIE (Fig. 3 F). Therefore, AIVE substantially 
improves the precision and consistency of 3D spatial measure
ments in vEM datasets.

We next conducted a benchmarking experiment to compare 
the accuracy of measurements generated via AIVE to a known 
standard point of reference. Nuclear pore complexes (NPCs) are 
large protein channels in the nuclear envelope that mediate 
cargo transport between the interior and exterior of the nucleus. 
NPC structure is highly conserved among eukaryotes, which is 
why they are often used as a reference standard for bench
marking microscopy methods (Thevathasan et al., 2019). The 
test dataset used in Figs. 1, 2, and 3 originated from a larger 
cellular volume that also contained a portion of nuclear envelope 

(Fig. 4 B). Using the manual classification strategy described 
in Fig. 3, A–J, we processed a portion of the nuclear envelope 
containing 18 individual nuclear pores (Fig. S1 E) via VE 
(Fig. 3 N), AIE (Fig. 3 O), or AIVE (Fig. 3 P). The same 18 pores 
were isolated from each processed dataset and aligned using the 
exact same transforms (see Materials and methods for further 
detail; Fig. S1 F) to compare each processing method (Fig. 3, Q–T) 
against recent NPC structures (Schuller et al., 2021; Zimmerli 
et al., 2021). Data processed by VE alone (Fig. 3 N) rarely yielded 
a detectable pore because they were often occluded by irrelevant 
electron signals (Fig. 3 Q). In contrast, central transport channels 
were consistently detected in the data processed by AIE alone 
(Fig. 3 O) or AIVE (Fig. 3 P), but the average diameter of those 
pores differed between processing methods (Fig. 3 Q): 42.9 nm 
for AIE alone compared with 52.4 nm for AIVE. We related these 
pore measurements to reported values from two independent 
studies from 2021 (arrowheads in Fig. 3 Q), which used cryo- 
electron tomography to resolve NPC structures in cellulo 
(Schuller et al., 2021; Zimmerli et al., 2021). Schuller et al. (2021) 
reported that human NPCs have a central channel diameter of 57 
nm (Fig. 3 Q; black arrowhead) (Schuller et al., 2021). The AIE 
processed data differ from this value by 14.1 nm, whereas the 
AIVE results differed by only 4.6 nm. The study by Zimmerli 
et al. (2021) was not conducted in human cells (Zimmerli et al., 
2021), but we include their findings because they provide 
valuable context for the distribution of our measurements 
(Fig. 3 Q; value range indicated by white arrowheads). Unlike 
data processed using VE or AIE alone, the majority of the AIVE- 
processed nuclear pores had a diameter within the published 
reported range. Renderings of the median averaged pores 
from each processing method are also provided (Fig. 3, R–T; 
shown in purple) for visual comparison with the human NPC 
structure published by Schuller et al. (2021) (Fig. 3, R–T; 
shown in orange [Schuller et al., 2021]). Collectively, our 
benchmark experiments show that AIVE processing sub
stantially improves both the precision and accuracy of spatial 
measurements in vEM datasets.

Mapping organelle interactomes using AIVE
Compositional analysis of cellular membranes via AIVE
Having outlined the technical basis and advantages of AIVE, we 
next demonstrated some of the biological insights AIVE can yield 
when applied to large-volume datasets. We aimed to characterize 

(C) intensity values from the original dataset are normalized via CLAHE (dynamic range, 0–255); (D) values from B are then multiplied by values from C (see also 
Fig. S1 A), which isolates the voxel values belonging to a membrane to generate raw AIVE data (application of AIVE to other classes of signal provided in Fig. S1 
B). (E and F) 2D slices depicting raw AIVE data generated using each algorithm shown in Fig. 1 F (3D renders of the same data provided in Fig. S2 C), and (F) 
averaged ΔV values for each two-way comparison between one AIVE output and each of the other outputs (both shown as a percentage of 8-bit dynamic range; 
0–255). (G) Quantification of the average ΔV per slice for each two-way comparison made between the model predictions (Fig. 1, F and G) and between AIVE 
outputs (E and F) generated using those same model predictions (quantitation and 3D renders of blurred AI predictions shown in Fig. S1 C and Fig. S2 B, 
respectively). (H) 3D rendering of membrane surfaces from the test dataset (from Fig. 1 E) viewed from the front and above, indicating the positions of the static 
3D probes used to benchmark membrane distance measurements (membranes nearest to each 3D probe are indicated by red shading; see Video 1 for rotation 
animation depicting probe positions). (I and J) Quantification of the distance between each 3D probe (shown in H) and the nearest membranes detected by the 
six models shown in Fig. 1 F (raw distance measurements provided in Fig. S2 A), after segmentation of the raw predictions, blurred AI predictions, or AIVE 
outputs, showing (I) the range (min-max) for values reported by each probe between models and (J) the relative absolute deviation in measurements from each 
probe. Plot markers in I and J indicate value for individual 3D probes. The interquartile range is indicated by the box, the median is indicated by the horizontal 
lines, and the minimum and maximum are indicated by whiskers in G, I, and J. Scale bars; A–F, 200 nm. MLP, multilayer perceptron; DT, decision table; PART, 
projective adaptive resonance theory.
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Figure 3. Object classification does not alter the precision or accuracy of segmentation by AIVE. (A–E) Flow chart depicting object classification during 
AIVE, in which (A) organelle labels and (B) membrane predictions are multiplied to generate (C) a contextually masked membrane prediction, (D) which is then 
combined with the normalized EM data to generate (E) AIVE data belonging to a specific organelle. (F) 2D examples of mitochondrial classification labels 
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mitochondrial interactions with other cellular organelles in three 
FIB-SEM datasets from HeLa cells that were processed using AIVE 
(set #1, Fig. 4 B; set #2, Fig. 4 C; set #3, Fig. 4 D; see Video 3). As 
mentioned previously, the test dataset used in our benchmarking 
experiments (Figs. 1, 2, and 3) originated from a small region 
(Fig. 4 A) within one of these datasets. AIVE data can be subjected 
to a wide range of analyses (Figs. 4, 5, 6, 7, and 8), the simplest 
being direct quantification of membrane volume (Fig. 4, F–H). Set 
#1 (654.0 µm3 total volume of dataset) contained the highest 
proportion of organellar membranes (84.7 µm3; 12.9% of total 
volume). Due to the prominence of the cellular nucleus in sets #2 
and #3, organellar membranes represented a substantially lower 
proportion of their total volume (set #2, 858.8 µm3 total, 59.4 µm3 

organellar membrane; set #3, 640.9 µm3 total, 39.1 µm3 organellar 
membrane). The nucleus in set #2 is noteworthy (Fig. 4 C), as it 
also contained multiple examples of nucleoplasmic reticulum 
tubes spanning the interior of the nucleus (Drozdz et al., 2017). 
Excluding the nuclear envelope from subsequent analyses reveals 
striking similarities in the distribution of membrane between 
organelles across the datasets (Fig. 4, E–G), with the ER being the 
most abundant category of organellar membrane, followed closely 
by mitochondrial membranes. Intracellular vesicles and Golgi 
apparatus were the next most abundant categories of organellar 
membrane, but Golgi apparatus was not detected in set #2 
(Fig. 4 F); coincidentally, set #2 also contained a lower proportion 
of early and late endosomal membranes than in the other two 
datasets. To explore these datasets in greater detail, we next 
turned our attention to individual mitochondria.

Quantitative analysis of mitochondrial morphology via AIVE
The three datasets (Fig. 4, B–D) collectively contained 186 indi
vidual mitochondria. Morphometric analysis of these mitochon
dria based on their membranes alone would have limited value, 
since it would not include the mitochondrial interiors or bulk 
morphology, which is why our machine learning models were also 
trained to classify materials other than membrane. For example, 
the prediction results for “Matter” (class 3) are specifically de
signed to represent any electron-dense non-membranous mate
rials, such as the mitochondrial matrix (Fig. S1 B). This additional 
class allowed us to “fill” the mitochondria by multiplying the 
matter class with the mitochondrial class labels, then adding the 
result to the AIVE membrane outputs for the corresponding mi
tochondria. In addition, the filling process enables imputation of 
the matrix of each mitochondrion.

