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Determining how many cells to average for
statistical testing of microscopy experiments

Adam Zweifach!®

From a statistical standpoint, individual cells are typically not independent experimental replicates. To test for differences in
mean, cells from each experimental sample can be averaged and each sample’s average treated as an n of 1. Here, | outline how
to determine how many cells to average per sample.

Individual cells are usually not
independent experimental replicates
Microscopy is a core tool in cell research that
can generate single-cell data. However, single
cells (or objects within them like organelles) are
rarely independent experimental replicates.
Reasons for this include that the entire sample
is usually treated at once and it is treatment that
defines an experimental replicate, cells in a
sample can influence one another via gaseous,
soluble, or contact-mediated signals, and all the
cells within the same dish experienced the
same history (passage number, position in in-
cubator, etc.) (Vaux et al, 2012). Failure to
recognize that cells are not independent repli-
cates when testing for differences in means
with t tests or ANOVA causes pseudoreplication
(Lazic, 2010; Lord et al., 2020; Eisner, 2021), an
extremely common and serious error that ar-
tificially decreases P values and can create false
positive effects.

There are two common statistically ap-
propriate strategies for testing for differ-
ences in means when measurements from
individual cells are available but are not
independent replicates. The simple approach
is to average values from a number of cells in
each sample and treat each sample’s average
as an n of 1 in statistical tests. A more so-
phisticated approach is to treat individual
objects as nested within their replicate and
sample and use appropriate multilevel sta-
tistical models to calculate P values (Aarts

et al, 2014; Dowding and Haufe, 2018).
However, recent work casts doubt on the
supposed benefits of the nested approach
(McNabb and Murayama, 2021), and im-
plementing it correctly requires specialized
statistical knowledge and software that many
researchers may not possess. When modeling
is done incorrectly or does not converge
properly it can also result in low P values that
generate errors like those caused by pseu-
doreplication. Blainey et al. explored how
best to distribute different numbers of rep-
licates to different levels in multilevel mod-
eling of a gene sequencing experiment
(Blainey et al., 2014). The present tutorial is
limited in scope to the simple averaging
approach. Estimating how many cells from
each replicate to include in a multilevel
statistical model treatment is not addressed.

Averaging is associated with a

particular kind of noise that decreases
statistical power

If researchers choose to use the simple av-
eraging approach, they must decide how
many cells to average. Averaging is associ-
ated with a particular kind of variability or
error—averaging error—since a different
value will be generated each time a different
subset of cells is averaged. The size of av-
eraging error depends both on how the pa-
rameter is distributed in the sample and on
the number of cells averaged. The standard

error of the mean, estimated as the sample
standard deviation (SD) divided by the square
root of the number averaged, is a measure of
averaging noise. If the population distribution
is narrow, only a few cells need to be aver-
aged to achieve low averaging noise, but if it
is broad many cells must be averaged. Mul-
tiple sources of variability affect every ex-
periment, and total experimental variability
is the square root of the sum of the squares of
all of them. If averaging noise is large, total
overall experimental variability will tend to
be high and experimental power, the likeli-
hood of detecting effects by getting a P value
below the cutoff chosen for significance
(usually 0.05), will likely be low. When
power is low, real effects will be missed and
any effects that are found will be more likely
to be false positives (Button et al, 2013;
Colquhoun, 2014). Thus, achieving high sta-
tistical power is very important. It is easier
and cheaper to analyze more cells than to
perform additional replicates. However, be-
cause of the other sources of variability there
are limits to what averaging more cells can
achieve, and averaging more than necessary
can waste time and effort for no real benefit.

We can estimate the size of averaging
noise but not other sources of noise

To calculate the number of cells to average,
we would have to determine both the size of
averaging error and the aggregate size of all
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the other sources of variability. There are
methods that can be used to do this (Searle,
1995), but while the size of averaging error
can be estimated reasonably accurately us-
ing these methods, simulations I conducted
suggest it may require more experimental
replicates than most researchers are likely
to acquire to estimate the size of the other
errors effectively. One can think about the
size of errors in terms of percent coefficient
of variation (% CV), which is 100 x SD/mean,
as this offers easy comparison to effect sizes
when they are also expressed as a percent-
age. For the discussion that follows, % CV is
used to discuss both noise sources and effect
sizes. Researchers can normalize results from
their experiments so that errors can be ex-
pressed as % CV by calculating the average of
all the control samples, then dividing all ex-
perimental values by that average and mul-
tiplying them by 100. (An Excel sheet
included as Data S that calculates the num-
ber of cells to average normalizes data to %
CV as part of its function.) I further assume
that samples are spatially uniform, and that
the parameter of interest is a property of
whole cells such as their size, speed, numbers
of a particular organelle, levels of a particular
protein or probe, etc., at a single time point.
More complex situations could be analyzed
but are beyond the scope of this work.

