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AI analysis of super-resolution microscopy:
Biological discovery in the absence of ground truth
Ivan R. Nabi1,2, Ben Cardoen3, Ismail M. Khater3,4, Guang Gao1, Timothy H. Wong1, and Ghassan Hamarneh3

Super-resolution microscopy, or nanoscopy, enables the use of fluorescent-based molecular localization tools to study
molecular structure at the nanoscale level in the intact cell, bridging the mesoscale gap to classical structural biology
methodologies. Analysis of super-resolution data by artificial intelligence (AI), such as machine learning, offers tremendous
potential for the discovery of new biology, that, by definition, is not known and lacks ground truth. Herein, we describe the
application of weakly supervised paradigms to super-resolution microscopy and its potential to enable the accelerated
exploration of the nanoscale architecture of subcellular macromolecules and organelles.

Introduction
Artificial intelligence (AI), “the capability of computer systems
or algorithms to imitate intelligent human behavior” (Merriam-
Webster.com, 2024), is increasingly present in our everyday
lives. Recently, generative language and image AI models
(ChatGPT, Sable Diffusion, Midjourney) created a storm of in-
terest, with users challenged to differentiate between AI-
generated and human-generated content. Users are both amazed
by AI and disappointed by its occasional surprising failures and
hallucinations. Like ChatGPT, current AI methods are incredible
tools that are not always correct, necessitating expert “ground
truth” validation.

“Ground truth is information that is known to be real or true,
provided by direct observation and measurement (i.e., empirical
evidence) as opposed to information provided by inference”
(Wikipedia, 2024). For imaging-based AI applications, validation
uses ground truth image annotations to test computer identifi-
cation of images and image components, from distinguishing
cats from dogs to real-world examples, such as medical
imaging–based diagnosis or object recognition for self-driving
cars. Machine learning models are trained and tested on ac-
quired datasets. Supervised machine learning uses ground truth
annotations to train new image prediction methods and validate
predictions.

The most straightforward approach to train machine learn-
ing to identify objects within an image is to perform strong
supervision. The machine learning model is trained on a curated
dataset of images and their corresponding segmentation masks
(dense, pixel/voxel-level annotations); class labels are assigned
to every pixel in the image. However, when applying AI to novel
bioimaging modalities, such as super-resolution microscopy

(SRM) that breaks Abbe’s diffraction limit, even experts are
challenged to define what is real within these images. As op-
posed to labeling street signs, vehicles, pedestrians, etc., for self-
driving cars, for which we are all experts in principle, the time
and financial cost of having expert biologists annotate images, at
the pixel-, voxel-, or localization-level, can be astronomical. For
SRM, strong supervision based on complete annotation is rarely
feasible, with the noted exception of simulated data or phantom
data such as DNA origami. While the application of machine
learning to SRM has tremendous potential to address un-
answered questions and discover novel biology, ground truth
expert annotation of image content is often infeasible. Annota-
tion also relies on the assumption that experts know all there is
to know about the underlying biology that these images capture,
an assumption that may not always hold true. This is particu-
larly the case for novel imaging modalities (such as SRM) whose
primary purpose is to expand the boundaries of our under-
standing of biology (Fig. 1 A).

The “strength” of supervision describes the detail of knowl-
edge that is known about and provided with the data to provide
the training corpus. For example, in the case of classifying ob-
jects in an image, absence of supervision would mean there is no
information provided about the class of each image, or about the
objects depicted by the image. Weak supervision would describe
a situation where we present information that, say, a dog or cat,
is present in an image, but not where. Strong supervision would
be a case where the machine learning method is provided with
the knowledge of the exact location and outline of each identi-
fied object. When the supervisory signal is created from the
input image itself without any annotation burden, we have self-
supervision. For example, providing rotated images along with
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an automatically generated annotation “angle of rotation” per
image, or providing an image with added noise to it, along with
the known original image, allows the machine learning method
to learn how to cancel the rotation or remove the noise. By doing
so it is possible to train a model to encode semantics of the ob-
jects in the images and leverage such knowledge to other tasks.

While some fine-tuning is invariably needed, a key advantage of
self-supervised learning is that far less strongly supervised data
is required for equal or better performance. The strength of
supervision spans a spectrum, e.g., providing contours around
each object is stronger than providing bounding boxes, which, in
turn, is stronger than providing only the count of objects. It is

Figure 1. AI and SRM. (A) Continued and parallel improvement in SRM hardware and AI-based analysis will lead to new and better approaches to define the
organization and dynamics of subcellular structures. For instance, analysis of higher resolution single-molecule approaches, such as MinFlux (2 nm lateral
resolution) (Balzarotti et al., 2017) with deep learning and self-supervision modalities should lead to novel insights into molecular structure in whole cell
analyses. (B) Different levels of supervision include strong supervision in which each object or even each pixel has annotated information that can be leveraged.
This is rare in SRM as discovery implies absence of such data. Weak supervision occurs when partial information, often at the image level, is available, such as
the presence or absence of a type of object, but not its location. In SRM use cases, this would be cell line, treatment, gene expression etc. Self-supervision is a
hybrid form, where the model learns to operate on images using indirect information, such as rotations. This is then followed by a fine-tuning stage with small
amounts of strongly supervised data. Unsupervised, i.e., no supervision, indicates a complete absence of such metadata.