Morphometric analyses, including measurements of mito
chondrial volume, membrane surface area, volume of matrix, 
shape, and length, were applied to all 186 mitochondria. Based on 
the morphometric analyses, six outlier mitochondrial mor
phologies were identified (Fig. 5, A–F). This included the 
smallest mitochondrion, whose total volume was only 0.035 µm3 

(Fig. 5 A). As a point of comparison, the smallest mitochondrion 
was approximately one-hundredth the volume of the largest 
mitochondrion (compare Fig. 5 A with Fig. 5 B), demonstrating a 
wide range of mitochondrial size. Unsurprisingly, the largest 
mitochondrion also possessed the greatest membrane surface 
area (25.079 µm2), the largest volume of membrane (1.863 µm3), 
and the largest volume of matrix (1.605 µm3) of any detected 
mitochondrion (Video 4). Our analyses of mitochondrial mor
phologies also included two different metrics of mitochondrial 
“length” (see Video 5), in which the most elongated and longest 
mitochondria were identified. The most elongated mitochon
drion (Fig. 5 D; 11.89 aspect ratio, 9.36-µm longest-optimal path) 
was identified by measuring mitochondrial ellipsoid aspect ra
tios (major axis/minor axis; Fig. 5 J), whereas the longest mito
chondrion (Fig. 5 E; 2.91 aspect ratio; 11.229-µm long) was 
determined by skeletonizing the bulk mitochondrial structure, 
then measuring the longest-optimal path through the skeleton 
(Fig. 5 K). Mitochondrial sphericity was also quantified (Fig. 5 L
and Video 6, left), leading to the identification of the most 
spherical mitochondrion (Fig. 5 F; sphericity = 0.860). The 
wealth of morphological data that was obtained also allowed us 
to identify the most average mitochondrion (Fig. 5 G, and Video 
6, right) that had morphological measurements closest to the 
average value across every metric quantified. Interestingly, we 
also noted that mitochondrial membrane volume correlated 
closely (R > 0.99) with matrix volume in all datasets (Fig. 5 I), dem
onstrating that internal mitochondrial architecture is tightly controlled 
despite large variations in morphology.

The morphometric analyses also led to the identification of 
mitochondrial nanotunnels based on the separation of mito
chondrial matrix volumes within a mitochondrion (Fig. 5 C and 
Video 6, center). The presence of mitochondrial nanotunnels in 
HeLa cells was unexpected since nanotunnels are typically ob
served in cellular/tissue environments in which mitochondrial 
movement is physically constrained (Vincent et al., 2017). To 
show an example of nanotunnels in a physically constrained 
tissue and demonstrate AIVE’s utility in tissue samples, we 
conducted FIB-SEM and AIVE of murine skeletal muscle tissue 

provided by one human on different days or two 3D U-Nets with different initialization seeds. (G–J) 3D-rendered results classified using the labels shown in 
Fig. 3 F, after classification via (G) conventional instance segmentation or by using the binary labels (H) for selective VE, (I) AIE, or (J) AIVE. (K–M) Quantitative 
analysis of (K) the distance between mitochondrial membranes and each mitochondrial 3D probe (probe locations shown in Fig. S1 D; also see Video 2 for 
rotation animation depicting probe positions), (L) the range of values recorded by each 3D probe, and (M) the relative absolute deviation in 3D probe 
measurements for all datasets shown in Fig. 3, H–J. (N–P) 2D maximum intensity projections of 18 individual nuclear pores, which were spatially aligned prior to 
processing and segmentation via (N) VE, (O) AIE, or (P) AIVE (unprocessed pores are shown, and pore locations are shown in Fig. S1, E and F, respectively). 
(Q) Feret’s diameter measurements of the central transport channel from each nuclear pore after segmentation via VE, AI, or AIVE (black arrowhead indicates 
diameter reported by Schuller et al. (2021); hollow arrowhead range indicates diameters reported by Zimmerli et al. (2021). (R–T) 2D projections and 3D 
renderings showing the median averaged data generated via (Q) VE, (R) AI, or (S) AIVE (purple), with spatial alignment to the NPC structure (orange) published in 
2021 by Schuller et al. (2021). Plot markers in K–L indicate values for individual 3D probes. Plot markers in T indicate measurements for individual nuclear pores. 
The interquartile range is indicated by the box, median is indicated by the horizontal lines, and the minimum and maximum are indicated by whiskers. Scale bars; 
A–J, 200 nm; N–S, 100 nm.
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Figure 4. The compositional analysis of membranes in bulk cellular volumes via AIVE. (A–D) 3D renderings of the three FIB-SEM datasets processed via 
AIVE for quantitative analysis, showing (A) the test data used in Figs. 1, 2, and 3 alongside overviews of (B) the dataset it originated from (set #1; leading lines 
indicate location), and (C and D) two additional datasets processed via AIVE (set #2 and set #3, respectively). All three overviews are shown at the same scale 
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(Fig. S4). Numerous examples of mitochondrial nanotunnels 
were observed (Fig. S4, A–C and Video 7), in which mitochondria 
remained interconnected over distance by reaching around 
myofibrils via nanotunnels (Fig. S4 and Video 7). In addition, we 
observed extensive sarcoplasmic reticulum networks that con
tacted mitochondrial nanotunnels at sites around myofibrils. 
Collectively, these analyses show the extensive mitochondrial 
morphology analyses that can be conducted using AIVE across 
cultured cells and tissue.

Quantitative analysis of the mitochondrial organelle interactome 
via AIVE
Next, we aimed to investigate the interactions between mito
chondria and other organelles, including MCS, by quantifying 
the separation distances of each mitochondrion from the ER, 
early endosomes (EE), late endosomes (LE), lipid droplets (LDs), 
and general cytosolic vesicles (VE) (Fig. 6). By individually in
dexing each mitochondrion, we were also able to quantify the 
separation between each mitochondrion and the remainder of 
the mitochondrial network.

First, we determined the closest approach made between 
organelles by measuring the minimum separation distance for 
each mitochondrion relative to each category of organelle (Fig. 6, 
A–F). Closest approach values for the EE, LE, and LD organelle 
categories varied greatly between mitochondria (Fig. 6, C–E), 
which were often several microns away from these categories of 
organelle (Fig. 6, C–E). Next, the number of mitochondria in 
contact with each category of organelle was determined by ap
plying the standard criteria often described for MCSs of <35-nm 
separation (Jing et al., 2019). On average, we found that 12.13% of 
mitochondria were in contact with an EE, 24.96% were in contact 
with a LE, and 10.24% were in contact with an LD (Fig. 6 G). In 
contrast, every mitochondrion was found to be in contact with 
the ER (Fig. 6 G), and the mitochondria-ER closest approach 
distances never exceeded 5 nm (Fig. 6 B). These results are in 
close agreement with the findings of Friedman et al. (2010), who 
reported that all cellular mitochondria maintain continuous 
contact with the ER. Additional categories of mitochondrial 
membrane contact were also observed, and they included 
interactions with other mitochondria and cytosolic vesicles 
(Fig. 6 G). These results demonstrate the utility of AIVE in 
measuring organelle interactomes while also revealing the 
extent of organelle contacts and how they vary across dif
ferent organelles.

Mitochondrial intrusions are morphological platforms for 
organelle interaction
Using distance-based criteria to define MCS is a valuable tool. 
However, we also wanted to account for the magnitude of the 
contact area relative to the size of an organelle because it gives 
context to the breadth of a MCS. For example, small point-like 
interactions with randomly distributed vesicles (Fig. 6 G) cannot 

be distinguished from a membrane contact that covers a sub
stantially greater surface area. We therefore sought to refine our 
quantitative analyses of MCS by accounting for the size of in
teraction sites between mitochondria with the ER, vesicles (VE), 
and other mitochondria (Fig. 6, H–M). By grouping distance 
measurements into 5-nm brackets ranging between 0 and 250 
nm, the percentage of a mitochondrion’s surface from each 
separation distance was determined (Fig. 6, K–M). The analysis 
revealed a prominent peak in the 0–5-nm distance bracket for 
mitochondrial (Fig. 6 K) and ER distance measurements (Fig. 6 L; 
Arrowheads), but not for cytosolic vesicles (Fig. 6 M) that were 
typically further away from mitochondria and occupied little of 
the mitochondrial surface.

The value peak detected in the 0–5-nm range caught our at
tention because it is a large surface of contact that cannot occur 
between round convex spheroids (Fig. S5, A and C), unless one of 
those objects partially envelops the other (Fig. S5, B and D). In
deed, our analysis of the 0–5nm membrane contacts revealed 
striking mitochondrial morphologies that enabled membrane 
contact via organelle intrusion (Fig. 7). Importantly, this char
acteristic peak between 0 and 5 nm was unlikely to be detected 
via conventional AI-based binary segmentation alone, since bi
narized data could not have measured distances between 0 and 
2.3 nm (Fig. S1, G–I), and the variation in AI-defined boundaries 
greatly exceeded 5 nm (Fig. 2 I). The precision conferred by AIVE 
was therefore essential to the discovery of mitochondrial in
trusions as a form of membrane contact.

