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Al-directed voxel extraction and volume EM identify
intrusions as sites of mitochondrial contact

Benjamin S. Padman*@®, Runa S.). Lindblom?**@®, and Michael Lazarou®>**@®

Membrane contact sites (MCSs) establish organelle interactomes in cells to enable communication and exchange of materials.
Volume EM (VEM) is ideally suited for MCS analyses, but semantic segmentation of large VEM datasets remains challenging.
Recent adoption of artificial intelligence (Al) for segmentation has greatly enhanced our analysis capabilities. However, we
show that organelle boundaries, which are important for defining MCS, are the least confident predictions made by Al. We
outline a segmentation strategy termed Al-directed voxel extraction (AIVE), which refines segmentation results and boundary
predictions derived from any Al-based method by combining those results with electron signal values. We demonstrate the
precision conferred by AIVE by applying it to the quantitative analysis of organelle interactomes from multiple FIB-SEM
datasets. Through AIVE, we discover a previously unknown category of mitochondrial contact that we term the mitochondrial

intrusion. We hypothesize that intrusions serve as anchors that stabilize MCS and promote organelle communication.

Introduction
Organelles allow eukaryotic cells to compartmentalize cellular
pathways that would normally be incompatible in a shared en-
vironment. However, compartmentalization also isolates key
processes that depend on one another. Tolink isolated pathways,
cells dynamically regulate interactions between organelles via
physical points of contact called membrane contact sites (MCSs)
(Voeltz et al., 2024) that mediate inter-organelle communica-
tion, material exchange, tethering, and structural support
(Scorrano et al., 2019). For example, cardiolipin synthesis at the
inner mitochondrial membrane requires the precursor lipid
phosphatidic acid, which is synthesized by the ER (Flis and
Daum, 2013); without adequate MCSs between mitochondria
and the ER, cardiolipin synthesis would halt. MCSs are
now widely accepted to be essential for cellular homeostasis
(Schrader et al., 2015), and MCSs have been reported between
almost every conceivable combination of organelles (Coleman,
2019; Shai et al., 2016; Venditti et al., 2020; Wang et al., 2022).
Collectively, the interaction network between these various
organelles is referred to as the “organelle interactome” (Valm
et al., 2017).

Meaningful analysis of the organelle interactome poses a
major technical challenge because MCSs represent small points
of contact between comparatively large structures. Optical

microscopy is suitable for imaging large interacting structures,
but the separation distances of an MCS at 10-35 nm (Jing et al.,
2019) are smaller than the resolvable limits of light. Biochem-
ical methods also have limitations, since most sample prepa-
ration methods typically remove structural and spatial context
from the MCS prior to analysis (Huang et al., 2020). This is why
volume EM (VEM) techniques are frequently referred to as the
“gold standard” for studying MCS structure (Jing et al., 2019).

vEM methods based on scanning EM (SEM), such as focused
ion beam SEM (FIB-SEM) or serial block face SEM, enable the
ultrastructural visualization of membrane structures within
cellular-scaled volumes. However, analysis of large vEM data-
sets poses a major challenge since the structures detected re-
quire semantic segmentation (hereafter segmentation) and
object classification before they can be quantitatively analyzed,
and this process has historically relied on the manual labeling
of each organelle membrane by hand to define their bound-
aries. This reliance on human input represents a major bot-
tleneck in the throughput of vEM methods, and the traditional
approaches to image segmentation can no longer keep pace
with the rate of data acquisition (Peng et al., 2018), which in-
creases every year (Xu et al., 2020). Given these challenges, it
can be argued that the rapid adoption of machine learning- and
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deep learning- based approaches for vEM was inevitable
(Gallusser et al., 2023; Liu et al., 2022). Artificial intelligence
(AI)-based image segmentation approaches are now widely
accepted in the field of vEM, but they are not without their own
potential flaws when it comes to organelle boundaries. Seg-
mentation aims to define where an object is, but it also aims to
define where an object is not. The transition between the
presence or absence of an object defines its bounding surface in
a VEM dataset. The challenge arises when organelle surfaces
segmented via Al-based approaches represent locations where
a trained model was equally certain about the presence and
absence of that object, and this can become problematic for
MCS analyses.

Here, we demonstrate that the least certain model predictions
made via Al-based image segmentation occur predominantly at
the bounding surface of an object, which is the most important
location for MCS analyses. This boundary uncertainty causes
variable results between AI models and directly impacts the
reliability and accuracy of ultrastructural measurements. We
outline and benchmark a strategy called Al-directed voxel ex-
traction (AIVE) designed to negate this limitation. Through a
series of benchmarking experiments, we demonstrate AIVE’s
capacity to reduce the variability between different AI models
and confer greater consistency in MCS analyses in cultured cells
and tissues alike. We conduct a comprehensive analysis of FIB-
SEM datasets acquired from HeLa cells, revealing the existence
of a previously undescribed morphological category of mito-
chondrial MCSs that we term mitochondrial intrusions. The
benefits of mitochondrial intrusions include increased surface
area of membrane contacts between organelles that may serve as
an anchor to enhance cross talk efficiency.

Results

Al-based approaches for the segmentation of vEM data
Al-based image segmentation uses information learned from
training data to create statistical or deductive frameworks
(termed a model) so that predictions can be made about new
unseen data. Given the large datasets that can be generated
using FIB-SEM imaging of cells, there are clear advantages in
using Al-based approaches to automate membrane segmenta-
tion (Nguyen et al., 2021). To demonstrate, we used a test da-
taset of ~3.5 um? in volume (dimensions: X, 2.4 yum [740 px]; Y,
1.2 pm [370 px]; Z, 1.2 pm [121 slices]), which originates from a
larger 655=pm3 dataset that will be discussed later in greater
detail (Figs. 4, 5, 6, 7, and 8). The test dataset was used to train a
random forest (RF) model to identify cellular membranes de-
tected via FIB-SEM imaging (Fig. 1, A and B). This trained model
generated probability (P) values indicating the likelihood that a
membrane is present at each voxel in the dataset (Fig. 1 C). To
complete the segmentation of these membranes (Fig. 1, D and
E), the scalar P values were binarized by assigning a probability
threshold (Fig. 1 D) or an isosurface value (Fig. 1 E) to generate a
3D result. The decision threshold is a critical parameter in Al-
based image segmentation because it defines the boundary of
each segmented object, thereby defining an object’s volume,
surface area, and contact with other objects. When selecting a
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threshold value, a midpoint P value of 50% appears to be a logical
choice (Fig. 1, D and E), but 50% probability values represent
where the model was equally certain about the presence and
absence of an object, making it the least certain prediction. Deep
learning methods like convolutional neural networks (CNNs) do
not use a pre-chosen decision threshold, but the output layer of a
CNN learns parameters akin to a threshold to generate a binary
result (Richard and Lippmann, 1991; Rumelhart et al., 1986).
Regardless of the methods used to predict and binarize results,
the decision thresholds control the ultimate conclusions drawn
by a model and, by extension, the boundary of each object.

When presented with the same data, different Al algorithms
make different predictions about the boundaries of an object,
and these differences can affect interpretations of organelle ul-
trastructure and membrane contacts (Wang et al., 2020). To
demonstrate this, we trained six machine learning models based
on different algorithms of varying complexity to detect mem-
branes in the same test dataset from Fig. 1 B. All six models were
trained in the detection of membranes using the exact same
training samples and feature data before application to the same
test dataset (Fig. 1 F), and therefore any variability between re-
sults would be due to their algorithmic differences. Each model
was capable of membrane detection (Fig. 1 F), but key differences
existed between their results. By visualizing the differences in
predicted values (AV) from each model (Fig. 1 G; AV), it can be
demonstrated that most of the predictions agree between mod-
els, but the disagreements that do occur are almost exclusively
localized to the membrane boundaries (Fig. 1 G). This uncer-
tainty about the position of a membrane boundary would neg-
atively impact the reliability of any organelle contact analysis,
since it confounds the measurement of membrane separation
distances.

AIVE: A tool for accurate automated segmentation of

cellular membranes

To improve the accuracy of membrane boundaries obtained
from AI segmentation methods and to generate greater con-
sensus across different Al algorithms, we developed an approach
termed AIVE (Lee et al., 2024; Nguyen et al., 2021). AIVE com-
bines the automated segmentation outputs of an Al model with
the ground truth of the vEM data. Applying AIVE involves two
major steps: (1) Segmentation of cellular membranes with an Al
(as in Fig. 1), and then (2) multiplication of the AI membrane
prediction with the original EM data to extract only those voxels
belonging to a membrane. This multiplication is conducted using
the raw probabilistic model predictions, although we note that
earlier iterations of AIVE used binary segmented data for this
stage (Nguyen et al., 2021). The benefit of AIVE for membrane
boundary detection is that the regions of uncertain Al prediction
are accounted for by the intensity of signals in the EM data. For
example, at a boundary where the Al is uncertain, if the EM
voxels have little to no intensity, then the AI prediction of the
uncertain region will not contribute to the output (Fig. S1 A).
Unlike methods that use EM signals to augment Al performance
or training (Brion et al., 2021; Liu and Ji, 2021), the core stages of
AIVE occur downstream of Al-based image segmentation with-
out influencing the training or behavior of the Al model. This is
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Figure 1. Variable Al predictions predominantly occur at object boundaries during segmentation. (A-E) 3D test data acquired via FIB-SEM imaging,
showing an (A) overview and (B) inset 2D slice from the dataset with (C) corresponding predictions generated by a random forest classifier trained to detect
membranes, alongside (D) 2D binary segmentation and (E) 3D surfaces based on the membrane predictions. (F) 2D slices depicting raw membrane predictions
for the test dataset (from Fig. 1B) with values (V) shown as percentages of their total dynamic range (0-1), made using six different machine learning algorithms
(also provided as 3D renders in Fig. S2 A); RF, J48, MLP (multilayer perceptron), DT (decision table), JRip, and PART (projective adaptive resonance theory).
(G) Visual depiction of the absolute difference in voxel values (AV) between each prediction from F, showing the average value difference for each two-way

value comparison as a percentage of the total dynamic range (0-1). Scale bars; A, 1,000 nm; B-G, 200 nm.

an important distinction because it means that AIVE can be
applied to any existing data without requiring adjustments to
preexisting trained models for that data.

