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Presynaptic perspective: Axonal transport defects in
neurodevelopmental disorders
Gui-Jing Xiong1 and Zu-Hang Sheng1

Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic
proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons
to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in
the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A
growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders.
Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus
broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss
presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly
and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic
intervention.

Introduction
The human central nervous system (CNS) consists of hundreds
of thousands of interconnected neuronal circuits that give rise to
perception, cognition, and behavior. These circuits are wired
together through the formation of ∼1015 synapses between ∼1012

neurons (Herculano-Houzel, 2012). Intense synaptogenesis oc-
curs during embryonic and early postnatal stages, persisting
throughout adolescence and even into the third decade of human
life (Petanjek et al., 2011). Any disruption of synapse assembly,
maturation, or remodeling leads to a broad spectrum of neuro-
developmental disorders (NDDs) characterized by an inability to
reach cognitive, emotional, and motor developmental milestones,
including autism spectrum disorders (ASDs), attention-deficit/
hyperactivity disorder, intellectual disability (ID), disorders in
communication, learning, and motor function, developmental ep-
ilepsies, and schizophrenia (SZ) (Sydnor et al., 2021; Thapar et al.,
2017). NDD prevalence has progressively increased over the past
decades; an estimated one in six children aged 3–17 years old in the
United States have one form of NDD (Zablotsky et al., 2019). De-
spite the broad genetic heterogeneity of NDDs, genetic studies have
revealed many human NDD-linked variants in genes associated
with synapse formation and function, leading to a central hy-
pothesis that synaptic pathology is one of the major causative
mechanisms underlying the etiology of NDDs (Grant, 2012).

Synapse formation (or synaptogenesis) is a multistage pro-
cess in the assembly of specialized synaptic structures, including

(1) axon and dendrite contacts through dynamic filopodia, (2)
synaptic cargo transport from the soma to nascent synapses, (3)
recruitment and assembly of these synaptic components at
newly forming synapses, and (4) maintenance and remodeling
of synapses (Chia et al., 2013; Jin and Garner, 2008; Südhof,
2021). Deleterious variants in genes encoding cell-adhesion
molecules (CAMs) and scaffolding proteins located at the post-
synaptic density significantly alter the course of brain devel-
opment, and therefore it is not surprising that they have been
repeatedly associated with NDDs (Bourgeron, 2015; Exposito-
Alonso and Rico, 2022; Michetti et al., 2022; Parenti et al.,
2020). In contrast, little is known about the impact of axonal
transport of presynaptic components on the etiology of NDDs,
largely due to challenges in characterizing transient and dy-
namic transport events in live neurons. Recent studies have
started to decipher genetic variants in the axonal transport
machinery that may contribute to presynaptic mechanisms
underlying NDDs (Rizalar et al., 2021).

Presynaptic proteins are largely synthesized in the soma
where they are packaged into precursor vesicles and then an-
terogradely transported into nascent synapses along axonal
microtubules (MTs) by kinesin motors. Defective presynaptic
organelles and proteins are retrogradely transported toward the
soma by dynein motors for degradation or turnover (Fig. 1 A).
Amazingly, human motor neuron axons can extend up to 1 m
long with extensive terminal branching, and thus presynaptic
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Figure 1. Axonal transport in presynaptic assembly and maintenance. (A) Schematic of the bidirectional axonal transport essential for presynapse as-
sembly and maintenance. Major presynaptic proteins are synthesized in the cell body and transit the Golgi apparatus where they are sorted into presynaptic
cargos, including SVPs, PTVs, DCVs, and RTK-carrying vesicles. These cargos are delivered along axonal MT tracks by kinesin motors to presynaptic terminals.
SEs, mitochondria, and endo-lysosomes carrying defective proteins undergo dynein-driven retrograde transport toward the soma for retrograde signaling,
degradation, or turnover. The insert indicates that both kinesin and dynein motors can be recruited to presynaptic cargos and their net favored transport
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terminals are positioned far away from the cell body. Due to
these morphological features, neurons face exceptional chal-
lenges for the targeted delivery of presynaptic components along
such long axons. Several adaptors and scaffolding proteins assist
motor proteins in driving the bidirectional transport of synaptic
cargos to ensure precise assembly,maintenance, and remodeling
of presynapses (Cai et al., 2007; Guedes-Dias and Holzbaur,
2019). A growing number of mutations in genes encoding
the transport machinery have been associated with NDDs
(Hirokawa et al., 2010; Sleigh et al., 2019; Xiong et al., 2021).
These findings have broadened our view beyond the scope of
postsynaptic mechanisms. Thus, elucidating presynaptic mech-
anisms of NDDs is an important emerging frontier. In this re-
view, we limit our discussion to presynaptic perspectives of
NDDs by focusing on impaired axonal transport of presynaptic
cargos. First, we provide an overview of axonal transport ma-
chineries and mechanisms driving targeted axonal transport of
various presynaptic cargos to ensure the stoichiometric assem-
bly and maintenance of presynaptic active zones (AZs). Second,
we examine current literature emerging from human andmouse
studies revealing genetic mutations in genes encoding transport
machineries that associate with a wide range of NDDs. Finally,
we discuss perspectives on the potential strategies for restoring
axonal transport as an early therapeutic intervention for NDDs.