Nabi et al. Journal of Cell Biology 2 of 13

AI, nanoscopy, and biological discovery https://doi.org/10.1083/jcb.202311073

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/223/8/e202311073/1929202/jcb_202311073.pdf by guest on 09 February 2026

https://doi.org/10.1083/jcb.202311073


also possible to mix different forms of supervision, e.g., a ma-
chine learning method may leverage self-supervision, as well as
some images with a variety of weak annotations, and other
images with strong supervision. Unsupervised methods do not
use any annotations (e.g., clustering). Semisupervised methods
combine supervised and unsupervised datasets to train machine
learning models (Fig. 1 B).

In contrast to the high-annotation burden of strong super-
vision, weak supervision assigns a single class label to the whole
image rather than to every pixel (i.e., identifying a dog without
specifying which pixels are part of the dog). An example of weak
supervision in SRM is the provision of a training set of SRM
images, along with a cell group or condition acting as the image
class label. Dictating the image-level label does not involve an-
notating which pixels of the image aremanifestations of that cell
group or condition. Weakly supervised object detection and lo-
calization (i.e., training AI to find the object-specific locations by
training on data labeled at the image level) has been popular for
natural images (Zhou, 2017), and applied to biomedical images,
such as MRI, histopathology, and confocal microscopy (D’Alonzo
et al., 2021; Liu et al., 2022a; Xu et al., 2014). We suggest that this
form of supervision is suited to SRM, given that the goal is to
identify and characterize those subcellular structures that vary
across experimental conditions (cell lines, gene expression,
mutations, infection, and drug treatment).

For biological research exploring the subcellular space, in-
cluding macromolecules, organelles, and cytoskeletal structures,
ground truth has long been defined by high-resolution ap-
proaches, in particular electron microscopy (EM). EM provides
exceptional resolution, <1 nm, and pioneering EMwork from the
1950s revolutionized our understanding of cellular organelles,
defining the morphological underpinnings of the cell that are
now textbook cell biology. EM has provided unprecedented 3D
views of the cell, such that we now understand that the cyto-
plasm is a complex and dense array of membrane-bound and
nonmembrane-bound organelles organized amongst cytoskele-
tal elements. Indeed, Golgi’s discovery of the Golgi apparatus in
neurons of silver-stained nervous tissue in the late 1800s was
challenged as an artifact until it was confirmed by EM in the
1950s (Bentivoglio and Mazzarello, 1998). This represents per-
haps the first example of EM being used as ground truth
validation.

Structural biology and SRM: Closing the mesoscale gap
Advances in structural biology technologies provide powerful
tools to decipher molecular structures at the atomic level. X-ray
crystallography and nuclear magnetic resonance (NMR) spec-
troscopy generated a wealth of molecular structural data that
propelled the growth of the Protein Data Bank in the past
40 years. This enabled the development of coevolution and AI-
based algorithms such as AlphaFold2 and RoseTTAFold that are
capable of accurately predicting structures of proteins from
amino acid sequences alone for many targets (Jumper et al.,
2021). The recent resolution revolution in cryo-EM made it
possible to use the single-particle approach or subtomogram-
averaging approach to determine, at atomic resolution, the
structures of a broad range of macromolecular complexes from

ribosomes to intact virions, filling the gap between subnanoscale
and the mesoscale (Ke et al., 2020; Rozov et al., 2019; Zhang
et al., 2010). However, with the exception of subtomogram av-
eraging, these conventional structural biology approaches are
primarily used for characterizing highly purified samples that
have been removed from their native subcellular or cellular
environment (Fig. 2). Further, EM is limited to fixed cell
analysis, requires extensive sample preparation, and is time
intensive. As such, while EM can provide ground truth valida-
tion, it cannot, however, provide the ground truth annotation
required for strongly supervised learning training in super-
resolution.

More rapid image acquisition, improved antibody labeling
efficiency, and availability of fluorescent proteins for live cell
analysis make fluorescent microscopy the method of choice for
analyzing molecular distribution and dynamics in whole cell 3D
volumes (Lippincott-Schwartz, 2011). Confocal microscopy im-
proved axial resolution, to about 500 nm, and facilitated the use
of dynamic photobleaching assays (i.e., fluorescence recovery
after photobleaching [FRAP] and fluorescence loss in photo-
bleaching [FLIP]) making it a routine tool to study subcellular
structure and dynamics in many labs (Diekmann and Hoischen,
2014). While improving axial resolution, confocal microscopy
does not address the diffraction barrier that limits the lateral
resolution of fluorescence microscopy to about 200–250 nm.
SRM, defined as microscopy approaches that break the diffrac-
tion limit of light, encompasses a number of distinct method-
ologies enabling nanoscale fluorescent microscopy and provides
novel insight into subcellular structure and dynamics (Sahl
et al., 2017; Sydor et al., 2015). With cryoEM now able to ana-
lyze whole viruses at subnanometre resolution (Zhang et al.,
2010) and SRM approaches, such as MinFlux able to image
down to 2 nm resolution (Balzarotti et al., 2017), the mesoscale
gap is being bridged from both sides (Goodsell et al., 2020; Liu
et al., 2022b) (Fig. 2). Indeed, recent live cell MinFlux imaging of
kinesin stepping along microtubules highlights the potential of
SRM for dynamic analysis of molecular structure (Deguchi et al.,
2023).