To demonstrate the overall AIVE approach, the sample EM
data and preexisting Al predictions from Fig. 1 were applied to
the AIVE workflow. First, the Al prediction was smoothened by
applying a 3D Gaussian blur to reduce variability between
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predictions (Fig. S1 C). The EM data were processed using con-
trast limited adaptive histogram equalization (CLAHE) (Fig. 2 C)
to normalize differences in image contrast that can occur be-
tween different data acquisitions and median blurred to reduce
signal shot noise. In the final step, the voxel values from the Al
predictions and the raw EM data (Fig. 2, B and C) were multiplied
to generate the AIVE output (Fig. 2 D). By multiplying voxel
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values from two independent dynamic ranges (Fig. S1 A), any
input voxels with a value of zero were automatically excluded
from the output, whereas electron signals predicted by the
model to represent membranes were retained for segmentation
(Fig. 2 D and Fig. S1 A). Importantly, this strategy is not limited to
membranes, since any cellular content that generates an
electron signal can be isolated (Fig. S1 B). Like any other
segmentation technique, a threshold value is required to
generate 3D surfaces from the AIVE dataset (Fig. S2, A-C). It
is important to note that values near the center of the output
dynamic range (50%; 8-bit value of 128) are not equivalent
to the 50% probability threshold value discussed earlier
(Fig. 1 D). This is because AIVE results are the product of
multiplying two independent dynamic ranges (Fig. S1 A), so
the center of both dynamic ranges is in fact 25% (50% x 50% =
25%; 8-bit value of 64). The premise of AIVE is therefore akin
to a signal masking strategy, in which electron signals de-
tected during EM are used for the segmentation of object
boundaries instead of using Al predictions alone (Fig. 1 G).
Doing so improves the accuracy, precision, and consistency
of membrane segmentation, as we will demonstrate through
a series of benchmarking experiments.

Benchmarking AIVE

AIVE enables outputs to be compared between different

Al algorithms

We had observed large discrepancies between membrane
boundary positions segmented by different Al models in the
same EM dataset (Fig. 1 F). To benchmark AIVE and demon-
strate its benefits, the same AI model predictions shown in
Fig. 1 F were applied to the AIVE workflow (Fig. 2 E). Upon
application of AIVE, the difference in values (AV) between each
model greatly reduced (compare Fig. 1, F and G to Fig. 2, E and
F). Quantitation of the AV per image slice also demonstrated
that the variability between results can be more than halved by
AIVE, though we note that some of this improvement was due
to the initial blurring of the predictions (Fig. S1C). We also note
that the principles of AIVE are applicable to 2D imaging
methods such as transmission EM (TEM). Similar to the 3D
AIVE analyses (Figs. 1 and 2), 2D application of AIVE re-
duced the variability between results generated by different
Al models (Fig. S3).

Next, we assessed how the differences between bound-
aries from each model would affect 3D spatial measure-
ments. This was done by selecting 30 random points near
membranes (distance probes; Fig. 2 H; see also Video 1), then
measuring the distance between each point and its nearest
membrane (Fig. S2 D). By measuring the range (Fig. 2 I) and
relative absolute deviation (Fig. 2 J) of distance values re-
corded between models for each probe, the reliability of
measurements under each condition can be quantified. By
both measures (Fig. 2, I and J), AIVE processing greatly im-
proved the consistency of measurements between models,
outperforming the AI predictions alone with or without the
application of a Gaussian blur. Together, these analyses
show that AIVE enables greater consensus between Al
models at regions of uncertainty (membrane boundaries)
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and that AIVE can be applied with any AI model chosen by
a user.

AIVE improves the accuracy and precision of organelle classification
The accuracy of organelle membrane segmentation is funda-
mentally important for the analysis of organelle interactions.
The AIVE framework can easily integrate organelle classification
prior to the voxel extraction (VE) step. This simply requires the
preparation of binary labels that map the identity of organelles.
For example, if a mitochondrion of interest were present in the
dataset, its identity can be defined by drawing a label around
that approximate region (Fig. 3 A). While this process may seem
identical to conventional classification, AIVE differs in that it
does not use these classification labels to define the boundaries
of any organelles. Instead, the class labels are used to mask re-
gions of the AI predictions and merely identify them as be-
longing to a specific organelle (Fig. 3, Band C). The resulting data
are then processed via AIVE, resulting in segmentation of mem-
branes belonging to a specific organelle, which in the sample case
is a mitochondrion (Fig. 3, D and E).

Class labels can be assigned manually by a human, auto-
matically by AJ, or any combination of those two strategies via
“human-in-the-loop” type approaches (Budd et al., 2021). This is
a valuable feature of AIVE, as it allows human experts to con-
tribute their domain knowledge when an Al encounters struc-
tures that it cannot classify, without requiring the training of an
entirely new classification model. To demonstrate the flexible
classification requirements of AIVE, we assessed the classifica-
tion labels generated by a human analyst and two U-Net CNNs in
the detection of one mitochondrion (Fig. 3 F) from the test da-
tasetin Fig. 1 A. Classification by a human analyst was conducted
manually on two consecutive days, while the two U-nets differed
in their randomization seed during training. Mitochondrial la-
beling was generally similar between the classification ap-
proaches (Fig. 3 F), but the human classifications tended to
extend further than necessary beyond the perimeter of mito-
chondria, whereas the U-Nets occasionally appeared to miss
portions of the mitochondrion (Fig. 3 F; arrowheads).

To benchmark the benefits of AIVE, the binary class labels
from Fig. 3 F were used for organelle segmentation using four
different approaches: (1) Traditional instance segmentation, in
which binary class labels are used to define object boundaries
(Fig. 3 G); (2) Al extraction (AIE), where the class labels are used
to mask the Al predictions without VE (Fig. 3 H); (3) direct VE,
which uses the class labels to mask the normalized EM data
without using Al predictions (Fig. 3 I); and (4) AIVE (Fig. 3]).

To understand the reconstruction results, we must first ad-
dress the characteristics and limitations of conventional 3D
segmentation. Specifically, 3D surfaces generated using binary
segmentation alone (Fig. 3 G) demonstrate a noteworthy artifact
called “terracing” (Fig. 3 G; see 3D insets), which presents as
artificial plateaus (Gibson, 1998). The terracing is caused by
abrupt (binary) changes in voxel value, which affect the local
shape since contours can only be represented by a limited pool of
surface topologies (28; 256) (Lorensen and Cline, 1987), of which
only 15 are unique (Kim et al., 2017). The rigid pool of surface
topologies imposes a limit on the smallest nonzero distance that
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Figure2. AIVE minimizes the influence of variable Al predictions. (A-D) Flow chart depicting the technical basis of AIVE, in which (A) raw 3D data from the
FIB-SEM are used to (B) train and apply a classifier model to generate probability maps depicting the location of cellular membranes (dynamic range, 0-1), while
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(C) intensity values from the original dataset are normalized via CLAHE (dynamic range, 0-255); (D) values from B are then multiplied by values from C (see also
Fig. S1A), which isolates the voxel values belonging to a membrane to generate raw AIVE data (application of AIVE to other classes of signal provided in Fig. S1
B). (E and F) 2D slices depicting raw AIVE data generated using each algorithm shown in Fig. 1 F (3D renders of the same data provided in Fig. S2 C), and (F)
averaged AV values for each two-way comparison between one AIVE output and each of the other outputs (both shown as a percentage of 8-bit dynamic range;
0-255). (G) Quantification of the average AV per slice for each two-way comparison made between the model predictions (Fig. 1, F and G) and between AIVE
outputs (E and F) generated using those same model predictions (quantitation and 3D renders of blurred Al predictions shown in Fig. S1 C and Fig. S2 B,
respectively). (H) 3D rendering of membrane surfaces from the test dataset (from Fig. 1 E) viewed from the front and above, indicating the positions of the static
3D probes used to benchmark membrane distance measurements (membranes nearest to each 3D probe are indicated by red shading; see Video 1 for rotation
animation depicting probe positions). (I and J) Quantification of the distance between each 3D probe (shown in H) and the nearest membranes detected by the
six models shown in Fig. 1 F (raw distance measurements provided in Fig. S2 A), after segmentation of the raw predictions, blurred Al predictions, or AIVE
outputs, showing (1) the range (min-max) for values reported by each probe between models and (J) the relative absolute deviation in measurements from each
probe. Plot markers in | and ] indicate value for individual 3D probes. The interquartile range is indicated by the box, the median is indicated by the horizontal
lines, and the minimum and maximum are indicated by whiskers in G, |, and J. Scale bars; A-F, 200 nm. MLP, multilayer perceptron; DT, decision table; PART,

projective adaptive resonance theory.

can be measured between any two objects, which would be 2.3
nm for our data (see Fig. S1, G-I). In contrast, the additional
information present within 8-bit scalar datasets, such as those
generated by AIE, VE, and AIVE (Fig. 3, H-J), allows surface
vertices to be positioned at any point between voxel centers,
theoretically allowing for >1.8 x 10" (2568) different unique
polygon configurations. These polygon configurations can also
adopt fractional angles that have spatial anisotropy with the
voxel grid (Kim et al., 2017), thus removing the limit on the
smallest measurements that can be made between objects.
Therefore, by moving from binary labels to scalar values, we
can generate a more natural contour from our voxel grid, as
shown by the surface details shown in Fig. 3, H-] compared
with Fig. 3 G.

Next, we benchmarked AIVE against VE and AIE. VE pre-
vents terracing (Fig. 3 H), but the scalar data also include irrel-
evant electron signals. Similarly, AIE reduces terracing (AIE;
Fig. 4 1), but the disadvantages of relying on Al predictions alone
for membrane boundaries have already been outlined (Figs.
1 and 2). To directly show how the different approaches influ-
ence the reliability of contact site analyses, we quantified the
variability of distance measurements between classification la-
bels for each of the scalar 3D datasets (Fig. 3, H-J). We conducted
3D measurements (Fig. 3 K) using a new set of 3D distance probes
nearer to a mitochondrion (Fig. S1 D; see also Video 2), since the
original 3D probe locations had no relation to a specific organelle
(Fig. 2 H). As demonstrated by the range (Fig. 3 L) and relative
absolute deviation (Fig. 3 M) of distance values recorded by each
3D probe, the distance measurements recorded for AIVE datasets
were very consistent between each of the differing class labels as
opposed to VE and AIE (Fig. 3 F). Therefore, AIVE substantially
improves the precision and consistency of 3D spatial measure-
ments in vEM datasets.