The intrusions were characterized by an invagination of the 
outer mitochondrial membrane to form a narrow cavity that 
protruded into the interior of a mitochondrion (Fig. 7; see Videos 8
and 9). Mitochondrial intrusions frequently contained ER mem
branes (Fig. 7, A–C and Video 8) that typically occupied the entire 
intrusion cavity. Interestingly, the ER membranes often displayed 
higher levels of osmium staining (EM data; Fig. 7, A–C), indicating 
that the membranes are protein rich or have a unique lipid profile. 
Mitochondrion-to-mitochondrion intrusions were also observed, 
in which the exterior membranes of one mitochondrion intruded 
into an adjacent mitochondrion (Fig. 7, D and E; and Video 9). 
Unlike the ER-to-mitochondrion intrusions, membranes in this 
category of intrusion did not display increased osmium staining 
(Fig. 7, D and E). We also identified a mitochondrion that was 
intruding into another mitochondrion while simultaneously re
ceiving an intrusion from the ER (Fig. 7 D and Fig. 8 A; see box 
indicating set #1, mitochondria 61 and 89). This demonstrates that 
mitochondria can simultaneously give and receive intrusions, 
potentially enabling inter-organelle communication. Mitochon
drial intrusions lacking an intruding membrane within the cavity 
were also observed (Fig. 7 F), indicating that intrusion cavities 
may form independently from an intruding membrane.

We asked why mitochondrial intrusions have not previously 
been reported using established EM approaches. Additional 
morphological analyses revealed key features that can provide 

(see Video 3 for animated cutaways of the data). (E–G) Compositional analysis of membrane volumes belonging to non-nuclear cytoplasmic organelles in (E) set 
#1, (F) set #2, and (G) set #3. See Video 3 for animated cutaways of overview data. Scale bars; A, the bounding box is 2,400-nm wide; B–D, markers on the scale 
grid for overviews are 1,000-nm apart.
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Figure 5. The morphometric analysis of individual mitochondria via AIVE. (A–G) Mitochondria of interest that were detected in the AIVE-processed 
datasets are shown in Fig. 4, showing the membranes of each mitochondrion (red) alongside its matrix (blue) and the binary skeleton calculated for its bulk 
morphology (black; longest-optimal path endings shown in yellow); these include (A) the smallest mitochondrion, (B) the largest mitochondrion, (C) a 
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an explanation why intrusions have not been observed until 
now. Of the 186 mitochondria surveyed, we detected a total of 50 
mitochondrial intrusions among 36 individual mitochondria 
(Fig. 8 A), equating to 0.269 intrusions per mitochondrion on 
average. No mitochondrial morphological traits appeared to 
correlate with the presence of an intrusion (Fig. 8 B), implying 
that the formation of a mitochondrial intrusion is stochastic. 
Indeed, the average number of intrusions per mitochondrion 
(0.269) was used to model a Poisson distribution that closely 
approximates the observed values (Fig. 8 C). Compared with the 
mitochondrion, the internal volume of the average intrusion 
cavity was minuscule (Fig. 8 D), and the largest sphere capable of 
fitting within these cavities would have a radius no larger than 
50.6 nm (Fig. 8 E), yet they often extended several hundred 
nanometers inward (Fig. 8 F).

A mitochondrial intrusion can only be confidently identified 
when viewed in its entirety. This is because without evidence of 
the entrance, an intrusion would be indistinguishable from a 
membrane inclusion (see Fig. 7 D), and without evidence of the 
deeper intrusion, the cavity entrance would appear to be a slight 
membrane indentation (see Fig. 7 A). We sought to demonstrate 
this by calculating the probability of detecting a fully intact 
mitochondrial intrusion via TEM imaging by using Buffon’s 
needle problem (Robertson and Siegel, 2018). Buffon’s needle 
problem is a geometrical probability and is formulated as fol
lows: If a needle of known length (L) is randomly dropped onto 
an array of regularly spaced lines separated by a known distance 
(d), what is the probability that the needle will overlap a line 
after landing (Fig. S5 E). In the present context, the “needles” 
represent mitochondrial intrusions with an average length (L) of 
367.5 nm (Fig. 8 F), the space between lines represents TEM 
sections of known thickness (d), and the needles that overlap a 
line represent incomplete intrusions that extended into adjacent 
sections. The probability of detecting a fully intact intrusion can 
therefore be considered the inverse of Buffon’s needle problem 
(Fig. 8 G and Fig. S5 E). For a hypothetical 100-nm TEM section 
(d = 100 nm) containing a mitochondrial intrusion, there is less 
than a 1 in 10 chance (P = 0.087) that the intrusion will remain 
fully intact within that section (solid line in Fig. 8 G). Under 
these conditions, an observer would be twice as likely to observe 
only half of the intrusion (P = 0.177964; see dashed line, Fig. 8 G), 
which would be indistinguishable from a membrane inclusion or 
indentation of the outer membrane. Even if the section thickness 
was equal to the length of an intrusion (L = d), the probability of 
the structure being intact remains low (P = 0.363; solid line in 
Fig. 8 G). It is important to note that the real probability of ob
serving an intrusion is likely even lower, since they were only 

present in a fraction of the mitochondria (Fig. 8 C). In contrast, 
there would be a 95% chance (P = 0.953) of an intrusion re
maining intact if the Z-depth of the sampled volume spanned 
5 µm (d = 5,000 nm), which would not be possible using TEM but 
easily achieved via FIB-SEM. These calculations demonstrate 
why mitochondrial intrusions have not previously been identi
fied using historical TEM.

Taken together, by using AIVE, we were enabled to discover 
that HeLa cell mitochondria can contact the ER (and other mi
tochondria) via intrusion sites (Figs. 7 and 8), which provide a 
larger interface for surface interactions not possible between 
round objects (Figs. 7 and S5). We have also shown that these 
intrusion sites are more likely to be indistinguishable from a 
mitochondrial membrane inclusion when viewed by TEM 
(Fig. 8 G).

Discussion
In this study, we have outlined and benchmarked a technique 
termed AIVE for volumetric EM. AIVE enables electron signals 
detected via FIB-SEM to be processed for rapid 3D reconstruc
tion and analysis with high fidelity. AIVE’s fidelity is achieved by 
using the ground truth of EM data in the final output. In AI re
search, ground truth is used to describe the preferred result 
from a trained model (Lebovitz et al., 2021), but the original 
definitions of ground truth specify that it originates from ob
jective empirical measurements (Woodhouse, 2021). In the 
context of this manuscript, the backscattered electron signals 
acquired via FIB-SEM imaging represented the most objective 
and empirical measurements that could be used for ground 
truth. AIVE therefore uses an objective definition of ground 
truth by linking AI predictions to real empirical measurements. 
Since its inception, AIVE has been applied to volumetric EM 
analyses of cultured cells (Lee et al., 2024; Nguyen et al., 2021) 
and animal tissues alike (Fig. S6). However, in the absence of 
benchmarking, it was unclear why a cell biologist might choose 
to apply AIVE versus AI predictions alone. Here, we demon
strate that membrane boundaries are the least certain areas of AI 
predictions. Through extensive benchmarking, we make a case 
for the benefits of AIVE to define membrane boundaries with 
high fidelity that provides benefits for the study of organelle 
ultrastructure and MCSs. Moving forward, it would be benefi
cial to integrate the process of AIVE as a default option in AI- 
assisted segmentation strategies. As it stands, AIVE is a separate 
step to enhance AI-assisted predictions, but through incorpo
ration within segmentation algorithms AIVE can be seamlessly 
applied in the future.

nanotunnelling mitochondrion, (D) the most elongated mitochondrion, (E) the mitochondrion with the longest continuous tubule, (F) the most spherical 
mitochondrion, and (G) the mitochondrion closest to the average values detected by all morphological metrics. For animations of these data, see Video 4 (for A 
and B), Video 6 (for C, F, and G), and Video 5 (for D and E). (H–L) Quantitative analysis of key morphological metrics of all mitochondria in each set: (H) box 
whisker chart for the total volume of each mitochondrion, (I) a scatter chart showing the relationship between the volume of membrane (x axis) and volume of 
matrix (y axis) in each mitochondrion, with (J–L) box whisker charts showing additional metrics for (J) mitochondrial sphericity, (K) mitochondrial length, and (L) 
mitochondrial elongation. See Video 4. Plot markers indicate value for individual mitochondria. Hollow plot markers indicate mitochondria that were inter
sected by the dataset boundary; these mitochondria were excluded from analyses sensitive to incomplete mitochondria (Fig. 5, A, E, D, G, and J–L). The in
terquartile range for mitochondrial population is indicated by the box, the median is indicated by the horizontal lines, and the minimum and maximum are 
indicated by whiskers. Scale bars; A–G, markers on the scale grid are 1,000-nm apart.
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Mitochondrial membrane ultrastructure is tightly linked 
to the biochemical functions of a mitochondrion (Zick et al., 
2009). For example, mitochondrial damage and dysfunction 
are linked to a range of abnormal mitochondrial morpholo
gies, including cristae disturbances and network fragmenta
tion (Jenkins et al., 2024; Linda et al., 2009; Vincent et al., 
2016). In mitochondrial diseases, abnormal morphologies can 
manifest as osmiophilic inclusions of concentric membranes 
and “onion-shaped” cristae within the mitochondria (Linda 

et al., 2009; Vincent et al., 2016), while in other cases, cris
tae structures are diminished (Siegmund et al., 2018). Mito
chondrial ultrastructure can also change in response to the 
metabolic activity of mitochondria (Ryu et al., 2024), in which 
mitochondria undertaking oxidative reactions retain defined 
cristae, whereas those enriched in reductive reactions lack 
cristae. The intimate association between mitochondrial 
structure and function lends itself to exploration using volu
metric EM. AIVE can therefore be used in various contexts, 