The extensive application of AI to microscopy image acqui-
sition and analysis, potentially leading to intelligent micro-
scopes, has been extensively reviewed (Liu et al., 2021; Morgado
et al., 2024; Pylvänäinen et al., 2023). Single-molecule recon-
struction has been an active area of research and includes the
application of a convolutional neural network to interpret single
molecule localizations directly from SMLM images (Deep-
STORM, DBlink) and implementation of anti-bunching to re-
solve closely spaced emitters, a major issue in single-molecule
imaging approaches (Kudyshev et al., 2023; Nehme et al., 2018;
Saguy et al., 2023; Yang et al., 2021). Recent application of AI to
reconstruction methods has the potential to reduce noise, im-
prove spatial and temporal resolution, and automate high-
throughput super-resolution and live imaging (Fu et al., 2023;
Priessner et al., 2024; Qiao et al., 2023). The application of AI and
machine learning to SRM has been proposed to be the next step
in advancing nanomedicine development, drug discovery, and
antiviral research (Li et al., 2024a; Ortiz-Perez et al., 2024;
Petkidis et al., 2023). In this Perspective, we focus on the specific
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application of AI to acquire semantic insight, new biology, from
SRM.

Harnessing the power of AI for semantic insight from SRM
Pixel- and voxel-based SRM approaches, such as structured il-
lumination (SIM) and stimulated emission depletion (STED)
microscopy, provide increasingly detailed views of the subcel-
lular space. However, they do not expose the underlying internal
construction of subcellular structures. Single-molecule locali-
zation microscopy (SMLM) approaches, on the other hand,
based on analysis of stochastic blinking of isolated fluorophores
(Betzig et al., 2006), do not generate images but rather an event
list of localizations, or a point cloud. Starting from a point cloud,
one can create networks that in turn are well suited to graph-
based analysis by machine and deep learning approaches. De-
spite this well-established network modeling approach, it has
been common for many SMLM users to transform the point
cloud data generated by SMLM into a pixelated image (Ruszczycki
and Bernas, 2018). However, the end user should be aware of the
pitfalls in these conversions (Ruszczycki and Bernas, 2018),
whether for visualization or quantification.

Indeed, increasing the resolution of pixelated SRM images is
akin to providing more enhanced detail, but only of the outer
structure of a building (Fig. 3). Bridging themesoscopic gap from
diffraction-limited fluorescent microscopy to structural biology

via SRM therefore requires visualizing inner structure or mo-
lecular architecture. However, in contrast to buildings where
the design is generated before construction, the architecture of
mesoscopic macromolecular structures and organelles is un-
known, at best incomplete, and is what biological research en-
deavors to uncover. Fundamentally, novel biological discoveries
lack ground truth (Fig. 3).

While SRM may have no definitive ground truth, the actual
biology does not exist in isolation. SRM explores spatial and
temporal data that, while yet to be described, occurs in the
context of an existing accepted body of knowledge obtained by
lower-resolution confocal microscopy, higher-resolution EM, as
well as biochemical and structural analyses. SRM datasets,
whether point cloud or pixel/voxel-based, generate large data
sets including 3D information, time, and multiple channels at
nanometer scales. Machine learning identification of patterns
and differences from these large datasets can provide novel in-
sight into subcellular structure and molecular architecture.

Machine learning approaches have been exploited to obtain
biological insight from both pixel and point cloud super-
resolution data. Machine Learning Structured Illumination Mi-
croscopy (MiLeSIM) used a supervised machine learning–based
classifier to extract shape and size features in different strains of
live attenuated influenza virus vaccines for high throughput
imaging and assessment of viral production (Laine et al., 2018).

Figure 2. Super-resolutionmicroscopy and structural biology bridge the mesoscale domain. Structural biology approaches (NMR, X-ray crystallography,
and cryoEM) with angstrom level resolution analyze structures as large as the 80–120 nm coronavirus. Whole-cell super-resolution microscopy approaches
such as structured illumination (SIM), stimulated emission depletion (STED), single-molecule localization microscopy (SMLM), and MinFlux (images from
Edrington et al., 2011; Gao et al., 2019; Ke et al., 2020; Khater et al., 2018; Rozov et al., 2019; Schmidt et al., 2021) enable whole cell analysis with increasing
resolution broaching the nanoscale.
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SRM-based image-level class labels of endoplasmic reticulum
(ER) were used to train a deep learning model to distinguish
between Zika-infected and non-infected cells and showed that
discriminating regions correspond to tubular matrix ER mor-
phology (Long et al., 2020). Using a convolutional neural net-
work model, SMLM image stacks are inputted to directly
measure molecular diffusion in supported lipid bilayers (Park
et al., 2023). Neural network extraction of features from
nearest-neighbor distance-derived data identified cluster seg-
mentation in SMLM point cloud space of C-terminal src kinase
(CSK) or the associated PAG protein clustering on the cell
membrane of T-cells (Williamson et al., 2020). Other advances
involve the development of more generally applicable SMLM
analysis tools, such as SuperResNET and SEMORE (SEgmenta-
tion and MORphological fingerprinting), to extract biological
features from protein clusters imaged by SMLM (Bender et al.,
2024; Khater et al., 2018; Li et al., 2024b, Preprint; Wong et al.,
2024, Preprint).