We next conducted a benchmarking experiment to compare
the accuracy of measurements generated via AIVE to a known
standard point of reference. Nuclear pore complexes (NPCs) are
large protein channels in the nuclear envelope that mediate
cargo transport between the interior and exterior of the nucleus.
NPC structure is highly conserved among eukaryotes, which is
why they are often used as a reference standard for bench-
marking microscopy methods (Thevathasan et al.,, 2019). The
test dataset used in Figs. 1, 2, and 3 originated from a larger
cellular volume that also contained a portion of nuclear envelope
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(Fig. 4 B). Using the manual classification strategy described
in Fig. 3, A-J, we processed a portion of the nuclear envelope
containing 18 individual nuclear pores (Fig. Sl E) via VE
(Fig. 3 N), AIE (Fig. 3 O), or AIVE (Fig. 3 P). The same 18 pores
were isolated from each processed dataset and aligned using the
exact same transforms (see Materials and methods for further
detail; Fig. S1F) to compare each processing method (Fig. 3, Q-T)
against recent NPC structures (Schuller et al., 2021; Zimmerli
et al., 2021). Data processed by VE alone (Fig. 3 N) rarely yielded
a detectable pore because they were often occluded by irrelevant
electron signals (Fig. 3 Q). In contrast, central transport channels
were consistently detected in the data processed by AIE alone
(Fig. 3 O) or AIVE (Fig. 3 P), but the average diameter of those
pores differed between processing methods (Fig. 3 Q): 42.9 nm
for AIE alone compared with 52.4 nm for AIVE. We related these
pore measurements to reported values from two independent
studies from 2021 (arrowheads in Fig. 3 Q), which used cryo-
electron tomography to resolve NPC structures in cellulo
(Schuller et al., 2021; Zimmerli et al., 2021). Schuller et al. (2021)
reported that human NPCs have a central channel diameter of 57
nm (Fig. 3 Q; black arrowhead) (Schuller et al., 2021). The AIE
processed data differ from this value by 14.1 nm, whereas the
AIVE results differed by only 4.6 nm. The study by Zimmerli
et al. (2021) was not conducted in human cells (Zimmerli et al.,
2021), but we include their findings because they provide
valuable context for the distribution of our measurements
(Fig. 3 Q; value range indicated by white arrowheads). Unlike
data processed using VE or AIE alone, the majority of the AIVE-
processed nuclear pores had a diameter within the published
reported range. Renderings of the median averaged pores
from each processing method are also provided (Fig. 3, R-T;
shown in purple) for visual comparison with the human NPC
structure published by Schuller et al. (2021) (Fig. 3, R-T;
shown in orange [Schuller et al., 2021]). Collectively, our
benchmark experiments show that AIVE processing sub-
stantially improves both the precision and accuracy of spatial
measurements in vEM datasets.

Mapping organelle interactomes using AIVE

Compositional analysis of cellular membranes via AIVE

Having outlined the technical basis and advantages of AIVE, we
next demonstrated some of the biological insights AIVE can yield
when applied to large-volume datasets. We aimed to characterize
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Figure 3. Object classification does not alter the precision or accuracy of segmentation by AIVE. (A-E) Flow chart depicting object classification during
AIVE, in which (A) organelle labels and (B) membrane predictions are multiplied to generate (C) a contextually masked membrane prediction, (D) which is then
combined with the normalized EM data to generate (E) AIVE data belonging to a specific organelle. (F) 2D examples of mitochondrial classification labels
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provided by one human on different days or two 3D U-Nets with different initialization seeds. (G-J) 3D-rendered results classified using the labels shown in
Fig. 3 F, after classification via (G) conventional instance segmentation or by using the binary labels (H) for selective VE, (1) AIE, or (J) AIVE. (K-M) Quantitative
analysis of (K) the distance between mitochondrial membranes and each mitochondrial 3D probe (probe locations shown in Fig. S1 D; also see Video 2 for
rotation animation depicting probe positions), (L) the range of values recorded by each 3D probe, and (M) the relative absolute deviation in 3D probe
measurements for all datasets shown in Fig. 3, H-J. (N-P) 2D maximum intensity projections of 18 individual nuclear pores, which were spatially aligned prior to
processing and segmentation via (N) VE, (O) AIE, or (P) AIVE (unprocessed pores are shown, and pore locations are shown in Fig. S1, E and F, respectively).
(Q) Feret’s diameter measurements of the central transport channel from each nuclear pore after segmentation via VE, Al, or AIVE (black arrowhead indicates
diameter reported by Schuller et al. (2021); hollow arrowhead range indicates diameters reported by Zimmerli et al. (2021). (R-T) 2D projections and 3D
renderings showing the median averaged data generated via (Q) VE, (R) Al or (S) AIVE (purple), with spatial alignment to the NPC structure (orange) published in
2021 by Schuller et al. (2021). Plot markers in K-L indicate values for individual 3D probes. Plot markers in T indicate measurements for individual nuclear pores.
The interquartile range is indicated by the box, median is indicated by the horizontal lines, and the minimum and maximum are indicated by whiskers. Scale bars;

A-J, 200 nm; N-S, 100 nm.

mitochondrial interactions with other cellular organelles in three
FIB-SEM datasets from HeLa cells that were processed using AIVE
(set #1, Fig. 4 B; set #2, Fig. 4 C; set #3, Fig. 4 D; see Video 3). As
mentioned previously, the test dataset used in our benchmarking
experiments (Figs. 1, 2, and 3) originated from a small region
(Fig. 4 A) within one of these datasets. AIVE data can be subjected
to a wide range of analyses (Figs. 4, 5, 6, 7, and 8), the simplest
being direct quantification of membrane volume (Fig. 4, F-H). Set
#1 (654.0 um? total volume of dataset) contained the highest
proportion of organellar membranes (84.7 um?; 12.9% of total
volume). Due to the prominence of the cellular nucleus in sets #2
and #3, organellar membranes represented a substantially lower
proportion of their total volume (set #2, 858.8 um? total, 59.4 um?
organellar membrane; set #3, 640.9 pm? total, 39.1 pm?3 organellar
membrane). The nucleus in set #2 is noteworthy (Fig. 4 C), as it
also contained multiple examples of nucleoplasmic reticulum
tubes spanning the interior of the nucleus (Drozdz et al., 2017).
Excluding the nuclear envelope from subsequent analyses reveals
striking similarities in the distribution of membrane between
organelles across the datasets (Fig. 4, E-G), with the ER being the
most abundant category of organellar membrane, followed closely
by mitochondrial membranes. Intracellular vesicles and Golgi
apparatus were the next most abundant categories of organellar
membrane, but Golgi apparatus was not detected in set #2
(Fig. 4 F); coincidentally, set #2 also contained a lower proportion
of early and late endosomal membranes than in the other two
datasets. To explore these datasets in greater detail, we next
turned our attention to individual mitochondria.

Quantitative analysis of mitochondrial morphology via AIVE

The three datasets (Fig. 4, B-D) collectively contained 186 indi-
vidual mitochondria. Morphometric analysis of these mitochon-
dria based on their membranes alone would have limited value,
since it would not include the mitochondrial interiors or bulk
morphology, which is why our machine learning models were also
trained to classify materials other than membrane. For example,
the prediction results for “Matter” (class 3) are specifically de-
signed to represent any electron-dense non-membranous mate-
rials, such as the mitochondrial matrix (Fig. S1 B). This additional
class allowed us to “fill” the mitochondria by multiplying the
matter class with the mitochondrial class labels, then adding the
result to the AIVE membrane outputs for the corresponding mi-
tochondria. In addition, the filling process enables imputation of
the matrix of each mitochondrion.

Padman et al.
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Morphometric analyses, including measurements of mito-
chondrial volume, membrane surface area, volume of matrix,
shape, and length, were applied to all 186 mitochondria. Based on
the morphometric analyses, six outlier mitochondrial mor-
phologies were identified (Fig. 5, A-F). This included the
smallest mitochondrion, whose total volume was only 0.035 pm?
(Fig. 5 A). As a point of comparison, the smallest mitochondrion
was approximately one-hundredth the volume of the largest
mitochondrion (compare Fig. 5 A with Fig. 5 B), demonstrating a
wide range of mitochondrial size. Unsurprisingly, the largest
mitochondrion also possessed the greatest membrane surface
area (25.079 pm?), the largest volume of membrane (1.863 pm?),
and the largest volume of matrix (1.605 pm?) of any detected
mitochondrion (Video 4). Our analyses of mitochondrial mor-
phologies also included two different metrics of mitochondrial
“length” (see Video 5), in which the most elongated and longest
mitochondria were identified. The most elongated mitochon-
drion (Fig. 5 D; 11.89 aspect ratio, 9.36-um longest-optimal path)
was identified by measuring mitochondrial ellipsoid aspect ra-
tios (major axis/minor axis; Fig. 5 J), whereas the longest mito-
chondrion (Fig. 5 E; 2.91 aspect ratio; 11.229-um long) was
determined by skeletonizing the bulk mitochondrial structure,
then measuring the longest-optimal path through the skeleton
(Fig. 5 K). Mitochondrial sphericity was also quantified (Fig. 5 L
and Video 6, left), leading to the identification of the most
spherical mitochondrion (Fig. 5 F; sphericity = 0.860). The
wealth of morphological data that was obtained also allowed us
to identify the most average mitochondrion (Fig. 5 G, and Video
6, right) that had morphological measurements closest to the
average value across every metric quantified. Interestingly, we
also noted that mitochondrial membrane volume correlated
closely (R > 0.99) with matrix volume in all datasets (Fig. 5 I), dem-
onstrating that internal mitochondrial architecture is tightly controlled
despite large variations in morphology.

The morphometric analyses also led to the identification of
mitochondrial nanotunnels based on the separation of mito-
chondrial matrix volumes within a mitochondrion (Fig. 5 C and
Video 6, center). The presence of mitochondrial nanotunnels in
Hela cells was unexpected since nanotunnels are typically ob-
served in cellular/tissue environments in which mitochondrial
movement is physically constrained (Vincent et al., 2017). To
show an example of nanotunnels in a physically constrained
tissue and demonstrate AIVE’s utility in tissue samples, we
conducted FIB-SEM and AIVE of murine skeletal muscle tissue
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Figure 4. The compositional analysis of membranes in bulk cellular volumes via AIVE. (A-D) 3D renderings of the three FIB-SEM datasets processed via
AIVE for quantitative analysis, showing (A) the test data used in Figs. 1, 2, and 3 alongside overviews of (B) the dataset it originated from (set #1; leading lines
indicate location), and (C and D) two additional datasets processed via AIVE (set #2 and set #3, respectively). All three overviews are shown at the same scale
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(see Video 3 for animated cutaways of the data). (E-G) Compositional analysis of membrane volumes belonging to non-nuclear cytoplasmic organelles in (E) set
#1, (F) set #2, and (G) set #3. See Video 3 for animated cutaways of overview data. Scale bars; A, the bounding box is 2,400-nm wide; B-D, markers on the scale

grid for overviews are 1,000-nm apart.

(Fig. S4). Numerous examples of mitochondrial nanotunnels
were observed (Fig. S4, A-C and Video 7), in which mitochondria
remained interconnected over distance by reaching around
myofibrils via nanotunnels (Fig. S4 and Video 7). In addition, we
observed extensive sarcoplasmic reticulum networks that con-
tacted mitochondrial nanotunnels at sites around myofibrils.
Collectively, these analyses show the extensive mitochondrial
morphology analyses that can be conducted using AIVE across
cultured cells and tissue.