Figure 6. AIVE for the analysis of the mitochondrial interactome. (A–F) Quantification of the closest approach distance separating each individual mi
tochondrion from (A) the rest of the mitochondrial network, (B) the ER, (C) EEs, (D) LEs, (E) LDs, or (F) cytosolic vesicles. (G) Average percentage of all mi
tochondria detected within 35 nm of the indicated organelle per set. (H–J) 3D rendering of distance-mapped mitochondrial surfaces from a subregion in set #1. 
The mitochondrial surfaces are shaded with a colorimetric scale indicating surface distances from (H) other mitochondria, (I) the ER, or (J) cytosolic vesicles. (K– 
M) Surface area histograms for the mitochondria located within 100 nm of the indicated organelle, depicting the average percentage of a mitochondrial surface 
located within indicated distance of (K) other mitochondria, (L) the ER, or (M) cytosolic vesicles (arrowheads in K and L indicate the anomalous peak, explained 
in Fig. S5, A–D). Plot markers in A–F indicate value for individual mitochondria. The interquartile range is indicated by the box, the median is indicated by 
horizontal lines, and the minimum and maximum are indicated by whiskers. Data in G are mean ± SD calculated for the averages in each dataset. Histogram data 
in K–L are mean surface area percentages binned into 5 nm-distance brackets relative to the target organelle; mean values for each set are also shown. Scale 
bars; H–J, 200 nm. mt, mitochondria.

Padman et al. Journal of Cell Biology 13 of 22 
Mitochondrial intrusion sites revealed by AIVE https://doi.org/10.1083/jcb.202411138 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/224/10/e202411138/1947961/jcb_202411138.pdf by guest on 01 D

ecem
ber 2025



Figure 7. Mitochondrial intrusion sites facilitate membrane contact with the ER and other mitochondria. (A–C) Examples of ER-to-mitochondrion 
intrusion sites detected in (A) set #1, (B) set #2, and (C) set #3, displayed as partial (50 nm) 2D-averaged projections of raw EM and AIVE data (left panels), 
rendered in 3D (center panels), and with a colorimetric distance map relative to the ER (right panels). For animations of these data, see Video 8. Additional 
examples are provided in Fig. S6, A–C. (D and E) Examples of mitochondrion-to-mitochondrion intrusion sites detected in (D) set #1 and (E) set #2, displayed as 
partial (50 nm) 2D-averaged projections of raw EM and AIVE data (left panels), rendered in 3D (center panels), and with a colorimetric distance map relative to 
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ranging from understanding mitochondrial ultrastructure in 
different tissues and disease states to understanding the rela
tionship between mitochondrial morphology and physiological 
and biochemical status. Cristae are intricate structures of the 
mitochondrial inner membrane that come in all manner of 
unusual shapes and sizes depending on cell type and metabolic 
status (Siegmund et al., 2018). For example, cristae in as
trocytes appear to take the shape of triangles, whereas cristae 
in adrenal cortex cells are highly circular (Zick et al., 2009). 
Cristae analyses such as these have typically been conducted 
using 2D TEM. By applying vEM and AIVE, we anticipate that 
additional fascinating features of cristae structure and biology 
will be revealed.

Mitochondrial structures can dynamically adapt according 
to their cytosolic environment. For example, mitochondria in 
muscle tissue form nanotunnels that enable connectivity of the 
mitochondrial network around the physical obstruction of my
ofibrils (Huang et al., 2013; Vincent et al., 2017) (Fig. S6). 
Nanotunnel connectivity can increase in murine cardiac my
ocytes with defective calcium release from the sarcoplasmic 
reticulum (Lavorato et al., 2017), indicating an adaptive role for 
nanotunnels. Through AIVE, we were able to expand on previ
ous studies of nanotunnels and show the extensive ultrastruc
ture of mitochondrial nanotunnel networks in murine skeletal 
muscle (Fig. S6 B). We also revealed extensive MCSs between 
nanotunnels and the sarcoplasmic reticulum (Fig. S6 C) that may 
play a role in calcium buffering during contraction (Lavorato et al., 
2017). Our findings demonstrate the benefits of collecting large EM 
volumes combined with AIVE in identifying long-distance organ
elle connections, including mitochondria via nanotunnels and the 
nucleus via nucleoplasmic tubes (Fig. 4 C).

Another area of cellular biology illuminated by AIVE and vEM 
was the visualization and quantitation of MCSs. Through AIVE, 
we were enabled to undertake high-resolution analyses of or
ganelle interactomes via MCSs (Figs. 5, 6, and 7). The value of 
AIVE for MCS analyses was best demonstrated by the discovery 
of a hitherto unknown form of mitochondrial contact that we 
term the mitochondrial intrusion (Fig. 7). Through intrusions, 
mitochondria were observed to contact other mitochondria or 
the ER. Intrusion relays in which a mitochondrion simulta
neously contacted the ER and other mitochondria were also 
observed. These interactions go beyond the binary MCSs that are 
typically described and highlight the complexity of organelle 
contacts that can be revealed by vEM and AIVE. Indeed, in a 
previous application of AIVE with vEM, wholesale organelle- 
ome changes were observed in response to perturbation of a 
single organelle family (Lee et al., 2024). We note that mito
chondrial intrusions form basally, and they are distinct from 
previously reported mitochondrial cavities (Miyazono et al., 
2018). Mitochondrial cavities, induced by fragmenting mito
chondria through depolarization, differ greatly from intrusions 
in size and morphology and in contact characteristics, including 
the lack of intramitochondrial contacts (Miyazono et al., 2018).

What might be the benefits of mitochondrial intrusions as a 
form of MCS? One answer is increased surface area for inter
action. The exterior of a mitochondrion is typically round and 
convex (Giacomello et al., 2020; Lackner, 2019), but this is the 
least efficient geometry for mediating surface-to-surface inter
actions (Hertz, 1882) (Fig. S4 A). Mitochondrial intrusions can 
maximize the surface area of an MCS (Fig. S4 B) and therefore 
promote the efficiency of inter-organelle communication 
(Scorrano et al., 2019). Another potentially important benefit of 
intrusions is that the increased contact area can serve as an 
anchor to stabilize an otherwise fleeting MCS. Once formed, the 
very close proximity of membranes within intrusions (0–5 nm) 
can feasibly support tethers that support lipid transfer, in
cluding the mitochondrial proteins PTPIP51 and MIGA2 (Freyre 
et al., 2019; Kim et al., 2022; Yeo et al., 2021), which could be 
facilitated by Mfn1/2 for intramitochondrial intrusions and 
Mfn2 and VAPB for ER-mitochondria intrusions (De Vos et al., 
2012; Naon et al., 2023; Stoica et al., 2014). In contrast, MCSs 
involving inositol 1,4,5-triphosphate receptors that facilitate 
calcium transfer between ER and mitochondria might be too 
bulky for the very close contacts made by intrusions (Csordas 
et al., 2010; Voeltz et al., 2024).

Overall, we demonstrate the utility of AIVE combined with 
volumetric EM for understanding the ultrastructure and inter
actome of cellular organelles, while also demonstrating its ca
pacity to reveal fascinating and unexpected features of cell 
biology, including the identification of mitochondrial intrusions 
as a form of MCS.