Pairing machine learning with other biological information
has also been applied to SMLM imaging to develop new insight.

LocoMoFit applies a maximum likelihood estimation that fits a
provided model to a 3D point cloud structure (Wu et al., 2023).
By fitting models, developed based on established structures,
to individual coat structures obtained by SMLM, Locomofit
supported the idea of a novel cooperative curvature model for
clathrin endocytosis (Mund et al., 2023). Another approach
used deep learning to pair single-molecule imaging of 3D
chromatin structure using fluorescent oligo hybridization
DNA probes with RNA expression measured by RNA FISH
within the same cell and thereby predicted transcriptional
states from the 3D structure of chromatin (Rajpurkar et al.,
2021). A workflow developed for 3D reconstruction from 2D
SMLM produced a 3D model of the centriole using iterative
multi-reference refinement and dual color SMLM imaging
between combinations of centriolar proteins allowed for novel
insight into protein organization within the centriole (Sieben
et al., 2018).

Applying machine learning to SRM requires approaches
that do not depend on subcellular object-level ground truth for
validation or algorithm training. Indeed, our AI-based image

Figure 3. Molecular architecture by SRM. The top row shows outer (left) and inner (right) structure views of the ArtScience Museum at Marina Bay Sands.
Below, pixel-based representation of SRM data provides unprecedented high-resolution views of subcellular structures, such as caveolin-1 domains, (wide-field
on left versus SMLM on right) or the endoplasmic reticulum (confocal in red versus STED in green) but remain analogous to enlarged, more detailed views of
the external face, or outer structure, of buildings (inset). Ongoing AI-based semantic analysis of SRM will provide the means to explore the design basis, or
molecular architecture, of subcellular macromolecules and organelles.
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analysis approach for biological discovery and validation
has been to avoid pixel-/voxel-/localization-level annotation
and use ground truth label annotations of groups of images
of cells (e.g., wild-type versus mutant; over- versus under-
expression; and infected versus uninfected cells) (Cardoen
et al., 2022; Khater et al., 2018; Long et al., 2020; Saberian
et al., 2022), each with prior knowledge of their biological
features and functions. AI trained using reliable differential
group labels is then used to predict pixel-/voxel-/localization
labels. Key to weakly supervised approaches is the trustwor-
thiness of labels, corresponding to phenotypic changes in the
images confirmed by other modalities. Prediction of known
biological features instills trust in AI for novel biological
discovery (Fig. 4).

Fundamentally, within this context, weak supervision-
inspired approaches for SRM could be based on three key
principles:

1 Selection of trustworthy group labels grounded in biology;
2 AI-based identification of differential features across groups;
3 Use of a priori biological knowledge to corroborate AI-based
discovery.

AI identification of novel biology
Current weakly supervised approaches are frequently charac-
terized by modularly designed pipelines that, for example,
require denoising, segmentation, and classification before re-
porting final results. Development of end-to-end approaches
that take in the raw data and report the desired output without
explicit intermediate stages can be beneficial when intermediate
stages, such as segmentation, are either infeasible or too costly.
However, end-to-end methods can require a final “fitting” or
calibration stage, where the method’s output is rescaled to cor-
respond with validation data. Here, we present examples of
weakly supervised approaches that incorporate modular design
and end-to-end approaches.

Discovering a novel caveolin-1 scaffold domain
The protein caveolin-1 (CAV1) is the coat protein for 50–100 nm
plasma membrane invaginations called caveolae. Caveolae for-
mation requires the adaptor protein Cavin-1; in the absence of
Cavin-1, CAV1 forms functional surface domains called scaffolds
(Hill et al., 2008; Lajoie et al., 2009). While caveolae in-
vaginations are morphologically distinct by EM, flat CAV1-
positive domains are difficult to detect morphologically by EM
and their identification by antibody labeling suffers from the
poor antigenicity of most EM approaches. By diffraction-limited
confocal microscopy, both caveolae and scaffolds present
punctate surface labels; differentiating the two by the presence
of Cavin-1 assumes Cavin-1 selectively associates with caveolae,
which may not be correct (Khater et al., 2019a). Definitive
identification of the two structures is problematic. The PC3
prostate cancer cell line, expressing elevated levels of CAV1 in
the genetic absence of Cavin-1 and, therefore, of caveolae, to-
gether with PC3 cells transfected with Cavin-1 and expressing
caveolae (Hill et al., 2008), provide cellular group labels for the
identification of caveolae from SMLM data sets by machine
learning.

A computational pipeline, SuperResNET (Fig. 4), inputs 3D
single molecule point cloud data from dSTORM (direct stochastic
optical reconstruction microscopy) labeling of CAV1, merges
localizations below the resolution limit (20 nm), and filters lo-
calizations relative to randomized distributions. Feature-based
cluster analysis of interactions below 80 nm identified two
groups of blobs in PC3 cells and found two additional groups in
Cavin-1 transfected PC3 cells, one of which was significantly
larger than the PC3 groups, therefore corresponding to caveolae
(Khater et al., 2018). Our validation of AI trained on discrimi-
native group labels (cell lines), in this case, took the form of
successfully identified clusters corresponding to the missing
component (caveolae) in one of the groups (Khater et al., 2018,
2019b) (Fig. 4). Network analysis also identified three non-
caveolar CAV1 scaffolds including small S1A scaffolds corre-
sponding to 8S CAV1 complexes whose structure was recently
reported by cryoEM (Han et al., 2020; Khater et al., 2018).
Caveolae clusters consisted of 12-14 8S CAV1 complexes,
matching the dodecahedral structure for caveolae reported by
cryoEM (Khater et al., 2019b; Stoeber et al., 2016). The approach
itself is therefore validated based on the identification of known
structures: 8S CAV1 complexes and caveolae.