Quantitative analysis of the mitochondrial organelle interactome

via AIVE

Next, we aimed to investigate the interactions between mito-
chondria and other organelles, including MCS, by quantifying
the separation distances of each mitochondrion from the ER,
early endosomes (EE), late endosomes (LE), lipid droplets (LDs),
and general cytosolic vesicles (VE) (Fig. 6). By individually in-
dexing each mitochondrion, we were also able to quantify the
separation between each mitochondrion and the remainder of
the mitochondrial network.

First, we determined the closest approach made between
organelles by measuring the minimum separation distance for
each mitochondrion relative to each category of organelle (Fig. 6,
A-F). Closest approach values for the EE, LE, and LD organelle
categories varied greatly between mitochondria (Fig. 6, C-E),
which were often several microns away from these categories of
organelle (Fig. 6, C-E). Next, the number of mitochondria in
contact with each category of organelle was determined by ap-
plying the standard criteria often described for MCSs of <35-nm
separation (Jing et al., 2019). On average, we found that 12.13% of
mitochondria were in contact with an EE, 24.96% were in contact
with a LE, and 10.24% were in contact with an LD (Fig. 6 G). In
contrast, every mitochondrion was found to be in contact with
the ER (Fig. 6 G), and the mitochondria-ER closest approach
distances never exceeded 5 nm (Fig. 6 B). These results are in
close agreement with the findings of Friedman et al. (2010), who
reported that all cellular mitochondria maintain continuous
contact with the ER. Additional categories of mitochondrial
membrane contact were also observed, and they included
interactions with other mitochondria and cytosolic vesicles
(Fig. 6 G). These results demonstrate the utility of AIVE in
measuring organelle interactomes while also revealing the
extent of organelle contacts and how they vary across dif-
ferent organelles.

Mitochondrial intrusions are morphological platforms for
organelle interaction

Using distance-based criteria to define MCS is a valuable tool.
However, we also wanted to account for the magnitude of the
contact area relative to the size of an organelle because it gives
context to the breadth of a MCS. For example, small point-like
interactions with randomly distributed vesicles (Fig. 6 G) cannot

Padman et al.
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be distinguished from a membrane contact that covers a sub-
stantially greater surface area. We therefore sought to refine our
quantitative analyses of MCS by accounting for the size of in-
teraction sites between mitochondria with the ER, vesicles (VE),
and other mitochondria (Fig. 6, H-M). By grouping distance
measurements into 5-nm brackets ranging between 0 and 250
nm, the percentage of a mitochondrion’s surface from each
separation distance was determined (Fig. 6, K-M). The analysis
revealed a prominent peak in the 0-5-nm distance bracket for
mitochondrial (Fig. 6 K) and ER distance measurements (Fig. 6 L;
Arrowheads), but not for cytosolic vesicles (Fig. 6 M) that were
typically further away from mitochondria and occupied little of
the mitochondrial surface.

The value peak detected in the 0-5-nm range caught our at-
tention because it is a large surface of contact that cannot occur
between round convex spheroids (Fig. S5, A and C), unless one of
those objects partially envelops the other (Fig. S5, B and D). In-
deed, our analysis of the 0-5nm membrane contacts revealed
striking mitochondrial morphologies that enabled membrane
contact via organelle intrusion (Fig. 7). Importantly, this char-
acteristic peak between 0 and 5 nm was unlikely to be detected
via conventional Al-based binary segmentation alone, since bi-
narized data could not have measured distances between 0 and
2.3 nm (Fig. S1, G-I), and the variation in Al-defined boundaries
greatly exceeded 5 nm (Fig. 2I). The precision conferred by AIVE
was therefore essential to the discovery of mitochondrial in-
trusions as a form of membrane contact.

The intrusions were characterized by an invagination of the
outer mitochondrial membrane to form a narrow cavity that
protruded into the interior of a mitochondrion (Fig. 7; see Videos 8
and 9). Mitochondrial intrusions frequently contained ER mem-
branes (Fig. 7, A-C and Video 8) that typically occupied the entire
intrusion cavity. Interestingly, the ER membranes often displayed
higher levels of osmium staining (EM data; Fig. 7, A-C), indicating
that the membranes are protein rich or have a unique lipid profile.
Mitochondrion-to-mitochondrion intrusions were also observed,
in which the exterior membranes of one mitochondrion intruded
into an adjacent mitochondrion (Fig. 7, D and E; and Video 9).
Unlike the ER-to-mitochondrion intrusions, membranes in this
category of intrusion did not display increased osmium staining
(Fig. 7, D and E). We also identified a mitochondrion that was
intruding into another mitochondrion while simultaneously re-
ceiving an intrusion from the ER (Fig. 7 D and Fig. 8 A; see box
indicating set #1, mitochondria 61 and 89). This demonstrates that
mitochondria can simultaneously give and receive intrusions,
potentially enabling inter-organelle communication. Mitochon-
drial intrusions lacking an intruding membrane within the cavity
were also observed (Fig. 7 F), indicating that intrusion cavities
may form independently from an intruding membrane.

We asked why mitochondrial intrusions have not previously
been reported using established EM approaches. Additional
morphological analyses revealed key features that can provide

Journal of Cell Biology
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nanotunnelling mitochondrion, (D) the most elongated mitochondrion, (E) the mitochondrion with the longest continuous tubule, (F) the most spherical
mitochondrion, and (G) the mitochondrion closest to the average values detected by all morphological metrics. For animations of these data, see Video 4 (for A
and B), Video 6 (for C, F, and G), and Video 5 (for D and E). (H-L) Quantitative analysis of key morphological metrics of all mitochondria in each set: (H) box
whisker chart for the total volume of each mitochondrion, (I) a scatter chart showing the relationship between the volume of membrane (x axis) and volume of
matrix (y axis) in each mitochondrion, with (J-L) box whisker charts showing additional metrics for (J) mitochondrial sphericity, (K) mitochondrial length, and (L)
mitochondrial elongation. See Video 4. Plot markers indicate value for individual mitochondria. Hollow plot markers indicate mitochondria that were inter-
sected by the dataset boundary; these mitochondria were excluded from analyses sensitive to incomplete mitochondria (Fig. 5, A, E, D, G, and J-L). The in-
terquartile range for mitochondrial population is indicated by the box, the median is indicated by the horizontal lines, and the minimum and maximum are
indicated by whiskers. Scale bars; A-G, markers on the scale grid are 1,000-nm apart.

an explanation why intrusions have not been observed until
now. Of the 186 mitochondria surveyed, we detected a total of 50
mitochondrial intrusions among 36 individual mitochondria
(Fig. 8 A), equating to 0.269 intrusions per mitochondrion on
average. No mitochondrial morphological traits appeared to
correlate with the presence of an intrusion (Fig. 8 B), implying
that the formation of a mitochondrial intrusion is stochastic.
Indeed, the average number of intrusions per mitochondrion
(0.269) was used to model a Poisson distribution that closely
approximates the observed values (Fig. 8 C). Compared with the
mitochondrion, the internal volume of the average intrusion
cavity was minuscule (Fig. 8 D), and the largest sphere capable of
fitting within these cavities would have a radius no larger than
50.6 nm (Fig. 8 E), yet they often extended several hundred
nanometers inward (Fig. 8 F).

A mitochondrial intrusion can only be confidently identified
when viewed in its entirety. This is because without evidence of
the entrance, an intrusion would be indistinguishable from a
membrane inclusion (see Fig. 7 D), and without evidence of the
deeper intrusion, the cavity entrance would appear to be a slight
membrane indentation (see Fig. 7 A). We sought to demonstrate
this by calculating the probability of detecting a fully intact
mitochondrial intrusion via TEM imaging by using Buffon’s
needle problem (Robertson and Siegel, 2018). Buffon’s needle
problem is a geometrical probability and is formulated as fol-
lows: If a needle of known length (L) is randomly dropped onto
an array of regularly spaced lines separated by a known distance
(d), what is the probability that the needle will overlap a line
after landing (Fig. S5 E). In the present context, the “needles”
represent mitochondrial intrusions with an average length (L) of
367.5 nm (Fig. 8 F), the space between lines represents TEM
sections of known thickness (d), and the needles that overlap a
line represent incomplete intrusions that extended into adjacent
sections. The probability of detecting a fully intact intrusion can
therefore be considered the inverse of Buffon’s needle problem
(Fig. 8 G and Fig. S5 E). For a hypothetical 100-nm TEM section
(d = 100 nm) containing a mitochondrial intrusion, there is less
than a 1 in 10 chance (P = 0.087) that the intrusion will remain
fully intact within that section (solid line in Fig. 8 G). Under
these conditions, an observer would be twice as likely to observe
only half of the intrusion (P = 0.177964; see dashed line, Fig. 8 G),
which would be indistinguishable from a membrane inclusion or
indentation of the outer membrane. Even if the section thickness
was equal to the length of an intrusion (L = d), the probability of
the structure being intact remains low (P = 0.363; solid line in
Fig. 8 G). It is important to note that the real probability of ob-
serving an intrusion is likely even lower, since they were only
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present in a fraction of the mitochondria (Fig. 8 C). In contrast,
there would be a 95% chance (P = 0.953) of an intrusion re-
maining intact if the Z-depth of the sampled volume spanned
5 um (d = 5,000 nm), which would not be possible using TEM but
easily achieved via FIB-SEM. These calculations demonstrate
why mitochondrial intrusions have not previously been identi-
fied using historical TEM.

Taken together, by using AIVE, we were enabled to discover
that HeLa cell mitochondria can contact the ER (and other mi-
tochondria) via intrusion sites (Figs. 7 and 8), which provide a
larger interface for surface interactions not possible between
round objects (Figs. 7 and S5). We have also shown that these
intrusion sites are more likely to be indistinguishable from a
mitochondrial membrane inclusion when viewed by TEM
(Fig. 8 G).