Materials and methods
Cell culture
HeLa cells (RRID:CVCL_0030) were cultured in DMEM sup
plemented with 10% (vol/vol) FBS (Cell Sera Australia), 1% 
penicillin-streptomycin, 25 mM HEPES, 1x GlutaMAX (Life 
Technologies), and 1x nonessential amino acids (Life Tech
nologies). Samples were prepared by culturing HeLa cell 
monolayers on a polymer film substrate (Aclar film; 203.2-µm 
thick; ProSciTech), which was heat-welded to the plastic 
surface of a 10-cm tissue culture dish with a soldering iron. 
Three dishes were prepared and UV sterilized before seeding 
∼6 × 106 HeLa cells onto the Aclar film in each dish. The cells 
were allowed to attach under normal culture conditions for 48 h, 
with replacement of the culture medium 1 h prior to fixation.

Sample preparation of HeLa cells for FIB-SEM
The samples were chemically fixed with 4% PFA in 0.1 M 
phosphate buffer (pH 7.2) at 37°C for 1 h, with overnight post
fixation with 2.5% glutaraldehyde in 0.1 M sodium cacodylate 
buffer at 4°C. Each polymer film was detached from their tissue 
culture dish before being transferred to a polypropylene tray (lid 
of a pipette tip box), where they were immobilized by heat-welding 
with a soldering iron. A BioWave Pro microwave system (Pelco) 

other mitochondria (right panels). For animations of these data, see Video 9. Additional examples are provided in Fig. S6, D and E. (F) 3D-rendered examples of 
empty intrusion sites detected in each dataset. Scale bars, 200 nm; bounding dimensions of each 3D dataset frame, 1.5 × 1.5 × 1.5 µm.
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Figure 8. vEM is essential for the analysis of mitochondrial intrusion sites. (A) 3D-rendered examples of mitochondria containing intrusion sites, with 
their interior cavities colorized by the category of intrusion. (B) Quantitative analysis comparing the membrane volume of mitochondria in the presence or 
absence of mitochondrial intrusions. (C) Bar chart showing percentage of the mitochondrial population by their number of intrusions, with plot markers in
dicating expected values calculated by a Poisson distribution of the same average. (D and F) Quantitative analyses of each intrusion cavity by category, showing 
their (D) total interior volume, (E) radius of the largest inscribed sphere they could enclose, and (F) the length of their major ellipsoidal axis. (G) Statistical 
modeling of Buffon’s needle problem, showing the probability of detecting an intact mitochondrial intrusion (solid line) or only half an intrusion (dashed line) 
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was used for microwave-assisted sample processing in all subse
quent stages. Osmication was conducted using a modified OTO 
method (Seligman et al., 1966) with three microwave duty cycles 
(120-s on, 120-s off) at 100 W under vacuum where indicated in the 
following stages: 2% (wt/vol) OsO4, 1.5% (wt/vol) K3Fe(CN)6 in 
0.1 M cacodylate buffer (pH 7.4) at 4° for 2 h, followed by microwave 
processing; three MilliQ water rinses; 1% (wt/vol) thiocarbohy
drazide in water with microwave processing; three MilliQ water 
rinses; and then 2% OsO4 in water with microwave processing. 
After further MilliQ water rinses, the samples were en bloc stained 
with 2% (wt/vol) aqueous uranyl acetate (Silva et al., 1968), followed 
by Walton’s lead aspartate (Walton, 1979), with each stain requiring 
three microwave duty cycles (120-s on, 120-s off) at 100 W under 
vacuum. Microwave assisted dehydration (150 W for 40 s per stage) 
was performed by graduated ethanol series (80%, 90%, 95%, 100%, 
and 100% [wt/vol]) followed by propylene oxide (100%, 100% [wt/ 
vol]). The samples were infiltrated with a modified Araldite 502/ 
Embed 812 resin of the following composition (described for 10 ml 
resin): 2.20 g Araldite 502, 3.10 g Embed 812, 3.05 g nadic methyl 
anhydride, 3.05 g dodecenylsuccinic anhydride, and 400 μl ben
zyldimethylamine. Infiltration was conducted using a graduated 
concentration series in propylene oxide (25%, 50%, 75%, 100%, and 
100% [vol/vol]; 180 s at 250 W under vacuum). Final embedding 
was conducted with minimal resin, which was polymerized at 60°C 
for 48 h.

The Aclar film was peeled from each of the resin-embedded 
cell monolayers before using a hammer to subdivide the resin 
into a random assortment of shards that were pooled into a 
single collection. Sample shards were blindly taken from the 
sample pool, deposited on a small droplet of the Araldite 502/ 
Embed 812 resin on the tip of a 3.2-mm diameter aluminum rod; 
another droplet of resin was then placed on top of that shard so 
that another randomly selected shard could be placed on top, and 
the process was repeated to embed sandwiches of randomly 
oriented cells at least three monolayers thick before final po
lymerization at 60°C for 24 h. The stacked cell monolayers were 
hand-trimmed with a razor blade before trimming with a glass 
knife to expose multiple monolayers for 3D FIB-SEM imaging.

Data acquisition and preprocessing
FIB-SEM imaging was conducted three separate times on randomly 
selected cells; one cell was chosen from each cell monolayer. Imaging 
was conducted using a cryo-Helios G4 UX FIB-SEM (FEI) at room 
temperature using the TLD detector in immersion lensing mode for 
backscatter electron imaging at 3.255-nm per pixel (2 kV, 100 pA, 3- 
µs dwell time). Ion milling was conducted at 10-nm per slice (gal
lium, 30 kV, 9 nA) using the Auto Slice and View (v4.1; FEI) software. 
All datasets were spatially registered (rigid transform) using the 
virtual stack registration plugin in FIJI (v1.53 t; RRID:SCR_002285) 
(Arganda-Carreras et al., 2006; Rueden et al., 2017). The signal- 
normalized inputs for AIVE were generated using a pseudo-3D 

implementation of CLAHE, in which three different 2D CLAHE 
calculations were made from the front (XY), top (XZ), and side (YZ) 
of the registered dataset. Each 2D calculation was made using a 
modified version of the CLAHE plugin released by Stephan Saalfeld 
in 2009; this modified plugin accounts for the anisotropy of voxels in 
the XZ and YZ directions by allowing the use of a rectangular sliding 
window during CLAHE. This is distinct from the earlier variations of 
AIVE (Nguyen et al., 2021), which did not account for voxel aniso
tropy during the CLAHE calculation. The modified plugin (“CLA
HE_Anisotropic.class”) and script for batch automation (“CLAHE- 
Batch-3DCLAHE-AnisotropicXYZ.ijm”) are both provided on 
GitHub (https://github.com/BenPadman/AIVE.git).

Sample preparation and AIVE of mouse muscle tissue
Wild-type C57BL/6J mice (RRID:IMSR_JAX:000664) were anes
thetized at 3 wk of age prior to dissection of the tibialis anterior 
muscle, which was immersion fixed in 4% PFA in 0.1 M phos
phate buffer at room temperature (1 h). Tissue was further 
dissected under fixative to extract 1-mm cubed samples, which 
were immersed in secondary fixative (4% PFA and 2.5% GA in 
0.1 M phosphate buffer) for 24 h. All subsequent sample pro
cessing stages and imaging conditions were conducted as de
scribed above for cultured cell samples. Two separate FIB-SEM 
datasets of skeletal muscle were acquired. A machine learning 
model was trained on three classes of voxels designated “Cyto
sol,” “Fibrils,” and “Membrane,” using 120,000 samples per class 
(360,000 total) to train the final model with a 10-fold test cross- 
validation result of over 97% self-accuracy. Mitochondria were 
manually classified in Microscopy Image Browser (MIB) as de
scribed above, and all remaining membranes were designated as 
sarcoplasmic reticulum. The final AIVE results were calculated 
as described above and reconstructed in 3D by marching cubes 
with an isovalue of 64. All animal work was approved by the 
Monash Animal Research Platform Ethics Committee (#17628; 
MARP), Monash University, Melbourne, Australia, and con
ducted in compliance with the specified ethics regulations.

Computational hardware
All presented analyses were conducted on one computer 
equipped with consumer-grade hardware, which included an 
Intel Core i9-9900KF CPU clocked at 3.60 GHz (16 cores), 64 Gb 
of RAM at 2133 MHz, one 2-Tb SSD (Samsung 970 EVO Plus) for 
short-term storage during machine learning feature calcula
tion, two 8-Tb HDD’s in RAID1 for long-term storage of machine 
learning features and results, and an Nvidia GeForce RTX 3080 
Ti for deep learning and 3D rendering.

Machine learning
Machine learning was conducted within the Waikato Environ
ment for Knowledge Analysis (WEKA v3.9; RRID:SCR_001214) 
(Frank et al., 2004). Training features were extracted from the 

when an intrusion is present, as a function of the Z-depth (“d”) in a hypothetical FIB-SEM dataset or TEM section. Plot markers in B indicate value for individual 
mitochondria, and in D–F indicate value for individual intrusion cavities. The interquartile range for each chart is indicated by the box, the median is indicated by 
the horizontal lines, and the minimum and maximum are indicated by the whiskers. Scale bars: Major markers on the scale grid surrounding mitochondria are 
1,000-nm apart, and minor markers are 500-nm apart.