Beyond validating known biology (absence of caveolae in PC3
cells), network analysis of single-molecule SRM led to the
identification of previously unidentified non-caveolar CAV1
scaffolds (Khater et al., 2018). Modularity analysis, in which
clusters are broken down into smaller more closely associated
clusters, showed that 8S CAV1 complexes combine to form
caveolae as well as intermediate scaffold structures. These in-
clude previously undescribed 8S CAV1 complex dimers (S1B
scaffolds) as well as larger hemispherical S2 scaffolds (Khater
et al., 2019b) (Fig. 4). Intermediate scaffold structures are sup-
ported by the presence of a shoulder on the 8S CAV1 peak in
fractionation studies (Hayer et al., 2010), by STED using belief-
theory based weakly supervised object detection (Cardoen et al.,
2022), and recent identification of CAV1 invaginations in the
absence of cavin-1 called dolines (Lolo et al., 2023).

Identifying subpixel resolution riboMERCs
More recently, we developed a subpixel resolution approach to
detect membrane contact sites, where the membrane of two
organelles approach to within 10–30 nm (Helle et al., 2013).
Mitochondria–ER contacts (MERCs) have been well-characterized
by EM; however, their analysis by fluorescent microscopy is
challenged by the fact that the distance between the two or-
ganelles (10–60 nm) is smaller than diffraction limited resolution
and even that of 3D super-resolution approaches such as STED
and SIM (Scorrano et al., 2019). To address this, we built on
previous work (Cardoen et al., 2020, 2022) using Laplacian de-
tection of local intensity changes to detect regions in 3D STED
super-resolution images where the intensity of ER and mito-
chondria change in tandem. Independent of image segmentation,
MCS-DETECT sensitively and robustly detects membrane con-
tact sites independently of variations in local signal intensity or
background (Fig. 4) (Cardoen et al., 2024).

However, be it diffraction-limited colocalization or subpixel
MCS-DETECT detection of nanometer scale contact sites,
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Figure 4. The weakly supervised paradigm for AI-based semantic analysis of SRM datasets. In the absence of pixel or object level ground truth (strong
supervision), prior biological knowledge defines group labels for weakly supervised training of SRM datasets to identify group-specific protein structures. Left:
Caveolae expression is known to require CAV1 and the adaptor protein cavin-1 (Anderson, 1998; Hill et al., 2008). PC3 cells lack cavin-1 and therefore caveolae;
native and Cavin-1 transfected PC3 cells therefore provided group labels for weakly supervised network analysis: SuperResNET. Using a proximity threshold
that most significantly distinguished point clouds of these two biologically distinct groups, we then segmented clusters of points into blobs (structures or
objects), based on 28 features describing size, shape, topology and network measures. Four groups of blobs were found in Cavin-1 expressing PC3 cells, one of
which was significantly larger than either of the two groups found in PC3 cells, therefore corresponding to caveolae. Structural correspondence of identified
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validation that contact sites are accurately detected remains
challenging. As such, we tunedMCS-DETECT using a group label
comparison of HT-1080 cells known to express a distinct type of
ribosome-studded MERC (riboMERCs) (Wang et al., 2015) and
COS-7 cells that do not express riboMERCs based on quantitative
EM validation (Cardoen et al., 2024). This weakly supervised
approach demonstrated that riboMERC expression is controlled
by the RRBP1-SYNJ2BP tether (Hung et al., 2017) and that ribo-
MERC size is regulated by the expression of the Gp78 ubiquitin
ligase. MCS-DETECT further identified a convoluted tubular
morphology for Gp78-dependent riboMERCs (Cardoen et al.,
2024), similar to but less extended compared with wrappER
riboMERCs described in the liver by 3D EM tomography
(Anastasia et al., 2021). Using group labels based on known biology
(i.e., EM), MCS-DETECT has defined a distinct morphology for
riboMERCs and identified how their expression and size are
controlled. MCS-DETECT, as a probabilistic reconstruction al-
gorithm omitting segmentation, is an example of the move
toward end-to-end approaches. However, it still requires spe-
cifically designed preprocessing filters to exclude false positives.
In addition, the resulting reconstructed membrane contacts are
not classified, so MCS-DETECT is not yet a complete end-to-end
approach.