Discussion

In this study, we have outlined and benchmarked a technique
termed AIVE for volumetric EM. AIVE enables electron signals
detected via FIB-SEM to be processed for rapid 3D reconstruc-
tion and analysis with high fidelity. AIVE’s fidelity is achieved by
using the ground truth of EM data in the final output. In Al re-
search, ground truth is used to describe the preferred result
from a trained model (Lebovitz et al., 2021), but the original
definitions of ground truth specify that it originates from ob-
jective empirical measurements (Woodhouse, 2021). In the
context of this manuscript, the backscattered electron signals
acquired via FIB-SEM imaging represented the most objective
and empirical measurements that could be used for ground
truth. AIVE therefore uses an objective definition of ground
truth by linking AI predictions to real empirical measurements.
Since its inception, AIVE has been applied to volumetric EM
analyses of cultured cells (Lee et al., 2024; Nguyen et al., 2021)
and animal tissues alike (Fig. S6). However, in the absence of
benchmarking, it was unclear why a cell biologist might choose
to apply AIVE versus Al predictions alone. Here, we demon-
strate that membrane boundaries are the least certain areas of AI
predictions. Through extensive benchmarking, we make a case
for the benefits of AIVE to define membrane boundaries with
high fidelity that provides benefits for the study of organelle
ultrastructure and MCSs. Moving forward, it would be benefi-
cial to integrate the process of AIVE as a default option in Al-
assisted segmentation strategies. As it stands, AIVE is a separate
step to enhance Al-assisted predictions, but through incorpo-
ration within segmentation algorithms AIVE can be seamlessly
applied in the future.
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Figure 6. AIVE for the analysis of the mitochondrial interactome. (A-F) Quantification of the closest approach distance separating each individual mi-
tochondrion from (A) the rest of the mitochondrial network, (B) the ER, (C) EEs, (D) LEs, (E) LDs, or (F) cytosolic vesicles. (G) Average percentage of all mi-
tochondria detected within 35 nm of the indicated organelle per set. (H-J) 3D rendering of distance-mapped mitochondrial surfaces from a subregion in set #1.
The mitochondrial surfaces are shaded with a colorimetric scale indicating surface distances from (H) other mitochondria, (1) the ER, or (J) cytosolic vesicles. (K-
M) Surface area histograms for the mitochondria located within 100 nm of the indicated organelle, depicting the average percentage of a mitochondrial surface
located within indicated distance of (K) other mitochondria, (L) the ER, or (M) cytosolic vesicles (arrowheads in K and L indicate the anomalous peak, explained
in Fig. S5, A-D). Plot markers in A-F indicate value for individual mitochondria. The interquartile range is indicated by the box, the median is indicated by
horizontal lines, and the minimum and maximum are indicated by whiskers. Data in G are mean + SD calculated for the averages in each dataset. Histogram data
in K-L are mean surface area percentages binned into 5 nm-distance brackets relative to the target organelle; mean values for each set are also shown. Scale
bars; H-J, 200 nm. mt, mitochondria.

Mitochondrial membrane ultrastructure is tightly linked et al., 2009; Vincent et al., 2016), while in other cases, cris-
to the biochemical functions of a mitochondrion (Zick et al., tae structures are diminished (Siegmund et al., 2018). Mito-
2009). For example, mitochondrial damage and dysfunction chondrial ultrastructure can also change in response to the
are linked to a range of abnormal mitochondrial morpholo- metabolic activity of mitochondria (Ryu et al., 2024), in which
gies, including cristae disturbances and network fragmenta- mitochondria undertaking oxidative reactions retain defined
tion (Jenkins et al., 2024; Linda et al., 2009; Vincent et al., cristae, whereas those enriched in reductive reactions lack
2016). In mitochondrial diseases, abnormal morphologies can  cristae. The intimate association between mitochondrial
manifest as osmiophilic inclusions of concentric membranes structure and function lends itself to exploration using volu-
and “onion-shaped” cristae within the mitochondria (Linda metric EM. AIVE can therefore be used in various contexts,
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Figure 7. Mitochondrial intrusion sites facilitate membrane contact with the ER and other mitochondria. (A-C) Examples of ER-to-mitochondrion
intrusion sites detected in (A) set #1, (B) set #2, and (C) set #3, displayed as partial (50 nm) 2D-averaged projections of raw EM and AIVE data (left panels),
rendered in 3D (center panels), and with a colorimetric distance map relative to the ER (right panels). For animations of these data, see Video 8. Additional
examples are provided in Fig. 56, A-C. (D and E) Examples of mitochondrion-to-mitochondrion intrusion sites detected in (D) set #1 and (E) set #2, displayed as
partial (50 nm) 2D-averaged projections of raw EM and AIVE data (left panels), rendered in 3D (center panels), and with a colorimetric distance map relative to
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other mitochondria (right panels). For animations of these data, see Video 9. Additional examples are provided in Fig. S6, D and E. (F) 3D-rendered examples of
empty intrusion sites detected in each dataset. Scale bars, 200 nm; bounding dimensions of each 3D dataset frame, 1.5 x 1.5 x 1.5 um.

ranging from understanding mitochondrial ultrastructure in
different tissues and disease states to understanding the rela-
tionship between mitochondrial morphology and physiological
and biochemical status. Cristae are intricate structures of the
mitochondrial inner membrane that come in all manner of
unusual shapes and sizes depending on cell type and metabolic
status (Siegmund et al., 2018). For example, cristae in as-
trocytes appear to take the shape of triangles, whereas cristae
in adrenal cortex cells are highly circular (Zick et al., 2009).
Cristae analyses such as these have typically been conducted
using 2D TEM. By applying vEM and AIVE, we anticipate that
additional fascinating features of cristae structure and biology
will be revealed.

Mitochondrial structures can dynamically adapt according
to their cytosolic environment. For example, mitochondria in
muscle tissue form nanotunnels that enable connectivity of the
mitochondrial network around the physical obstruction of my-
ofibrils (Huang et al.,, 2013; Vincent et al., 2017) (Fig. S6).
Nanotunnel connectivity can increase in murine cardiac my-
ocytes with defective calcium release from the sarcoplasmic
reticulum (Lavorato et al., 2017), indicating an adaptive role for
nanotunnels. Through AIVE, we were able to expand on previ-
ous studies of nanotunnels and show the extensive ultrastruc-
ture of mitochondrial nanotunnel networks in murine skeletal
muscle (Fig. S6 B). We also revealed extensive MCSs between
nanotunnels and the sarcoplasmic reticulum (Fig. S6 C) that may
play a role in calcium buffering during contraction (Lavorato et al.,
2017). Our findings demonstrate the benefits of collecting large EM
volumes combined with AIVE in identifying long-distance organ-
elle connections, including mitochondria via nanotunnels and the
nucleus via nucleoplasmic tubes (Fig. 4 C).

Another area of cellular biology illuminated by AIVE and vEM
was the visualization and quantitation of MCSs. Through AIVE,
we were enabled to undertake high-resolution analyses of or-
ganelle interactomes via MCSs (Figs. 5, 6, and 7). The value of
AIVE for MCS analyses was best demonstrated by the discovery
of a hitherto unknown form of mitochondrial contact that we
term the mitochondrial intrusion (Fig. 7). Through intrusions,
mitochondria were observed to contact other mitochondria or
the ER. Intrusion relays in which a mitochondrion simulta-
neously contacted the ER and other mitochondria were also
observed. These interactions go beyond the binary MCSs that are
typically described and highlight the complexity of organelle
contacts that can be revealed by vEM and AIVE. Indeed, in a
previous application of AIVE with vEM, wholesale organelle-
ome changes were observed in response to perturbation of a
single organelle family (Lee et al., 2024). We note that mito-
chondrial intrusions form basally, and they are distinct from
previously reported mitochondrial cavities (Miyazono et al.,
2018). Mitochondrial cavities, induced by fragmenting mito-
chondria through depolarization, differ greatly from intrusions
in size and morphology and in contact characteristics, including
the lack of intramitochondrial contacts (Miyazono et al., 2018).
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What might be the benefits of mitochondrial intrusions as a
form of MCS? One answer is increased surface area for inter-
action. The exterior of a mitochondrion is typically round and
convex (Giacomello et al., 2020; Lackner, 2019), but this is the
least efficient geometry for mediating surface-to-surface inter-
actions (Hertz, 1882) (Fig. S4 A). Mitochondrial intrusions can
maximize the surface area of an MCS (Fig. S4 B) and therefore
promote the efficiency of inter-organelle communication
(Scorrano etal., 2019). Another potentially important benefit of
intrusions is that the increased contact area can serve as an
anchor to stabilize an otherwise fleeting MCS. Once formed, the
very close proximity of membranes within intrusions (0-5 nm)
can feasibly support tethers that support lipid transfer, in-
cluding the mitochondrial proteins PTPIP51 and MIGA2 (Freyre
et al.,, 2019; Kim et al., 2022; Yeo et al., 2021), which could be
facilitated by Mfnl/2 for intramitochondrial intrusions and
Mfn2 and VAPB for ER-mitochondria intrusions (De Vos et al.,
2012; Naon et al., 2023; Stoica et al., 2014). In contrast, MCSs
involving inositol 1,4,5-triphosphate receptors that facilitate
calcium transfer between ER and mitochondria might be too
bulky for the very close contacts made by intrusions (Csordas
et al., 2010; Voeltz et al., 2024).

Overall, we demonstrate the utility of AIVE combined with
volumetric EM for understanding the ultrastructure and inter-
actome of cellular organelles, while also demonstrating its ca-
pacity to reveal fascinating and unexpected features of cell
biology, including the identification of mitochondrial intrusions
as a form of MCS.

Materials and methods

Cell culture

HelLa cells (RRID:CVCL_0030) were cultured in DMEM sup-
plemented with 10% (vol/vol) FBS (Cell Sera Australia), 1%
penicillin-streptomycin, 25 mM HEPES, 1x GlutaMAX (Life
Technologies), and 1x nonessential amino acids (Life Tech-
nologies). Samples were prepared by culturing HeLa cell
monolayers on a polymer film substrate (Aclar film; 203.2-um
thick; ProSciTech), which was heat-welded to the plastic
surface of a 10-cm tissue culture dish with a soldering iron.
Three dishes were prepared and UV sterilized before seeding
~6 x 10 HeLa cells onto the Aclar film in each dish. The cells
were allowed to attach under normal culture conditions for 48 h,
with replacement of the culture medium 1 h prior to fixation.