Padman et al. Journal of Cell Biology 17 of 22 
Mitochondrial intrusion sites revealed by AIVE https://doi.org/10.1083/jcb.202411138 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/224/10/e202411138/1947961/jcb_202411138.pdf by guest on 01 D

ecem
ber 2025

https://github.com/BenPadman/AIVE.git


registered image data using the 3D Trainable Weka Seg
mentation (TWS) plugin for ImageJ (RRID:SCR_003070 & 
SCR_002285) (Arganda-Carreras et al., 2017; Schindelin 
et al., 2012). As proposed in the original manuscript (Arganda- 
Carreras et al., 2017), we wrote a series of custom scripts for 
the TWS plugin to expand and automate its capabilities; these 
scripts have been provided on GitHub (https://github.com/ 
BenPadman/AIVE.git). The scripts were designed to minimize 
RAM storage requirements for general machine learning by 
ensuring that all image features required for training and eval
uation are only calculated once prior to local storage on a hard 
disk. Instead of calculating all features for the entire stack si
multaneously, the scripts only inspect a portion of the stack at a 
time while including the minimum number of flanking slices 
required by the radius of a 3D image filter. This enables features 
to be calculated for image stacks of arbitrary length at the cost of 
wasted computation on flanking slices. Furthermore, the script 
generates features incrementally by grouping image filter cal
culations into subsets, temporarily storing the results on a local 
hard disk, and then merging them to generate final feature 
stacks for each slice (see script: “ML-Features-PART1-3DFeatS
plitter-Sigma8.bsh”). Our approach also includes the calculation 
of additional custom 2D features (see script: “ML-Features- 
PART2-2DFeatSplitter.bsh”), which are merged with the original 
3D feature stacks (see script: “ML-Features-PART3-Combine3
Dand2DFeatures.bsh”), allowing us to calculate 175 features per 
slice. The scripts required to execute this process are provided. 
In a departure from the TWS plugin, all training annotations 
were generated externally by using the MIB (RRID:SCR_016560) 
to generate label images where each training class is defined by 
the numerical value of a voxel (value of 1 for class 1, value of 2 for 
class 2, etc). A script was then used to import each training label 
image into TWS with its corresponding feature stack (Fig. 1 G) to 
extract feature measurements from a predetermined number of 
randomly selected voxels per class (see script: “ML-CorePartA- 
ExtractTrainingDataFromFeatures.bsh”). The feature data ex
tracted via this script can then be pooled using the “append” 
function in WEKA, then imported into WEKA Explore for 
analysis and machine learning to generate various trained 
models, as was shown in Figs. 1, 2, and 3. These trained models 
are loaded by a final script (“ML-CorePartB-ApplyClassi
fierToFeatures.bsh”), which is designed to evaluate preexisting 
feature stacks. A complete protocol describing the use of each 
script is available at Protocols.io (https://doi.org/10.17504/ 
protocols.io.14egn48x6v5d/v1).

These scripts were used for machine learning throughout the 
manuscript as follows. The analyses in Figs. 1, 2, and 3 used models 
trained to detect three classes of material: “Sol” (class 1), repre
senting granular protein content of the cytoplasm and nucleus; 
Matter (class 2), representing electron-dense homogenous materials 
that do not belong to a membrane (i.e., mitochondrial matrix); and 
“Memb” (class 3), representing genuine cellular membranes. The 
division of non-membranous materials into two classes was aimed 
to account for the class imbalance problem; training annotations 
were drawn by hand in MIB. For the analyses shown in Figs. 1 and 2, 
feature stacks for each of the three altered test datasets were gen
erated separately before using a shared pool of training labels to 

extract feature measurements for 1,500 voxels per class per slice 
from eight slices (12,000 samples per class, 36,000 samples per 
stack, 108,000 feature measurements total). For the training of the 
six models in Figs. 1 and 2: RF, J48 (the Java-compatible extension of 
Ross Quinlan’s C4.5 classifier), multilayer perceptron, decision table, 
JRip (Java-compatible propositional rule-based RIPPER), and pro
jective adaptive resonance theory neural network. Differences be
tween model outputs were calculated using ImageJ by calculating 
the absolute difference in predicted values (ΔV) at each voxel be
tween each model and every other model; results were visualized by 
averaging all ΔV comparisons for a given model when compared 
with all others. For 2D analyses (Fig. S3), models using the same 
architectures as shown in Figs. 1 and 2 were trained on 16,000 
samples per class (64,000) using only 2D features.

Data shown in Figs. 4, 5, 6, 7, and 8 used pooled feature data 
from all three datasets to train a random forest classifier as de
scribed above, except that training involved five unique classes 
of material. The first three of these classes were used to detect 
non-membrane materials: “Void” (class 1), representing the 
homogenous extracellular regions that lack an electron signal; 
Sol (class 2), representing granular protein content of the cell 
and nucleus; and Matter (class 3), representing electron-dense 
homogenous materials that do not belong to a membrane 
(i.e., mitochondrial matrix). The remaining two classes (4 and 5) 
were subcategories of membrane: Memb (class 4), representing 
the majority of cellular membranes, and “Vesc” (class 5), rep
resenting vesicular membranes; the membrane subclasses 
needed to be merged together to generate a final AIVE result, but 
separation into two classes allowed the classification of cellular 
vesicles by machine learning alone. Protocol describing the 
above procedures is available at Protocols.io (https://doi.org/10. 
17504/protocols.io.14egn48x6v5d/v1).

Organelle classification for AIVE
Some of the raw classifier outputs described above were ex
ploited to assist the classification of organelles. For example, 
dilation of the Void class was used to assist classification of the 
plasma membrane, whereas the Sol class labels in the nucleus 
were used to assist annotation of the nuclear envelope. Manual 
labeling in MIB was then used to classify the Golgi apparatus, 
EEs, LEs, and LDs. The mitochondria were also classified in this 
way, but multiple subclasses were used to ensure that adjacent 
unfused mitochondria were considered independently from one 
another, thus allowing each individual mitochondrion to be in
dexed for independent analyses. When the U-NET 1 (1,337) from 
Fig. 3 became available, it was used to selectively refine perim
eter annotations for some mitochondria, with all the final an
notation decisions being left to the human analyst. The ER was 
classified through a process of elimination; it was the only re
maining unclassified membrane after classification of all other 
organelles. Final class labels were exported from MIB as a label 
image. The label images containing all class labels were sepa
rated into individual binary stacks, with each image represent
ing one class of organelle. These binary stacks were blurred with 
a 10-nm Gaussian filter. The 32-bit predictions generated for 
Memb and Vesc (classes 4 and 5; described above) were com
bined, then multiplied with the binary stacks and blurred with a 
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10-nm Gaussian filter before merging the results with 3D CLAHE 
results calculated earlier. This differs from earlier variations of 
AIVE (Lee et al., 2024; Nguyen et al., 2021), which treated 
membranes as a single continuous class of structure. This gen
erates the final AIVE results for each individual organelle class. 
Protocol describing the above procedures is available at Protocols.io 
(https://doi.org/10.17504/protocols.io.14egn48x6v5d/v1).

U-Net training and deep learning
Two U-Nets with 3D anisotropic architecture (same padding) 
were trained via stochastic gradient descent with momentum 
( 0.001 weight decay; 0.9 momentum), using 80 × 80 × 80 voxel 
input patches (1,040 × 1,040 × 1,600 nm in XYZ), 5 × 5 × 5 filters, 
leaky ReLu activation layers (0.001 scale), and a dice pixel 
classification layer. Both U-Nets were structured with 16 input 
filters and 4 layers, and data augmentations (both 2D and 3D) 
were applied to 80% of the input patches during training with a 
piecewise learning schedule (initial learn rate of 0.01; dropping 
by 80% every 5 epochs) for 35 epochs (512 iterations per epoch). 
The only difference between these two U-Nets was the random 
seed value used during network initialization; the first U-Net 
used a random seed of 1,337, while the second used a value of 
1,338 (Fig. 3 F). To minimize segmentation discontinuities be
tween adjacent prediction tiles (Huang et al., 2018), each U-Net 
was applied using 5% tile overlap with four different ori
entations of the dataset (original, X-flipped, Y-flipped, and 
Z-flipped). The results were then returned to their original ori
entations before averaging to create an ensemble result. Image 
classification by a human image analyst in the same figure was 
conducted on two consecutive days and required ∼10 min to 
complete.