MERCs are functionally diverse, involved in ER–mitochondrial
calcium exchange and regulation of mitochondrial metabo-
lism, phospholipid, and sterol biosynthesis, as well as induc-
tion of apoptosis (Rowland and Voeltz, 2012). MERC formation
is controlled by numerous tethers (Herrera-Cruz and Simmen,
2017), suggesting that there may very well be multiple sub-
classes of MERCs. RiboMERCs represent a subclass of morpho-
logically distinct MERCs that provide useful parameters/group
labels to define a novel MERC detection approach. Further
definition of the other MCS-DETECT-detected MERCs may
require additional information aside from the relatively lim-
ited size and shape features used to characterize riboMERCs
(Cardoen et al., 2024). This would extend to defining MERCs
based on their molecular composition or to live cell analyses
to detect dynamics or functional outputs of individual MERCs
using fluorescent reporters and high-speed SRM (Nixon-Abell
et al., 2016). Deep learning could be applied to detect differ-
ences in MERC expression patterns due to the loss of specific
tethers. A critical obstacle, however, is the extreme imbalance
in whole-cell volumetric data, where larger 3D objects that are
discriminative are by definition far less frequent, even though
they are visually striking to a human expert. Whether current
3D spatial and temporal resolution limits for voxel-based
imaging are sufficient to detect the more subtle distinctions
amongst smaller MERCs remains to be determined, and one
can only look forward to future hardware and software

developments that improve our ability to see more clearly
within the cell.

Weakly supervised approaches can exploit combinatorial
information, which is often “nested” or “hierarchical.” For ex-
ample, a single cell can havemultiple labels: cell line, expression,
treatment, and so on. Furthermore, biological structures are
often modular, with each modular part having a label that is
hierarchically more refined with respect to its top label. The
modular construction of caveolae is a great example of this. The
use of weakly supervised learning paradigms to leverage such
information, beyond the dual paradigms (i.e., PC3 versus
PC3+cavin-1; HT-1080 versus COS-7) exploited here (Fig. 4), will
necessarily lead to a more refined description and improved
biological understanding of the studied structures.

Explainable AI in SRM
If our goal is to determine the inner structure or molecular ar-
chitecture of biological structures (Fig. 3), then it is critical to
understand the basis by which AI is making decisions. Raw
image data (i.e., pixels, point clouds) are very large; training the
model requires preparing the data in a format throughwhich the
machine learning algorithm can best identify biologically rele-
vant differences. In the CAV1 point cloud data, 28 features were
extracted from the segmented clusters and reported on the
structural aspects of the clusters such as hollowness, topology,
network interactions, size, and shape (Khater et al., 2018). This
predefined feature approach reports on clearly understood
structural aspects of the CAV1 clusters, showing that caveolae
are large hollow blobs. Feature analysis of MERCs was limited to
three features that could be validated by correspondence to EM
(Cardoen et al., 2024).

Machine learning via handcrafted features is sometimes re-
ferred to as shallow learning since extraction of these features
amounts to the execution of a particular known formula or short
(shallow) recipe. This contrasts with deep learning, where the
exact formula or recipe to extract the features is unknown be-
forehand; only its general form is known and takes the shape of a
long (deep) sequence of operations whose exact equations are
optimized to attain a certain objective, the accurate classification
of images. Traditionally, deepmodels are based on convolutional
neural networks (CNN) that implement feature extraction pri-
marily via the application of many convolution operations in
sequence (layers). The fact that the features are constructed
from a deep sequence of operations and determined by a large
number of parameters makes them hard to interpret and the
decision process using these features (i.e., classification) diffi-
cult to understand—hence, the “black box” label associated with
deep models. Over the last decade, the number of parameters of
deep models has increased by several orders of magnitude, from

structures to known biology, such as 8S complexes and caveolae whose structure has been determined by cryoEM (Han et al., 2020; Stoeber et al., 2016),
validates the approach and enables identification of novel structures such as hemi-spherical CAV1 S2 scaffolds (Khater et al., 2018, 2019b). Right: HT-1080 and
COS-7 cell lines differ in that only HT-1080 express elongated ribosome-studded mitochondria-ER contact sites (riboMERCS). Based on the differential ex-
pression of riboMERCs between these two cell lines, we developed a novel segmentation-free algorithm able to reconstruct MERCS, MCS-DETECT, that was
optimized by maximizing the differential result between both cell lines (Cardoen et al., 2024). Feature analysis of MERCs matches differences between the two
cell lines based on EM (i.e., ground truth), and the approach is validated by knockdown of a known riboMERC tether, RRBP1 (Hung et al., 2017). MCS-DETECT
led to identification of extended tubular riboMERCs.
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a few layers with millions of parameters to thousands of layers
with trillions of parameters.

Deep learning is achieving state-of-the-art results on a wide
array of prediction applications (e.g., classification and seg-
mentation), surpassing their shallow machine learning coun-
terparts often by big margins, and even meeting or surpassing
human experts on biomedical image interpretation tasks
(Fujisawa et al., 2019; Rajpurkar et al., 2017, Preprint; Zhang
et al., 2019). While deep learning has found rapid adoption in
SRM acquisition and image generation–related tasks (Hyun and
Kim, 2023), discovery-oriented SRM data analysis is still limited
(Khater et al., 2019a; Zehtabian et al., 2022). Explainable AI
(XAI) is a fast-growing field aimed at improving our under-
standing of deep features and explaining deep model decision
processes. XAI is moving toward standardizing the character-
istics that an explainable or interpretable model should satisfy
(Jin et al., 2023). Beyond natural image analysis, XAI has found
rapid adoption in medical image analysis (Chaddad et al., 2023),
a field that shares defining characteristics of SRM-based
analysis: scarcity of ground truth, targeted at discovery, and
high societal impact of findings. Extending deep learning models
of SRM with XAI can enable the identification of novel subcel-
lular structures and processes (Long et al., 2020; Nagao et al.,
2020).