Sample preparation of Hela cells for FIB-SEM

The samples were chemically fixed with 4% PFA in 0.1 M
phosphate buffer (pH 7.2) at 37°C for 1 h, with overnight post-
fixation with 2.5% glutaraldehyde in 0.1 M sodium cacodylate
buffer at 4°C. Each polymer film was detached from their tissue
culture dish before being transferred to a polypropylene tray (lid
of a pipette tip box), where they were immobilized by heat-welding
with a soldering iron. A BioWave Pro microwave system (Pelco)
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Figure 8. VEM is essential for the analysis of mitochondrial intrusion sites. (A) 3D-rendered examples of mitochondria containing intrusion sites, with
their interior cavities colorized by the category of intrusion. (B) Quantitative analysis comparing the membrane volume of mitochondria in the presence or
absence of mitochondrial intrusions. (C) Bar chart showing percentage of the mitochondrial population by their number of intrusions, with plot markers in-
dicating expected values calculated by a Poisson distribution of the same average. (D and F) Quantitative analyses of each intrusion cavity by category, showing
their (D) total interior volume, (E) radius of the largest inscribed sphere they could enclose, and (F) the length of their major ellipsoidal axis. (G) Statistical
modeling of Buffon’s needle problem, showing the probability of detecting an intact mitochondrial intrusion (solid line) or only half an intrusion (dashed line)
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when an intrusion is present, as a function of the Z-depth (“d”) in a hypothetical FIB-SEM dataset or TEM section. Plot markers in B indicate value for individual
mitochondria, and in D-F indicate value for individual intrusion cavities. The interquartile range for each chart is indicated by the box, the median is indicated by
the horizontal lines, and the minimum and maximum are indicated by the whiskers. Scale bars: Major markers on the scale grid surrounding mitochondria are

1,000-nm apart, and minor markers are 500-nm apart.

was used for microwave-assisted sample processing in all subse-
quent stages. Osmication was conducted using a modified OTO
method (Seligman et al., 1966) with three microwave duty cycles
(120-s on, 120-s off) at 100 W under vacuum where indicated in the
following stages: 2% (wt/vol) OsO,, 1.5% (wt/vol) KsFe(CN) in
0.1 M cacodylate buffer (pH 7.4) at 4° for 2 h, followed by microwave
processing; three MilliQ water rinses; 1% (wt/vol) thiocarbohy-
drazide in water with microwave processing; three MilliQ water
rinses; and then 2% OsO, in water with microwave processing.
After further MilliQ water rinses, the samples were en bloc stained
with 2% (wt/vol) aqueous uranyl acetate (Silva et al., 1968), followed
by Walton’s lead aspartate (Walton, 1979), with each stain requiring
three microwave duty cycles (120-s on, 120-s off) at 100 W under
vacuum. Microwave assisted dehydration (150 W for 40 s per stage)
was performed by graduated ethanol series (80%, 90%, 95%, 100%,
and 100% [wt/vol]) followed by propylene oxide (100%, 100% [wt/
vol]). The samples were infiltrated with a modified Araldite 502/
Embed 812 resin of the following composition (described for 10 ml
resin): 2.20 g Araldite 502, 3.10 g Embed 812, 3.05 g nadic methyl
anhydride, 3.05 g dodecenylsuccinic anhydride, and 400 ul ben-
zyldimethylamine. Infiltration was conducted using a graduated
concentration series in propylene oxide (25%, 50%, 75%, 100%, and
100% [vol/vol]; 180 s at 250 W under vacuum). Final embedding
was conducted with minimal resin, which was polymerized at 60°C
for 48 h.

The Aclar film was peeled from each of the resin-embedded
cell monolayers before using a hammer to subdivide the resin
into a random assortment of shards that were pooled into a
single collection. Sample shards were blindly taken from the
sample pool, deposited on a small droplet of the Araldite 502/
Embed 812 resin on the tip of a 3.2-mm diameter aluminum rod,;
another droplet of resin was then placed on top of that shard so
that another randomly selected shard could be placed on top, and
the process was repeated to embed sandwiches of randomly
oriented cells at least three monolayers thick before final po-
lymerization at 60°C for 24 h. The stacked cell monolayers were
hand-trimmed with a razor blade before trimming with a glass
knife to expose multiple monolayers for 3D FIB-SEM imaging.

Data acquisition and preprocessing

FIB-SEM imaging was conducted three separate times on randomly
selected cells; one cell was chosen from each cell monolayer. Imaging
was conducted using a cryo-Helios G4 UX FIB-SEM (FEI) at room
temperature using the TLD detector in immersion lensing mode for
backscatter electron imaging at 3.255-nm per pixel (2 kV, 100 pA, 3-
ps dwell time). Ion milling was conducted at 10-nm per slice (gal-
lium, 30 kV, 9 nA) using the Auto Slice and View (v4.1; FEI) software.
All datasets were spatially registered (rigid transform) using the
virtual stack registration plugin in FIJT (v1.53 t; RRID:SCR_002285)
(Arganda-Carreras et al., 2006; Rueden et al., 2017). The signal-
normalized inputs for AIVE were generated using a pseudo-3D
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implementation of CLAHE, in which three different 2D CLAHE
calculations were made from the front (XY), top (XZ), and side (YZ)
of the registered dataset. Each 2D calculation was made using a
modified version of the CLAHE plugin released by Stephan Saalfeld
in 2009; this modified plugin accounts for the anisotropy of voxels in
the XZ and YZ directions by allowing the use of a rectangular sliding
window during CLAHE. This is distinct from the earlier variations of
AIVE (Nguyen et al., 2021), which did not account for voxel aniso-
tropy during the CLAHE calculation. The modified plugin (“CLA-
HE_Anisotropic.class”) and script for batch automation (“CLAHE-
Batch-3DCLAHE-AnisotropicXYZ.ijm”) are both provided on
GitHub (https://github.com/BenPadman/AIVE.git).

Sample preparation and AIVE of mouse muscle tissue
Wild-type C57BL/6] mice (RRID:IMSR_JAX:000664) were anes-
thetized at 3 wk of age prior to dissection of the tibialis anterior
muscle, which was immersion fixed in 4% PFA in 0.1 M phos-
phate buffer at room temperature (1 h). Tissue was further
dissected under fixative to extract 1-mm cubed samples, which
were immersed in secondary fixative (4% PFA and 2.5% GA in
0.1 M phosphate buffer) for 24 h. All subsequent sample pro-
cessing stages and imaging conditions were conducted as de-
scribed above for cultured cell samples. Two separate FIB-SEM
datasets of skeletal muscle were acquired. A machine learning
model was trained on three classes of voxels designated “Cyto-
sol,” “Fibrils,” and “Membrane,” using 120,000 samples per class
(360,000 total) to train the final model with a 10-fold test cross-
validation result of over 97% self-accuracy. Mitochondria were
manually classified in Microscopy Image Browser (MIB) as de-
scribed above, and all remaining membranes were designated as
sarcoplasmic reticulum. The final AIVE results were calculated
as described above and reconstructed in 3D by marching cubes
with an isovalue of 64. All animal work was approved by the
Monash Animal Research Platform Ethics Committee (#17628;
MARP), Monash University, Melbourne, Australia, and con-
ducted in compliance with the specified ethics regulations.

Computational hardware

All presented analyses were conducted on one computer
equipped with consumer-grade hardware, which included an
Intel Core i19-9900KF CPU clocked at 3.60 GHz (16 cores), 64 Gb
of RAM at 2133 MHz, one 2-Tb SSD (Samsung 970 EVO Plus) for
short-term storage during machine learning feature calcula-
tion, two 8-Tb HDD’s in RAIDI for long-term storage of machine
learning features and results, and an Nvidia GeForce RTX 3080
Ti for deep learning and 3D rendering.

Machine learning

Machine learning was conducted within the Waikato Environ-
ment for Knowledge Analysis (WEKA v3.9; RRID:SCR_001214)
(Frank et al., 2004). Training features were extracted from the
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registered image data using the 3D Trainable Weka Seg-
mentation (TWS) plugin for Image] (RRID:SCR_003070 &
SCR_002285) (Arganda-Carreras et al., 2017; Schindelin
et al,, 2012). As proposed in the original manuscript (Arganda-
Carreras et al., 2017), we wrote a series of custom scripts for
the TWS plugin to expand and automate its capabilities; these
scripts have been provided on GitHub (https://github.com/
BenPadman/AIVE.git). The scripts were designed to minimize
RAM storage requirements for general machine learning by
ensuring that all image features required for training and eval-
uation are only calculated once prior to local storage on a hard
disk. Instead of calculating all features for the entire stack si-
multaneously, the scripts only inspect a portion of the stack at a
time while including the minimum number of flanking slices
required by the radius of a 3D image filter. This enables features
to be calculated for image stacks of arbitrary length at the cost of
wasted computation on flanking slices. Furthermore, the script
generates features incrementally by grouping image filter cal-
culations into subsets, temporarily storing the results on a local
hard disk, and then merging them to generate final feature
stacks for each slice (see script: “ML-Features-PART1-3DFeatS-
plitter-Sigma8.bsh”). Our approach also includes the calculation
of additional custom 2D features (see script: “ML-Features-
PART2-2DFeatSplitter.bsh”), which are merged with the original
3D feature stacks (see script: “ML-Features-PART3-Combine3-
Dand2DFeatures.bsh”), allowing us to calculate 175 features per
slice. The scripts required to execute this process are provided.
In a departure from the TWS plugin, all training annotations
were generated externally by using the MIB (RRID:SCR_016560)
to generate label images where each training class is defined by
the numerical value of a voxel (value of 1for class 1, value of 2 for
class 2, etc). A script was then used to import each training label
image into TWS with its corresponding feature stack (Fig. 1 G) to
extract feature measurements from a predetermined number of
randomly selected voxels per class (see script: “ML-CorePartA-
ExtractTrainingDataFromFeatures.bsh”). The feature data ex-
tracted via this script can then be pooled using the “append”
function in WEKA, then imported into WEKA Explore for
analysis and machine learning to generate various trained
models, as was shown in Figs. 1, 2, and 3. These trained models
are loaded by a final script (“ML-CorePartB-ApplyClassi-
fierToFeatures.bsh”), which is designed to evaluate preexisting
feature stacks. A complete protocol describing the use of each
script is available at Protocols.io (https://doi.org/10.17504/
protocols.io.l4egn48x6v5d/vl).

These scripts were used for machine learning throughout the
manuscript as follows. The analyses in Figs. 1, 2, and 3 used models
trained to detect three classes of material: “Sol” (class 1), repre-
senting granular protein content of the cytoplasm and nucleus;
Matter (class 2), representing electron-dense homogenous materials
that do not belong to a membrane (i.e., mitochondrial matrix); and
“Memb” (class 3), representing genuine cellular membranes. The
division of non-membranous materials into two classes was aimed
to account for the class imbalance problem; training annotations
were drawn by hand in MIB. For the analyses shown in Figs. 1and 2,
feature stacks for each of the three altered test datasets were gen-
erated separately before using a shared pool of training labels to
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extract feature measurements for 1,500 voxels per class per slice
from eight slices (12,000 samples per class, 36,000 samples per
stack, 108,000 feature measurements total). For the training of the
six models in Figs. 1 and 2: RF, J48 (the Java-compatible extension of
Ross Quinlan’s C4.5 classifier), multilayer perceptron, decision table,
JRip (Java-compatible propositional rule-based RIPPER), and pro-
jective adaptive resonance theory neural network. Differences be-
tween model outputs were calculated using Image] by calculating
the absolute difference in predicted values (AV) at each voxel be-
tween each model and every other model; results were visualized by
averaging all AV comparisons for a given model when compared
with all others. For 2D analyses (Fig. S3), models using the same
architectures as shown in Figs. 1 and 2 were trained on 16,000
samples per class (64,000) using only 2D features.