3D distance probes
To simulate the effect of result variation on MCS measurements, 
all static distance probes were assigned in accordance with 
standard criteria for designation of a contact site (<35-nm sep
aration; [Jing et al., 2019]). Initial coordinates for the 3D distance 
probes were chosen by running a stochastic simulation of 
diffusion-limited aggregation in Mathematica (version 9; RRID: 
SCR_014448). These coordinates were annotated in a blank TIFF 
stack with identical dimensions to the test dataset by converting 
the voxel located at each indicated coordinate from black (value 
of 0) to white (value of 255). Probe coordinates further than 35 
nm from (or inside) a membrane were removed from the col
lection by binarizing the membranes shown in Fig. 1 C, dilating 
them by 35 nm, and then subtracting the un-dilated membranes 
from the result; any 3D probes outside the boundaries of this 
result were deleted. This process was repeated until 30 unique 
probe locations were identified (Fig. 2 H).

Analyses of mitochondrial membranes (Fig. 3, G–M) required 
an additional set of criteria for the distance probes, since the 
original 3D probes were generated without relevance to any 
specific organelle (Fig. 1 H), and most were located further than 
35 nm from a mitochondrion. 3D probe coordinates for mito
chondrial membranes were therefore generated by using the 
same 35-nm membrane boundary mask described for general 
membranes above in combination with an additional mask 

representing the mitochondria, as follows: All mitochondrial 
class labels shown in Fig. 3 F were averaged, binarized, dilated by 
35 nm, then applied in a Boolean AND operation with the 35-nm 
membrane mask used to define the first probe positions 
(Fig. 1 H). The resulting mask was then used to assign new 
random points as described above, until 30 new random points 
were defined within 35 nm of a membrane and within 35 nm of 
the mitochondrial class label (Fig. 4 K). Value ranges for distance 
measurements (Fig. 2 I and Fig. 3 L) were calculated by sub
tracting the minimum recorded distance from the maximum 
recorded distance for one probe. Relative absolute deviations 
(also known as relative mean absolute difference) in measure
ments from each probe (Fig. 2 J and Fig. 3 M) were calculated by 
dividing the mean absolute difference (difference between each 
measurement and the mean value) of measurements by the 
arithmetic mean of all measurements from that probe, then 
averaging the result. Protocol for the procedures described 
above is available at Protocols.io (https://doi.org/10.17504/ 
protocols.io.3byl4zkwjvo5/v1).

Nuclear pore analyses
Nuclear pores were initially chosen by defining the approximate 
3D coordinates of each pore in the raw dataset. A cuboidal region 
surrounding each coordinate (300 nm on each axis) was then 
extracted from the raw (Fig. S1 F), VE (Fig. 3 N), AIE (Fig. 3 O), 
and AIVE (Fig. 3 P) image stacks. These pores were then ar
ranged into an identical orientation as follows: All four repre
sentations of data (raw, VE, AIE, and AIVE) for each pore were 
averaged to create datasets for inter-pore alignment, without 
biasing toward any particular method. Using the Fijiyama plugin 
(V4.0.11) for FIJI (v1.53), each averaged pore was manually 
aligned to the next pore in the sequence to generate a prelimi
nary alignment between all 18 pores, which was then refined via 
automatic block matching, also through Fijiyama (Fernandez 
and Moisy, 2021). Individual transform operations describing 
this alignment were then composed into one rigid transforma
tion per nuclear pore, allowing each pore to be aligned into the 
same orientation across all four processing methods. Feret di
ameters of the pores were measured by binarizing the pore and 
then applying the built-in “analyze particles” function in FIJI 
(v1.53) at the centrally aligned slice of the pore. All depictions of 
the individual nuclear pores are shown after alignment (Fig. 3, 
N–P and Fig. S1 F) to account for the variable orientation of some 
pores in the original dataset (Fig. S1 E). Procedure for the 
alignments described above is available at Protocols.io (https:// 
doi.org/10.17504/protocols.io.14egn4zwqv5d/v1).

3D distance measurements, morphometric analyses, 
and rendering
All 3D surfaces were generated using the marching cubes algo
rithm with octree binning (256 points per leaf) in ParaView 
(v5.7; RRID:SCR_002516). All separation distance measurements 
were conducted on a surface-to-surface basis, which differs 
from the voxel-based distance thresholds used in earlier iter
ations of AIVE (Lee et al., 2024; Nguyen et al., 2021). Distance 
measurements and mapping for visualization were conducted 
in ParaView by calculating the signed distance field for one 
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polygonal mesh then measuring the field value at each vertex of 
a second polygonal mesh. The signed distance fields were cal
culated using a custom ParaView filter proposed in a blog post by 
Cory Quammen (technical leader in the Scientific Computing 
Team; Kitware); the custom ParaView filter has been provided 
on GitHub (https://github.com/BenPadman/AIVE.git). All 3D 
renderings were generated using the Cycles render engine in 
Blender (v2.93; RRID:SCR_008606). All other morphometric 
analyses were conducted using the MorphoLibJ plugin for FIJI 
(Legland et al., 2016). Differences in voxel values (ΔV) were 
calculated using the built-in “image calculator” function in FIJI 
(v1.53). Mathematica (version 9) was used for all other statistical 
analyses and charts, including the Buffon’s needle simulation 
in Fig. 8. Procedure for distance mapping and rendering are 
available at Protocols.io (https://doi.org/10.17504/protocols.io. 
dm6gpdrz8gzp/v1).

Statistical analyses
Summary statistics are reported for all data as specified in the 
respective figure legends. Results are primarily descriptive, and 
thus statistical hypothesis testing was not used in any of the 
numerical analyses conducted. To prevent the dichotomization 
of results, they should instead be interpreted as a continuum 
(McShane et al., 2019). Readers are instructed to critically assess 
the magnitude, direction, and precision of all effects reported.

Online supplemental material
Fig. S1 shows the supplementary AIVE descriptions and dem
onstrations. Fig. S2 shows the data at different stages of AIVE 
processing. Fig. S3 shows that the AIVE can also function in 2D. 
Fig. S4 shows the AIVE of mouse skeletal muscle. Fig. S5 shows 
the simulated intrusive contacts. Fig. S6 shows the additional 
examples of intrusive contact sites. Video 1 shows the general 
membrane distance probes. Video 2 shows the mitochondrial 
membrane distance probes. Video 3 shows the overview cut
aways. Video 4 shows the smallest and largest mitochondria. 
Video 5 shows the most elongated and longest mitochondria. 
Video 6 shows the spherical, nanotunneling, and unremarkable 
mitochondria. Video 7 shows the AIVE of mouse skeletal muscle. 
Video 8 shows the intrusive contact by ER. Video 9 shows the 
intrusive contact by mitochondria.

Data availability
The EM data have been deposited with annotations on Electron 
Microscopy Public Image Archive (RRID:SCR_019237). The code 
required for AIVE is available on GitHub, as individual scripts 
for ImageJ/FIJI (github.com/BenPadman/AIVE) (https://doi. 
org/10.5281/zenodo.15429332), and as a compiled ImageJ/FIJI 
plugin incorporating all scripts (github/BenPadman/AIVE/tree/ 
Fiji-plugin). User guides are available within the plugin, and 
protocols are available on protocols.io (https://doi.org/10.17504/ 
protocols.io.14egn4zwqv5d/v1, https://doi.org/10.17504/protocols. 
io.3byl4zkwjvo5/v1, https://doi.org/10.17504/protocols.io. 
dm6gpdrz8gzp/v1, https://doi.org/10.17504/protocols.io. 
14egn48x6v5d/v1, and https://doi.org/10.17504/protocols. 
io.36wgq691klk5/v1). An earlier version of this manuscript 
was posted to bioRxiv on 21st November 2024 (https://doi. 