Region-based explanations, for example, gradient-weighted
class activation mapping (Grad-CAM) and its many variants,
were some of the earliest XAI approaches finding widespread
adoption, as indicated by the citations of the introducing paper
(Selvaraju et al., 2020). In contrast, Shapley-based approaches
(Shapley, 1953) focus on establishingwhich features are strongly
associated with the outcome of a model (van Zyl et al., 2024).
Region- and feature-based explanations still require expert in-
terpretation and may not always be robust. XAI methods can be
difficult to use as evidence or validation for new discoveries in a
context where validation is scarce. To ease this burden of un-
certainty on expert users, recent advances focus on taxonomies
and metrics that differentiate types of XAI (Ibrahim and Shafiq,
2023). More recently, XAI approaches are exploring large lan-
guage models (LLM) based higher level explanations, such as
providing language-based “concepts” (Maddigan et al., 2024,
Preprint; Mavrepis et al., 2024, Preprint) alongside model per-
formance. Here, the model would explain, using plain English,
what concepts or domain-specific keywords are associated with
the model’s decision. It should be noted that using XAI is not
necessarily guaranteed to augment AI-guided expert decisions
(Jin et al., 2024). Finally, in discovery-oriented research, it is
important to select methods that are causative and not just
correlative (Vasudevan et al., 2021, Preprint), aligning with the
current experiment design, where controlled experimental fac-
tors such as knockout can ensure the elimination of correlative
effects in favor of the true causal information.

Beyond weak supervision
Beyond weakly supervisedmethods, self-supervision has emerged
as a powerful paradigm to learn rich semantic features that can
be specialized for a chosen end-task with a minimum of ground
truth labels and have been successfully adapted to microscopy

(Kobayashi et al., 2022; Wu et al., 2022). Unlike weak supervi-
sion, self-supervision does not require a group (e.g., cell) level
label to learn an informative representation. However, it does
not provide an end-task capable solution, as the final stage
would be either unsupervised, supervised, or weakly super-
vised. The advantages, however, include requiring far fewer
labels, higher performance, and the ability to reuse the learned
encoding for multiple tasks.

Counterfactual learning simulates from existing data “what
if” scenarios, causal relations between objects or conditions
without the specific experiment taking place (Pearl, 2010).
These then extend to generative models that learn to synthesize
data from images, features, or even based on descriptions (lan-
guage). While generative models do not specifically enforce a
causal relation between their input and what they generate, the
potential of such models in subcellular biology is largely un-
tapped, but highly promising based on their interpretability and
rapid adoption in medical imaging (Yi et al., 2019). These rep-
resent powerful paradigms for both medical and biology ex-
periments, potentially enabling experiments otherwise not
feasible due to ethical or resource constraints. Scalability is an
issue, with SRM data often being orders of magnitude larger in
dimension compared to datasets on which most deep learning
models are being developed, whether it is for point cloud- or
voxel-based data.

A recent perspective (Volpe et al., 2023, Preprint) argues that
stability (i.e., robustness to confounding factors as well as reli-
ability and performance on unseen datasets) of AI models is
critical for the adoption of unsupervised learning for the re-
construction of SRM data. Stability of AI models is critical and
can be addressed by the emerging work in continual (Parisi
et al., 2019) and out-of-distribution learning, as well as by re-
solving “short-cuts” that degrade performance on new datasets
(Robinson et al., 2021). We would argue that ongoing improve-
ments in both SRM and AI offer tremendous potential not only
for SRM data interpretation but also for semantic discovery
leading to the accelerated exploration of nanoscale and meso-
scale biology.

The ability of foundation and large language models (FLLM)
offers great potential as these models are built on enormous
datasets and then tuned to domain-specific tasks, as recently
demonstrated in single-cell genomics (Luecken et al., 2022;
Myers et al., 2024). However, the challenge in validation, in-
terpretation, and reproduction of such models remains. The
problem here is the rapid increase in the computing power and
the associated carbon footprint in using, let alone training, such
models (Bouza et al., 2023; Shah and Bhavsar, 2022). Validation
and development of any novel technique are still constrained by
access to representative, diverse open data that the community
can review and challenge. In addition, translating results ob-
tained on benchmark data to newly acquired data is sensitive to
acquisition-specific signatures, such as PSF configuration,
localization algorithm, and specimen-specific factors. For exam-
ple, given that most SRM acquisitions are developed by closed-
source vendors, it is often challenging to translate results across
vendors. Recent efforts to standardize file formats and experi-
mental design have been driven by the scientific community
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rather than commercial needs and are a critical first step in re-
solving these challenges (Cardoen et al., 2023; Sarkans et al.,
2021; Schmied et al., 2024). Community-driven efforts are un-
derway to provide a single standardized format for critical
metadata (Moore et al., 2023; Swedlow et al., 2021). Ignoring
such confounding factors will only delay advances in AI-driven
discovery and limit reproducibility. Open datasets, acquired and
curated at great cost in expense, training, and expertise by
publicly funded scientific centers, should be standardized and
shared with a clear license to favor open science.