Data shown in Figs. 4, 5, 6, 7, and 8 used pooled feature data
from all three datasets to train a random forest classifier as de-
scribed above, except that training involved five unique classes
of material. The first three of these classes were used to detect
non-membrane materials: “Void” (class 1), representing the
homogenous extracellular regions that lack an electron signal;
Sol (class 2), representing granular protein content of the cell
and nucleus; and Matter (class 3), representing electron-dense
homogenous materials that do not belong to a membrane
(i.e., mitochondrial matrix). The remaining two classes (4 and 5)
were subcategories of membrane: Memb (class 4), representing
the majority of cellular membranes, and “Vesc” (class 5), rep-
resenting vesicular membranes; the membrane subclasses
needed to be merged together to generate a final AIVE result, but
separation into two classes allowed the classification of cellular
vesicles by machine learning alone. Protocol describing the
above procedures is available at Protocols.io (https://doi.org/10.
17504/protocols.io.l4egn48x6v5d/vl).

Organelle classification for AIVE

Some of the raw classifier outputs described above were ex-
ploited to assist the classification of organelles. For example,
dilation of the Void class was used to assist classification of the
plasma membrane, whereas the Sol class labels in the nucleus
were used to assist annotation of the nuclear envelope. Manual
labeling in MIB was then used to classify the Golgi apparatus,
EEs, LEs, and LDs. The mitochondria were also classified in this
way, but multiple subclasses were used to ensure that adjacent
unfused mitochondria were considered independently from one
another, thus allowing each individual mitochondrion to be in-
dexed for independent analyses. When the U-NET 1 (1,337) from
Fig. 3 became available, it was used to selectively refine perim-
eter annotations for some mitochondria, with all the final an-
notation decisions being left to the human analyst. The ER was
classified through a process of elimination; it was the only re-
maining unclassified membrane after classification of all other
organelles. Final class labels were exported from MIB as a label
image. The label images containing all class labels were sepa-
rated into individual binary stacks, with each image represent-
ing one class of organelle. These binary stacks were blurred with
a 10-nm Gaussian filter. The 32-bit predictions generated for
Memb and Vesc (classes 4 and 5; described above) were com-
bined, then multiplied with the binary stacks and blurred with a
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10-nm Gaussian filter before merging the results with 3D CLAHE
results calculated earlier. This differs from earlier variations of
AIVE (Lee et al.,, 2024; Nguyen et al., 2021), which treated
membranes as a single continuous class of structure. This gen-
erates the final AIVE results for each individual organelle class.
Protocol describing the above procedures is available at Protocols.io
(https://doi.org/10.17504/protocols.io.14egn48x6v5d/vl).

U-Net training and deep learning

Two U-Nets with 3D anisotropic architecture (same padding)
were trained via stochastic gradient descent with momentum
( 0.001 weight decay; 0.9 momentum), using 80 x 80 x 80 voxel
input patches (1,040 x 1,040 x 1,600 nm in XYZ), 5 x 5 x 5 filters,
leaky ReLu activation layers (0.001 scale), and a dice pixel
classification layer. Both U-Nets were structured with 16 input
filters and 4 layers, and data augmentations (both 2D and 3D)
were applied to 80% of the input patches during training with a
piecewise learning schedule (initial learn rate of 0.01; dropping
by 80% every 5 epochs) for 35 epochs (512 iterations per epoch).
The only difference between these two U-Nets was the random
seed value used during network initialization; the first U-Net
used a random seed of 1,337, while the second used a value of
1,338 (Fig. 3 F). To minimize segmentation discontinuities be-
tween adjacent prediction tiles (Huang et al., 2018), each U-Net
was applied using 5% tile overlap with four different ori-
entations of the dataset (original, X-flipped, Y-flipped, and
Z-flipped). The results were then returned to their original ori-
entations before averaging to create an ensemble result. Image
classification by a human image analyst in the same figure was
conducted on two consecutive days and required ~10 min to
complete.

3D distance probes

To simulate the effect of result variation on MCS measurements,
all static distance probes were assigned in accordance with
standard criteria for designation of a contact site (<35-nm sep-
aration; [Jing et al., 2019]). Initial coordinates for the 3D distance
probes were chosen by running a stochastic simulation of
diffusion-limited aggregation in Mathematica (version 9; RRID:
SCR_014448). These coordinates were annotated in a blank TIFF
stack with identical dimensions to the test dataset by converting
the voxel located at each indicated coordinate from black (value
of 0) to white (value of 255). Probe coordinates further than 35
nm from (or inside) a membrane were removed from the col-
lection by binarizing the membranes shown in Fig. 1 C, dilating
them by 35 nm, and then subtracting the un-dilated membranes
from the result; any 3D probes outside the boundaries of this
result were deleted. This process was repeated until 30 unique
probe locations were identified (Fig. 2 H).

Analyses of mitochondrial membranes (Fig. 3, G-M) required
an additional set of criteria for the distance probes, since the
original 3D probes were generated without relevance to any
specific organelle (Fig. 1 H), and most were located further than
35 nm from a mitochondrion. 3D probe coordinates for mito-
chondrial membranes were therefore generated by using the
same 35-nm membrane boundary mask described for general
membranes above in combination with an additional mask
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representing the mitochondria, as follows: All mitochondrial
class labels shown in Fig. 3 F were averaged, binarized, dilated by
35 nm, then applied in a Boolean AND operation with the 35-nm
membrane mask used to define the first probe positions
(Fig. 1 H). The resulting mask was then used to assign new
random points as described above, until 30 new random points
were defined within 35 nm of a membrane and within 35 nm of
the mitochondrial class label (Fig. 4 K). Value ranges for distance
measurements (Fig. 2 I and Fig. 3 L) were calculated by sub-
tracting the minimum recorded distance from the maximum
recorded distance for one probe. Relative absolute deviations
(also known as relative mean absolute difference) in measure-
ments from each probe (Fig. 2 ] and Fig. 3 M) were calculated by
dividing the mean absolute difference (difference between each
measurement and the mean value) of measurements by the
arithmetic mean of all measurements from that probe, then
averaging the result. Protocol for the procedures described
above is available at Protocols.io (https://doi.org/10.17504/
protocols.io.3byl4zkwijvo5/v1).

Nuclear pore analyses

Nuclear pores were initially chosen by defining the approximate
3D coordinates of each pore in the raw dataset. A cuboidal region
surrounding each coordinate (300 nm on each axis) was then
extracted from the raw (Fig. S1 F), VE (Fig. 3 N), AIE (Fig. 3 0),
and AIVE (Fig. 3 P) image stacks. These pores were then ar-
ranged into an identical orientation as follows: All four repre-
sentations of data (raw, VE, AIE, and AIVE) for each pore were
averaged to create datasets for inter-pore alignment, without
biasing toward any particular method. Using the Fijiyama plugin
(V4.0.11) for FIJI (v1.53), each averaged pore was manually
aligned to the next pore in the sequence to generate a prelimi-
nary alignment between all 18 pores, which was then refined via
automatic block matching, also through Fijiyama (Fernandez
and Moisy, 2021). Individual transform operations describing
this alignment were then composed into one rigid transforma-
tion per nuclear pore, allowing each pore to be aligned into the
same orientation across all four processing methods. Feret di-
ameters of the pores were measured by binarizing the pore and
then applying the built-in “analyze particles” function in FIJI
(v1.53) at the centrally aligned slice of the pore. All depictions of
the individual nuclear pores are shown after alignment (Fig. 3,
N-P and Fig. S1F) to account for the variable orientation of some
pores in the original dataset (Fig. Sl E). Procedure for the
alignments described above is available at Protocols.io (https://
doi.org/10.17504/protocols.io.l4egndzwqv5d/vl).

3D distance measurements, morphometric analyses,

and rendering

All 3D surfaces were generated using the marching cubes algo-
rithm with octree binning (256 points per leaf) in ParaView
(v5.7; RRID:SCR_002516). All separation distance measurements
were conducted on a surface-to-surface basis, which differs
from the voxel-based distance thresholds used in earlier iter-
ations of AIVE (Lee et al., 2024; Nguyen et al., 2021). Distance
measurements and mapping for visualization were conducted
in ParaView by calculating the signed distance field for one
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polygonal mesh then measuring the field value at each vertex of
a second polygonal mesh. The signed distance fields were cal-
culated using a custom ParaView filter proposed in a blog post by
Cory Quammen (technical leader in the Scientific Computing
Team; Kitware); the custom ParaView filter has been provided
on GitHub (https://github.com/BenPadman/AIVE.git). All 3D
renderings were generated using the Cycles render engine in
Blender (v2.93; RRID:SCR_008606). All other morphometric
analyses were conducted using the MorphoLib] plugin for FIJI
(Legland et al., 2016). Differences in voxel values (AV) were
calculated using the built-in “image calculator” function in FIJI
(v1.53). Mathematica (version 9) was used for all other statistical
analyses and charts, including the Buffon’s needle simulation
in Fig. 8. Procedure for distance mapping and rendering are
available at Protocols.io (https://doi.org/10.17504/protocols.io.
dmégpdrz8gzp/vl).

Statistical analyses

Summary statistics are reported for all data as specified in the
respective figure legends. Results are primarily descriptive, and
thus statistical hypothesis testing was not used in any of the
numerical analyses conducted. To prevent the dichotomization
of results, they should instead be interpreted as a continuum
(McShane et al., 2019). Readers are instructed to critically assess
the magnitude, direction, and precision of all effects reported.

Online supplemental material

Fig. S1 shows the supplementary AIVE descriptions and dem-
onstrations. Fig. S2 shows the data at different stages of AIVE
processing. Fig. S3 shows that the AIVE can also function in 2D.
Fig. S4 shows the AIVE of mouse skeletal muscle. Fig. S5 shows
the simulated intrusive contacts. Fig. S6 shows the additional
examples of intrusive contact sites. Video 1 shows the general
membrane distance probes. Video 2 shows the mitochondrial
membrane distance probes. Video 3 shows the overview cut-
aways. Video 4 shows the smallest and largest mitochondria.
Video 5 shows the most elongated and longest mitochondria.
Video 6 shows the spherical, nanotunneling, and unremarkable
mitochondria. Video 7 shows the AIVE of mouse skeletal muscle.
Video 8 shows the intrusive contact by ER. Video 9 shows the
intrusive contact by mitochondria.