org/10.1101/2024.11.20.624606). The data, code, protocols, 
and key lab materials used and generated in this study are 
listed in a Key Resource Table alongside their persistent 
identifiers at (https://doi.org/10.5281/zenodo.16259276).
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Figure S1. Supplementary AIVE descriptions and demonstrations. (A) Signal matrix depicting how the input values for a voxel contribute to the output 
value during AIVE (red line indicates approximate location of threshold used for 3D rendering and segmentation). (B) 3D examples of other various categories of 
electron signal processed via AIVE, as detected in the test dataset shown in Fig. 1. (C) Quantification of the average ΔV per slice for each two-way comparison 
made between the model predictions from Fig. 1 F after the application of a 10-nm Gaussian blur (3D renders of corresponding data also provided in Fig. S2 B). 
(D) 3D renderings indicating the position of each static 3D probe used for mitochondrial distance measurements in Fig. 3, viewed from the front and above 
(membranes nearest to each 3D probe are indicated by red shading). See Video 2 for rotation animation showing probe positions. (E) Maximum value projection 
of AIVE-processed data for the nucleus used in Fig. 3, depicting the position of each nuclear pore used for analysis in Fig. 3, N–T. (F) Averaged value projections 
of the unprocessed EM data after spatial alignment for analyses shown in Fig. 3, N–T. (G–I) A mathematical description of the smallest nonzero distance that 
can be measured between any two objects segmented by conventional binarization methods, after 3D reconstruction via the marching cubes algorithm. 
(G) Unique cases of cubes triangulated via the marching cubes algorithm with multiple non-connected triangles (Lorensen and Cline, 1987), which is the 
minimum requirement for representing two separate objects (cases 3, 4, and 7 omitted for brevity). Circles at the cube corners represent the eight voxel values 
used by the marching cubes algorithm to triangulate surfaces in each case. For binarized input data, the triangulated surface vertices are generated at the exact 
mid-point between voxel centers, which are equidistant if the voxels are spatially isometric. (H) If the spatial scale of one voxel dimension (“c”) exceeds the 
other two (“a” and “b”), then the separation distance between vertices in that dimension will always be greater; by extension, the shortest nonzero distance 
between surfaces cannot occur in that dimension, so it can be ignored. (I) The shortest possible measurable nonzero distance between two binarized objects in 
an anisotropic voxel grid can therefore be determined by the Pythagorean theorem, in the 2D plane defined by dimensions a and b. Interquartile range for chart 
is indicated by box, median is indicated by horizontal lines, minimum and maximum are indicated by whiskers. Scale bars; B, 200 nm; E, 1,000 nm; F, 100 nm.
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Figure S2. Data at different stages of AIVE processing. (A–C) 3D depictions of 2D data shown in Figs. 1 and 2, showing the 3D surfaces generated using (A) 
raw predictions, (B) blurred predictions, or (C) AIVE with one of six different trained models (RF, J48, MLP, DT, JRip, and PART). (D) Raw distance measurements 
between the 3D probes (shown in Fig. 2 H) and membrane surfaces under every condition shown in A–C. (E–G) Raw AIVE data from mitochondrion #33 (set 1) 
displayed as a sum projection from (E) the front and (F) above (also see Video 6), with (G) an orthoslice montage of EM and AIVE data through the mitochondrial 
nanotunnel (position shown by box in F). Scale bars; A–C, 200 nm; E and F, 500 nm. MLP, multilayer perceptron; DT, decision table; PART, projective adaptive 
resonance theory.
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Figure S3. AIVE can also function in 2D. (A–E) Raw membrane predictions and (C and D) AIVE results for (E) one TEM image, made using six different 
machine learning algorithms; RF, J48, MLP (multilayer perceptron), DT (decision table), JRip, and PART (projective adaptive resonance theory). (B and D) Visual 
depiction of the absolute difference in voxel values (ΔV) between each result from A and C, showing the average value difference for each two-way value 
comparison as a percentage of the total dynamic range (0–1). (F) Quantification of the average ΔV in the images for each two-way comparison between each of 
the (A) model predictions and (B) each of the AIVE outputs generated using those same six models. Scale bars; A–E, 200 nm.
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Figure S4. AIVE of mouse skeletal muscle. (A–C) AIVE reconstruction of mouse skeletal muscle tissue revealing mitochondrial nanotunnel connections. 
(A) 3D rendering depicting myofibrils (red), mitochondria (purple), and sarcoplasmic reticulum (gold) within a volume measuring 8 × 8 × 6.2 µm FIB-SEM 
volume, with (B) a rendered cutaway displaying the interconnectivity of mitochondria within the tissue (mitochondrial nanotunnels indicated by black ar
rowheads). (C) Representative example of one nanotunnel linking the mitochondrial network around a myofibril. See Video 7 for an animated depiction of data 
in A–C. Scale bars; A–C, as indicated within figure.
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Figure S5. Simulated intrusive contacts. (A and B) 3D renderings of simulated contact between two spheres (128 voxel diameter) with a colorimetric 
distance scale indicating the distance of sphere #1 from sphere #2, (A) when both structures are simple spheres, or (B) when sphere #2 intrudes into Sphere #1. 
(C and D) Surface area histograms depicting the surface area percentage of sphere #1 that is located within the indicated distances of sphere #2, (C) when both 
structures are simple spheres, or (D) when sphere #2 intrudes into sphere #1 (arrowhead in D indicates the anomalous peak discovered in Fig. 6). (E) Illustrative 
description of “Buffon’s Needle Problem” with corresponding equations, which describe the probability of a randomly distributed needle of known length (“L”) 
overlapping a line if those lines are regularly spaced by a known distance (d). Histogram data in C and D are surface area percentages binned into five voxel 
distance brackets relative to sphere #2. Scale bars in A and B, 10 voxels.
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Figure S6. Additional examples of intrusive contact sites. (A–C) Additional examples of ER-to-mitochondrion intrusion sites, displayed as partial (50 nm) 
2D-averaged projections of raw EM and AIVE data (left panels), rendered in 3D (center panels), and with a colorimetric distance map relative to the ER (right 
panels). (D and E) Additional examples of mitochondrion-to-mitochondrion intrusion sites, displayed as partial (50 nm) 2D-averaged projections of raw EM and 
AIVE data (left panels), rendered in 3D (center panels), and with a colorimetric distance map relative to other mitochondria (right panels). Scale bars, 200 nm; 
bounding dimensions of each 3D dataset frame, 1.5 × 1.5 × 1.5 µm.
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Video 1. General membrane distance probes. Animated rotation of the test volume, depicting the 3D membrane probe positions (from Fig. 2 H) used for 
membrane distance measurements in Figs. 2 and 3. General membranes are shown in diffuse navy blue, while membranes nearest to a 3D probe are indicated by 
red shading. 

Video 2. Mitochondrial membrane distance probes. Animated rotation of the test volume, depicting the 3D mitochondrial membrane probe positions (from 
Fig. S1 D) used for mitochondrial membrane distance measurements in Fig. 4. Mitochondrial membranes are shown in diffuse navy blue, while membranes 
nearest to a 3D probe are indicated by red shading. 

Video 3. Overview cutaways. Animated cutaways of the data presented in Fig. 4, B–D. The video begins with all organelles shown before cutting away the ER 
and nuclear envelope (Nu), followed by the Golgi and vesicles (VE), and finally, the EEs, LEs, and LDs. The video concludes by revealing these organelles in 
reverse order. Render key is provided within the animation. 

Video 4. Smallest and largest mitochondria. Animation depicting the structure of the smallest (Fig. 5 A) and largest (Fig. 5 B) volume mitochondria from 
Fig. 5. Render key is provided within the animation. 

Video 5. Most elongated and longest mitochondria. Animation depicting the structure of the most elongated (Fig. 5 D) and longest (Fig. 5 E) mitochondria 
from Fig. 5. Render key is provided within the animation. 

Video 6. Spherical, nanotunneling, and unremarkable mitochondria. Animation depicting the structure of the most spherical mitochondrion (Fig. 5 F), a 
nanotunneling mitochondrion (Fig. 5 C), and the “least remarkable” mitochondrion (Fig. 5 G) from Fig. 5. Render key is provided within the animation. 

Video 7. AIVE of mouse skeletal muscle. Animation of rendered data shown in Fig. S6, displaying an AIVE reconstruction of FIB-SEM data from mouse 
skeletal muscle tissue, measuring 8 × 8 × 6.2 µm. As the video begins, myofibrils (red) and sarcoplasmic reticulum (gold) are cut away to reveal the mito
chondrial network (purple). Black arrowheads then appear to highlight the mitochondrial nanotunnels as the camera pans around the dataset. The video 
concludes by focusing on a specific mitochondrial nanotunnel, which is tightly wrapped around a myofibril, thus connecting mitochondria on opposing sides of 
the myofibril. 

Video 8. Intrusive contact by ER. Animation of the ER intrusions (Fig. 7, A–C) depicted in Fig. 7. The video begins with the full ROI centered around the 
intrusion sites, with colorations indicated by render key. As the intruding ER fades away, the mitochondrial surface is transitioned to the distance map (0–100 
nm) color scale shown in Fig. 7 before rotation of the camera vertically over the datasets. The video concludes by returning to the initial shading. 

Video 9. Intrusive contact by mitochondria. Animation of the mitochondrial intrusions (Fig. 7, D and E) depicted in Fig. 7. The video begins with the full ROI 
centered around the intrusion sites, with colorations indicated by render key. As the intruding mitochondrion fades away, the mitochondrial surfaces are 
transitioned to the distance map (0–100 nm) color scale shown in Fig. 7 before rotation of the camera vertically over the datasets. The video concludes by 
returning to the initial shading. 
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