Thinking about experiments and power
suggests that a good target for
averaging noise is ~2.5-5% CV

While we may not be able to estimate all the
noise components needed to calculate how
many cells to average, if we think about
the size of effects and errors in common
experiments and make some reasonable as-
sumptions, having an estimate of between-
cell SD turns out to be sufficient to allow us
to set a target for averaging error. We can
distinguish two basic types of cell-based ex-
periments based on whether time-dependent
biological variability occurring between re-
peats of the experiment is shared by samples.
This time-dependent variability can be as
large as 20-50% CV in both primary and
immortalized cells (Molloy et al., 2003) and
is likely to be the most significant source of
variation other than averaging noise when a
technique like microscopy is used (Zweifach,
2024). In the first type of experiment, sam-
ples come from different sources such as
different tissues or primary cell isolations,
different immortal cell lines, or different
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stable transfectants of the same line. These
will not share time-dependent biological
variability because they are independent
uncorrelated samples. Like all noise, time-
dependent biological variability from two
sources sums as the square root of each
squared. We can calculate the minimum size
of the difference between two experimental
groups that can be detected 80% of the time
(i.e., with 80% power, the minimum rec-
ommended by most statisticians) using
Student’s t test, the appropriate test for this
experiment (Zweifach, 2024), over a range
of averaging noise in the presence of dif-
ferent levels of other experimental errors,
including time-dependent biological varia-
bility. I did this for three replicates, the most
common value reported in the literature,
and found that if total non-averaging errors
including time-dependent biological varia-
bility are <5% CV, reducing averaging error
to 5% or less would allow effects 25% or
smaller to be detected with 80% power
(Fig. 1 A, lower three traces) and reducing
averaging noise more would further de-
crease the size of the effect that could be
detected. However, small effects may not be
biologically important, and each twofold
reduction in averaging noise requires aver-
aging four times as many cells. If the sum
of non-averaging errors is larger—which
seems more likely—reducing averaging er-
ror below ~5% does relatively little to fur-
ther reduce the minimum detectable effect
size (Fig. 1 A, upper three traces). Power can
be increased by performing additional rep-
licates, but even with larger sample sizes
there is little practical benefit to reducing
averaging error below ~5% (see Fig. S1).

In the second kind of experiment,
measurements are made on cells taken from
a single source that is split into aliquots that
either serve as a control or are treated in some
way, such as with drugs or genetic reagents.
This is a matched (or blocked, or paired) ex-
perimental design. In this experiment, samples
do share time-dependent biological variability,
but its effects on statistical tests can essentially
be eliminated by using a test (like a paired
t test) that takes this into account, provided
averaging error and any other variation that
affects samples individually is low enough
(Zweifach, 2024). If the sum of errors that are
neither time-dependent biological variability
nor averaging error is 5% or smaller, reducing
averaging error to 2.5% will ensure minimum
detectable effect sizes <25% (Fig. 1 B, lower
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three traces). Again, though, if independent
errors are larger, little is gained by reducing
averaging error further. Taken together, it
seems that a reasonable target for averaging
noise in microscopy experiments is in the
range of 2.5-5% CV.

Estimating how many cells to average

to reach the target

The first step in determining how many
cells to average to reach a 2.5-5% CV target
is acquiring and analyzing some data so that
averaging noise can be estimated. Every
experimental workflow is different, and if
acquiring and analyzing data is difficult and
time-consuming researchers will probably
want to estimate the number of cells to av-
erage from relatively small data sets, per-
haps obtained from a pilot analysis of a
single sample. In other cases, analysis might
be easy enough that researchers can use
larger data sets, perhaps after all data have
been collected but before they have all been
analyzed. As will become clear below, both
strategies can be used, but larger samples
give better estimates. Whatever researchers
do, data should first be normalized as de-
scribed above. If data from a single sample is
to be used, sample SD can then be calculated
and the number of cells to average will be:

2
Number to average = [( SD ) [
target

where the outer brackets indicate that the
value should be rounded up to the nearest
whole number. If data from multiple sam-
ples is used, researchers should subtract
each sample’s mean from all of that sample’s
values, then calculate the SD for the entire
data set and use that value in the equation
above. Subtracting the means removes the
effect of differences between them on SD.
The Excel spreadsheet included as Data S1
will perform the calculation for up to 16 cells
from six replicates, which should be more
than sufficient (see below).