Data availability

The EM data have been deposited with annotations on Electron
Microscopy Public Image Archive (RRID:SCR_019237). The code
required for AIVE is available on GitHub, as individual scripts
for Image]/FIJI (github.com/BenPadman/AIVE) (https://doi.
org/10.5281/zenodo.15429332), and as a compiled Image]J/FIJI
plugin incorporating all scripts (github/BenPadman/AIVE/tree/
Fiji-plugin). User guides are available within the plugin, and
protocols are available on protocols.io (https://doi.org/10.17504/
protocols.io.l4egndzwqv5d/vl, https://doi.org/10.17504/protocols.
io.3byl4zkwjvo5/vl, https://doi.org/10.17504/protocols.io.
dmégpdrz8gzp/vl, https://doi.org/10.17504/protocols.io.
14egn48x6v5d/vl, and https://doi.org/10.17504/protocols.
i0.36wgq691klk5/vl). An earlier version of this manuscript
was posted to bioRxiv on 21st November 2024 (https://doi.
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org/10.1101/2024.11.20.624606). The data, code, protocols,
and key lab materials used and generated in this study are
listed in a Key Resource Table alongside their persistent
identifiers at (https://doi.org/10.5281/zenod0.16259276).
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Figure S1. Supplementary AIVE descriptions and demonstrations. (A) Signal matrix depicting how the input values for a voxel contribute to the output
value during AIVE (red line indicates approximate location of threshold used for 3D rendering and segmentation). (B) 3D examples of other various categories of
electron signal processed via AIVE, as detected in the test dataset shown in Fig. 1. (C) Quantification of the average AV per slice for each two-way comparison
made between the model predictions from Fig. 1 F after the application of a 10-nm Gaussian blur (3D renders of corresponding data also provided in Fig. S2 B).
(D) 3D renderings indicating the position of each static 3D probe used for mitochondrial distance measurements in Fig. 3, viewed from the front and above
(membranes nearest to each 3D probe are indicated by red shading). See Video 2 for rotation animation showing probe positions. (E) Maximum value projection
of AIVE-processed data for the nucleus used in Fig. 3, depicting the position of each nuclear pore used for analysis in Fig. 3, N-T. (F) Averaged value projections
of the unprocessed EM data after spatial alignment for analyses shown in Fig. 3, N-T. (G-1) A mathematical description of the smallest nonzero distance that
can be measured between any two objects segmented by conventional binarization methods, after 3D reconstruction via the marching cubes algorithm.
(G) Unique cases of cubes triangulated via the marching cubes algorithm with multiple non-connected triangles (Lorensen and Cline, 1987), which is the
minimum requirement for representing two separate objects (cases 3, 4, and 7 omitted for brevity). Circles at the cube corners represent the eight voxel values
used by the marching cubes algorithm to triangulate surfaces in each case. For binarized input data, the triangulated surface vertices are generated at the exact
mid-point between voxel centers, which are equidistant if the voxels are spatially isometric. (H) If the spatial scale of one voxel dimension (“c”) exceeds the
other two (“a” and “b”), then the separation distance between vertices in that dimension will always be greater; by extension, the shortest nonzero distance
between surfaces cannot occur in that dimension, so it can be ignored. (I) The shortest possible measurable nonzero distance between two binarized objects in
an anisotropic voxel grid can therefore be determined by the Pythagorean theorem, in the 2D plane defined by dimensions a and b. Interquartile range for chart
is indicated by box, median is indicated by horizontal lines, minimum and maximum are indicated by whiskers. Scale bars; B, 200 nm; E, 1,000 nm; F, 100 nm.

Padman et al. Journal of Cell Biology
Mitochondrial intrusion sites revealed by AIVE https://doi.org/10.1083/jcb.202411138

S2

620z Jequede( 1.0 U0 3senb Aq 4pd-geL L LyZ0Z aol/L96.v6L/8E | L L ¥20Z8/0L/¥2Z/Pd-alome/qal/Bio ssaidny//:dpy woly papeojumoq



)

(0]

2 JCB
3]
IV

Machine learning algorithm

PART I
A — w73 B 3;_‘.:‘“,.‘3 &_\'?fa
v e ) ks
1) R e e
S) ‘
~~
Q
i)
o
Q.
=
o
BT
(7))
<
)
—
8
bS]
o
<Y
3
g
=
Q

(g
1

AIVE

w)

N w
13,1 oS
f |

N
o
|

o
|

Probe-to-membrane distance (nm)
» o

|
T T T

T
P8 Qe &
@5h¥\\,o§~\?§~

blurred predictions

Figure S2. Data at different stages of AIVE processing. (A-C) 3D depictions of 2D data shown in Figs. 1and 2, showing the 3D surfaces generated using (A)
raw predictions, (B) blurred predictions, or (C) AIVE with one of six different trained models (RF, J48, MLP, DT, JRip, and PART). (D) Raw distance measurements
between the 3D probes (shown in Fig. 2 H) and membrane surfaces under every condition shown in A-C. (E-G) Raw AIVE data from mitochondrion #33 (set 1)
displayed as a sum projection from (E) the front and (F) above (also see Video 6), with (G) an orthoslice montage of EM and AIVE data through the mitochondrial
nanotunnel (position shown by box in F). Scale bars; A-C, 200 nm; E and F, 500 nm. MLP, multilayer perceptron; DT, decision table; PART, projective adaptive
resonance theory.
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Figure S3. AIVE can also function in 2D. (A-E) Raw membrane predictions and (C and D) AIVE results for (E) one TEM image, made using six different
machine learning algorithms; RF, |48, MLP (multilayer perceptron), DT (decision table), JRip, and PART (projective adaptive resonance theory). (B and D) Visual
depiction of the absolute difference in voxel values (AV) between each result from A and C, showing the average value difference for each two-way value
comparison as a percentage of the total dynamic range (0-1). (F) Quantification of the average AV in the images for each two-way comparison between each of
the (A) model predictions and (B) each of the AIVE outputs generated using those same six models. Scale bars; A-E, 200 nm.
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Figure S4. AIVE of mouse skeletal muscle. (A-C) AIVE reconstruction of mouse skeletal muscle tissue revealing mitochondrial nanotunnel connections.
(A) 3D rendering depicting myofibrils (red), mitochondria (purple), and sarcoplasmic reticulum (gold) within a volume measuring 8 x 8 x 6.2 um FIB-SEM
volume, with (B) a rendered cutaway displaying the interconnectivity of mitochondria within the tissue (mitochondrial nanotunnels indicated by black ar-
rowheads). (C) Representative example of one nanotunnel linking the mitochondrial network around a myofibril. See Video 7 for an animated depiction of data
in A-C. Scale bars; A-C, as indicated within figure.
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Figure S5. Simulated intrusive contacts. (A and B) 3D renderings of simulated contact between two spheres (128 voxel diameter) with a colorimetric
distance scale indicating the distance of sphere #1 from sphere #2, (A) when both structures are simple spheres, or (B) when sphere #2 intrudes into Sphere #1.
(Cand D) Surface area histograms depicting the surface area percentage of sphere #1 that is located within the indicated distances of sphere #2, (C) when both
structures are simple spheres, or (D) when sphere #2 intrudes into sphere #1 (arrowhead in D indicates the anomalous peak discovered in Fig. 6). (E) Illustrative
description of “Buffon’s Needle Problem” with corresponding equations, which describe the probability of a randomly distributed needle of known length (“L")
overlapping a line if those lines are regularly spaced by a known distance (d). Histogram data in C and D are surface area percentages binned into five voxel
distance brackets relative to sphere #2. Scale bars in A and B, 10 voxels.
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Figure S6. Additional examples of intrusive contact sites. (A-C) Additional examples of ER-to-mitochondrion intrusion sites, displayed as partial (50 nm)
2D-averaged projections of raw EM and AIVE data (left panels), rendered in 3D (center panels), and with a colorimetric distance map relative to the ER (right
panels). (D and E) Additional examples of mitochondrion-to-mitochondrion intrusion sites, displayed as partial (50 nm) 2D-averaged projections of raw EM and
AIVE data (left panels), rendered in 3D (center panels), and with a colorimetric distance map relative to other mitochondria (right panels). Scale bars, 200 nm;
bounding dimensions of each 3D dataset frame, 1.5 x 1.5 x 1.5 um.
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Video 1. General membrane distance probes. Animated rotation of the test volume, depicting the 3D membrane probe positions (from Fig. 2 H) used for
membrane distance measurements in Figs. 2 and 3. General membranes are shown in diffuse navy blue, while membranes nearest to a 3D probe are indicated by
red shading.

Video 2. Mitochondrial membrane distance probes. Animated rotation of the test volume, depicting the 3D mitochondrial membrane probe positions (from
Fig. S1 D) used for mitochondrial membrane distance measurements in Fig. 4. Mitochondrial membranes are shown in diffuse navy blue, while membranes
nearest to a 3D probe are indicated by red shading.

Video 3. Overview cutaways. Animated cutaways of the data presented in Fig. 4, B-D. The video begins with all organelles shown before cutting away the ER
and nuclear envelope (Nu), followed by the Golgi and vesicles (VE), and finally, the EEs, LEs, and LDs. The video concludes by revealing these organelles in
reverse order. Render key is provided within the animation.

Video 4. Smallest and largest mitochondria. Animation depicting the structure of the smallest (Fig. 5 A) and largest (Fig. 5 B) volume mitochondria from
Fig. 5. Render key is provided within the animation.

Video 5. Most elongated and longest mitochondria. Animation depicting the structure of the most elongated (Fig. 5 D) and longest (Fig. 5 E) mitochondria
from Fig. 5. Render key is provided within the animation.

Video 6. Spherical, nanotunneling, and unremarkable mitochondria. Animation depicting the structure of the most spherical mitochondrion (Fig. 5 F), a
nanotunneling mitochondrion (Fig. 5 C), and the “least remarkable” mitochondrion (Fig. 5 G) from Fig. 5. Render key is provided within the animation.

Video 7. AIVE of mouse skeletal muscle. Animation of rendered data shown in Fig. S6, displaying an AIVE reconstruction of FIB-SEM data from mouse
skeletal muscle tissue, measuring 8 x 8 x 6.2 um. As the video begins, myofibrils (red) and sarcoplasmic reticulum (gold) are cut away to reveal the mito-
chondrial network (purple). Black arrowheads then appear to highlight the mitochondrial nanotunnels as the camera pans around the dataset. The video
concludes by focusing on a specific mitochondrial nanotunnel, which is tightly wrapped around a myofibril, thus connecting mitochondria on opposing sides of
the myofibril.

Video 8. Intrusive contact by ER. Animation of the ER intrusions (Fig. 7, A-C) depicted in Fig. 7. The video begins with the full ROl centered around the
intrusion sites, with colorations indicated by render key. As the intruding ER fades away, the mitochondrial surface is transitioned to the distance map (0-100
nm) color scale shown in Fig. 7 before rotation of the camera vertically over the datasets. The video concludes by returning to the initial shading.

Video 9. Intrusive contact by mitochondria. Animation of the mitochondrial intrusions (Fig. 7, D and E) depicted in Fig. 7. The video begins with the full ROI
centered around the intrusion sites, with colorations indicated by render key. As the intruding mitochondrion fades away, the mitochondrial surfaces are
transitioned to the distance map (0-100 nm) color scale shown in Fig. 7 before rotation of the camera vertically over the datasets. The video concludes by
returning to the initial shading.
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