Be it determined by human endeavor or AI, newly discovered
scientific knowledge needs to be understandable, reproducible,
and trustworthy to be adopted by experts in the field. These
challenges have been encountered by scientists introducing
technological developments, going back to Golgi. The exponen-
tial changes that computer science and AI have brought to sci-
ence, not to mention our everyday lives, means that validation
will need to keep pace. Waiting 50 years for validation of sci-
entific discovery, as for the Golgi apparatus, is not an option.
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Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko, et al. 2021. Highly
accurate protein structure prediction with AlphaFold. Nature. 596:
583–589. https://doi.org/10.1038/s41586-021-03819-2

Ke, Z., J. Oton, K. Qu, M. Cortese, V. Zila, L. McKeane, T. Nakane, J. Zivanov,
C.J. Neufeldt, B. Cerikan, et al. 2020. Structures and distributions of
SARS-CoV-2 spike proteins on intact virions. Nature. 588:498–502.
https://doi.org/10.1038/s41586-020-2665-2

Khater, I.M., S.T. Aroca-Ouellette, F. Meng, I.R. Nabi, and G. Hamarneh.
2019a. Caveolae and scaffold detection from single molecule localization
microscopy data using deep learning. PLoS One. 14:e0211659. https://doi
.org/10.1371/journal.pone.0211659

Khater, I.M., Q. Liu, K.C. Chou, G. Hamarneh, and I.R. Nabi. 2019b. Super-
resolution modularity analysis shows polyhedral caveolin-1 oligomers
combine to form scaffolds and caveolae. Sci. Rep. 9:9888. https://doi
.org/10.1038/s41598-019-46174-z

Khater, I.M., F. Meng, T.H. Wong, I.R. Nabi, and G. Hamarneh. 2018. Super
resolution network analysis defines the molecular architecture of
caveolae and caveolin-1 scaffolds. Sci. Rep. 8:9009. https://doi.org/10
.1038/s41598-018-27216-4

Kobayashi, H., K.C. Cheveralls, M.D. Leonetti, and L.A. Royer. 2022. Self-
supervised deep learning encodes high-resolution features of protein
subcellular localization. Nat. Methods. 19:995–1003. https://doi.org/10
.1038/s41592-022-01541-z

Kudyshev, Z.A., D. Sychev, Z. Martin, O. Yesilyurt, S.I. Bogdanov, X. Xu, P.G.
Chen, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev. 2023. Machine
learning assisted quantum super-resolution microscopy. Nat. Commun.
14:4828. https://doi.org/10.1038/s41467-023-40506-4

Laine, R.F., G. Goodfellow, L.J. Young, J. Travers, D. Carroll, O. Dibben, H.
Bright, and C.F. Kaminski. 2018. Structured illumination microscopy
combined with machine learning enables the high throughput analysis
and classification of virus structure. Elife. 7:e40183. https://doi.org/10
.7554/eLife.40183

Lajoie, P., J.G. Goetz, J.W. Dennis, and I.R. Nabi. 2009. Lattices, rafts, and
scaffolds: Domain regulation of receptor signaling at the plasma mem-
brane. J. Cell Biol. 185:381–385. https://doi.org/10.1083/jcb.200811059

Li, H., X. Sun, W. Cui, M. Xu, J. Dong, B.E. Ekundayo, D. Ni, Z. Rao, L. Guo, H.
Stahlberg, et al. 2024a. Computational drug development formembrane
protein targets. Nat. Biotechnol. 42:229–242. https://doi.org/10.1038/
s41587-023-01987-2

Li, Y.L., I.M. Khater, C. Hallgrimson, B. Cardoen, T.H. Wong, G. Hamarneh,
and I.R. Nabi. 2024b. SuperResNET single molecule localization mi-
croscopy model-free network analysis achieves molecular resolution of
Nup96 in preparation. bioRxiv. https://doi.org/10.1101/2024.03.12
.584716 (Preprint posted March 13, 2024).

Lippincott-Schwartz, J. 2011. Emerging in vivo analyses of cell function using
fluorescence imaging (*). Annu. Rev. Biochem. 80:327–332. https://doi
.org/10.1146/annurev-biochem-121010-125553

Liu, M.Z., C. Swintelski, S. Sun, M. Siddique, E. Desperito, S. Jambawalikar,
and R. Ha. 2022a. Weakly supervised deep learning approach to breast
MRI assessment. Acad. Radiol. 29:S166–S172. https://doi.org/10.1016/j
.acra.2021.03.032

Liu, S., P. Hoess, and J. Ries. 2022b. Super-resolution microscopy for struc-
tural cell biology. Annu. Rev. Biophys. 51:301–326. https://doi.org/10
.1146/annurev-biophys-102521-112912

Liu, Z., L. Jin, J. Chen, Q. Fang, S. Ablameyko, Z. Yin, and Y. Xu. 2021. A
survey on applications of deep learning in microscopy image analysis.
Comput. Biol. Med. 134:104523. https://doi.org/10.1016/j.compbiomed
.2021.104523

Lolo, F.N., N. Walani, E. Seemann, D. Zalvidea, D.M. Pavón, G. Cojoc, M.
Zamai, C. Viaris de Lesegno, F. Mart́ınez de Benito,M. Sánchez-Álvarez,
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