To determine how well the procedure
estimates between-cell SD, I used R software
(R Core Team, 2020) to simulate data under
a variety of conditions: different SD, normal
or log normal distribution of the parameter
within samples, different combinations of
other experimental errors, and whether or
not samples in a replicate shared time-
dependent biological variability. For each
condition, I generated 1,000 data sets with
three replicates in each of two experimental

Journal of Cell Biology
https://doi.org/10.1083/jcb.202401074

920z Arenuged 60 U0 3senb Aq 4pd 2010202 Al/89.626 /%201 0¥2028/8/cZZ/4Ppd-8loe/qol/B10"sseidnu//:dny woyy papeojumog

20f4


https://doi.org/10.1083/jcb.202401074

'u"‘:
1Y A
)

JCB

>
@)

4x1 16x6
. < 150-
S <
L S 100- . .
o [
o ©
5 50 -
S £
O n
8 w 0=
[0
o
a -
g 800
0 5 10 15 20 2 600-
Averaging error (% CV) o 400-
—
B 8 200-
100 - S
B 3 Bs
£ 75-
()
< W‘I\'
% 50- 5
5 2
9 25 - no_ @ paired
8 A student
0 i 1 1 1 1 1 O.OO y 1 1 1 1 1 1 1 1 .I StUdel’n-logl
0 5 10 15 20 0 25 50 75 100 0 25 50 75 100

Averaging error (% CV)

Within sample SD

Figure 1. Determining how many cells to average to achieve reasonable statistical power. (A) Minimum effect detectible with 80% power as a function
of averaging error when independent samples are analyzed with Student’s t test. Other errors were (in % CV, from bottom trace to top trace): 1 (black), 2.5 (orange), 5
(light blue), 10 (green), 15 (yellow), and 20 (dark blue). N was 3 replicates. (B) Minimum effect detectible with 80% power as a function of averaging error when
samples in replicates share error of 20% CV and are analyzed with paired t tests. Other errors were (in % CV, from bottom trace to top trace): 1 (black), 2.5 (orange), 5
(light blue), and 10 (green). N was 3 replicates. (C) Top row: Plots of estimated within-sample SD as a function of actual within-sample SD when four cells from a
single condition are used (left) or 16 cells from each of six replicates are used (right) for the estimate. When six replicates were used, three were simulated with mean
of 100 (control) and three with mean of 125 (treated). Blue traces (circles and triangles) were simulated with normally distributed values and red (squares) with log-
normally distributed values. Error bars are SD. Blue triangles represent data in which samples shared between-replicate variability of 20% CV, while blue circles
represent data simulated without shared variability. The dashed line has an intercept of zero and slope of 1. Middle row: Estimates of the number of cells to average
per sample to reach a target of 5% CV for samples that do not share variability (blue triangles for normal data, red squares for log-normal) or 2.5% CV for data
simulated to share between-replicate variability (blue circles). Conditions were chosen from A and B to correspond to an effect detectible with 80% power of ~25 %
CV. Bottom row: Power (fraction of P values <0.05) under the conditions described above. The dashed line indicates the expected value of 0.8 for all conditions.

groups. Each simulated sample had at least
10,000 “cells.” I used the procedure that is
implemented in the Excel spreadsheet to
estimate between-cell SD using either four
cells from one sample or 16 cells from each
of the six samples. When values in samples
were normally distributed, the procedure
estimated averaging noise reasonably well
up to a population SD of 50% CV even if only
four cells from a single sample were used
(Fig. 1C, top row, left). 50% CV is a practical
maximum since 95% of a normally distrib-
uted population is within 2 SD of the mean
and in most cases biological values cannot
be negative; for SD to be higher, data must
have some right skew or be log-normally
distributed. Estimates were more accurate
when larger samples were used (Fig. 1 C, top
row, compare the error bars on the right to

Zweifach

How many cells to average?

those on the left). When multiple samples
were used and variance differed in samples,
the resulting estimate was an average of the
SD in all the samples (not shown), which
serves well for defining how many cells to
average. If the parameter of interest was
log-normally distributed in the population,
estimates of between-cell SD were poor with
only four cells but better when more cells
were used. If estimates of between-cell SD
obtained from a small number of cells are
>50% CV, researchers should probably ac-
quire more data and repeat the process.
The routines allowed me not only to es-
timate population SD but also to calculate
the number of cells per sample to average to
achieve 80% power to detect a difference of
25% between “mean” and “treated” groups
using the correct test for the experiment

(Fig. 1 C, middle row). For each data set, I
calculated the number of cells per sample to
average, then averaged that number of cells
from the simulated data sets, and finally
performed the appropriate statistical test
using the averaged data. As expected, in
most cases I got 700-900 P values out of
1,000 < 0.05 regardless of within-sample
variation (Fig. 1 C, bottom row). This con-
firms that the procedure works as intended,
rendering statistical test results indepen-
dent of within-sample variation. While this
work focuses on two experimental con-
ditions analyzed with t tests, I expect similar
behavior when three or more conditions are
analyzed with ANOVA (or two-way ANOVA
with one factor treatment and the other
replicate, which is a better choice [Zweifach,
2024]) followed by post hoc tests.
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Estimates of the number of cells per
sample to average are what statisticians call
point estimates. Averaged over many repe-
titions, using point estimates will lead to the
desired statistical power. However, any single
point estimate of SD might be either too high
or too low, and an estimate of SD that is too
low would lead researchers to average fewer
cells than needed, making power lower than
expected. The Excel calculator sheet that is
included calculates both point estimates and
estimates based on the upper bound of the 95%
confidence interval for estimated SD (upper
bound estimates). When data from many cells
is entered and/or the SD within the samples is
relatively small, the point estimate and the
upper bound estimate will be similar. How-
ever, when data from only a few cells is used,
or when the SD in samples is very large, the
point estimate and the upper bound can be
quite different. In such a case, researchers
should consider using the upper bound esti-
mate to be sure of averaging enough cells.

An example may help to make things
clear. Imagine a simple experiment: dishes
of cells taken from a common culture are
treated either with vehicle or a drug, stained
with an antibody, and the numbers of a
particular kind of labeled structure are
counted. After one replicate (of three plan-
ned) has been completed, 10 cells from each
dish are imaged and analyzed, generating
the values that prepopulate the Excel cal-
culator sheet. For the cells in the spread-
sheet, the point estimate of SD is 17.8% CV,
but the 95% confidence interval extends to
26.0% CV. Because the final values on which
statistical testing will be conducted are the
average number of puncta per cell, we can
ignore that individual cell data are counts
and may not be distributed normally in cells
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in the population and use a t test to assess
effects of the treatment. Because the cells
were taken from the same culture and share
time-dependent biological variability, a paired
t test is likely to have higher power provided
enough cells are averaged, so 2.5% CV should
be entered as the averaging noise target in
the Excel sheet. Using the point estimate of
SD, we calculate that 51 cells should be av-
eraged, but if the upper bound estimate is
correct we should average 108 cells. As long it
is not too difficult or time consuming to ana-
lyze data, it would be better to average 108
cells as it is more likely to result in the desired
power. Had the experiment been conducted
on two cell independent cell lines that did not
share time-dependent biological variabil-
ity, Student’s t test would be appropriate,
and the target for averaging error would be 5%
CV. Entering this in the calculator sheet re-
sults in estimated numbers of cells to average
of 13 for the point estimate and 27 for the
upper bound.

Conclusion

Having a simple way to calculate how many
cells to average should help researchers
conduct more efficient and more powerful
microscopy experiments. It will also hope-
fully decrease the incidence of pseudor-
eplication and thus help promote more
robust and reproducible science.

Online supplemental material

Fig. S1 shows power at different sample
sizes. Data Sl is an Excel sheet for estimating
how many cells to average. Data S2 is a
guide to using the Excel sheet. Data S3
shows the R code used in this work. Data S4
shows the derivation of the equation for the
number of cells to average.
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Figure S1.  Minimum detectible effect as a function of averaging error when independent variation is 20% CV and n is (from top) 3 (black), 5 (orange),
7 (light blue), or 9 (green).

Provided online are Data S1, Data S2, Data S3, and Data S4. Data Sl is an Excel sheet for estimating how many cells to average. Data
S2is a guide to using the Excel sheet. Data S3 shows the R code used in this work. Data S4 shows the derivation of the equation for
the number of cells to average.
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