Presynaptic assembly and maintenance
Synapses are highly asymmetric intercellular junctions composed
of a presynaptic terminal and a juxtaposed postsynaptic density,
separated by the synaptic cleft, where trans-synaptic CAMs pro-
vide connections between pre- and postsynaptic membranes
(Fig. 1 B). Presynaptic terminals (or boutons) are established from
the axonal growth cone and along axonal segments, which allow
one axon to form enormous en passant synaptic connections with
many dendrites along its route. A single rat hippocampal CA3
mossy/pyramidal neuron makes ∼40,000 synapses over ∼0.2 m
length of axon (Buckmaster et al., 1996; Ishizuka et al., 1990; Li
et al., 1994). The presynaptic compartment contains hundreds of
neurotransmitter-filled synaptic vesicles (SVs) and a network of
scaffolding proteins known as the cytomatrix of active zones
(CAZs), a patterned structure with multiple protein complexes
that (1) serves as the platform for recruiting and anchoring SVs at
AZ release sites, (2) enables the physical coupling of voltage-gated
calcium channels (VGCCs) to SV fusion sites, and (3) renders SV
fusion competent by facilitating SNARE complex formation (Fig. 1,
C and D). With this sophisticated protein machinery, SV exocy-
tosis is executed within less than 1 ms upon VGCC opening in
response to action potential firing (Südhof, 2012).

These presynaptic components are mainly synthesized in the
soma and anterogradely transported along lengthy axonal MTs

into distal presynaptic sites. While membranous presynaptic
components (such as CAMs, VGCCs, and SV proteins) are syn-
thesized by the rough endoplasmic reticulum in the soma and
exported to the trans-Golgi network, non-membrane CAZ pro-
teins are mainly synthesized on cytoplasmic ribosomes in the
soma before undergoing axonal transport (Maas et al., 2012;
Shapira et al., 2003; Zhai et al., 2001). Upon arrival at nascent
synapses, these transported cargos are unloaded from motors
and captured for assembly of AZ structures through multiple
protein interactions (Fig. 1 D). AZ-like condensates may form by
phase separation throughmultiple low-affinity interactions (Wu
et al., 2019), although these condensates have not been validated
at synapses in vivo.

Once a synapse is established, its structure and function are
highly plastic with neuronal development and undergo activity-
dependent remodeling. Existing synaptic connections can be
strengthened, weakened, or eliminated, allowing the brain to
adjust and optimize synaptic responses throughout life (Südhof,
2021). In response to appropriate signals, large (75–100 nm)
dense-core vesicles (DCVs) and signaling endosomes (SEs) con-
taining neuropeptides and neurotrophins, respectively, are
transported anterogradely or retrogradely along the axon to
regulate synapse maturation and synaptic strength (Harrington
and Ginty, 2013; Wong et al., 2012). Studies combining in vivo
metabolic labeling and mass spectrometry suggest that turnover
rates of presynaptic proteins can range from 5 h or less to more
than 50 days (Cohen et al., 2013; Fornasiero et al., 2018;
Truckenbrodt et al., 2018). Thus, the maintenance of pre-
synapses requires continual anterograde transport and replen-
ishment of new presynaptic components and retrograde
transport of defective or aged presynaptic components toward
the soma for turnover through the autophagy and endolyso-
somal systems (Di Giovanni and Sheng, 2015; Farfel-Becker
et al., 2019; Jin et al., 2018; Roney et al., 2022). Therefore,
presynaptic assembly and maintenance require seamless inte-
gration of biogenesis, bidirectional transport, and degradation
of synaptic components.

Mature presynaptic terminals also contain a local protein
synthesis system that transcribes a heterogeneous population of
mRNAs supplied by axonal mRNA transport in the form of ri-
bonucleoprotein granules (RNPGs) (Dalla Costa et al., 2021;
Hafner et al., 2019). Synaptic mRNA translation has been rec-
ognized as a dynamic platform to replenish synapses with new
proteins that transduce intrinsic and extrinsic cues into struc-
tural and functional presynapse remodeling (Akins et al., 2009).
It is less clear whether CAZ proteins can be synthesized locally at
nascent presynapses.

The formation and maturation of nascent presynaptic ter-
minals and the remodeling of mature presynapses require tight

direction is determined by the differentially activated motor state. (B) Electron micrograph showing pre- and postsynaptic specializations from mouse hip-
pocampal slices in CA1 regions. Scale bar: 200 nm. (C) Transported cargos are released to build a presynapse where SVPs give rise to mature SVs and proteins
are assembled into CAZ. Mitochondria are recruited to provide ATP and modulate Ca2+ signals. mRNAs serve as a platform to replenish presynaptic proteins
locally. The presynaptic F-actin networks are required for SV docking and mobilization. (D) Schematic of presynaptic components, including sCAMs (neurexin,
neuroligin, and LRPTP), CAZ proteins (ELKS, CASK, RIM, RIM-RBP, liprin-α, Munc13, Piccolo, and Bassoon), VGCCs, and SV fusion machinery (VAMP, SNAP25,
Syntaxin, Synaptotagmin, Munc18, and Rab3). (Note that not all interactions are displayed. Sizes of molecules and cargoes are only for illustrative purposes and
are not drawn to scale).
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coordination of the axonal transport of at least seven major
cargos and organelles with distinct transport mechanisms: (1)
SV-like precursors (SVPs); (2) Piccolo-Bassoon Transport Vesi-
cles (PTVs) containing CAZ scaffolding and membrane proteins;
(3) DCVs delivering neuropeptides, (4) receptor tyrosine kinase
(RTK)–carrying vesicles and SEs propagating retrograde neu-
rotrophic signaling, (5) mRNAs in the form of RNPGs, (6) mi-
tochondria, and (7) the autophagy and endolysosomal systems
(Fig. 1 A). In the next two sections, we provide an overview of
axonal transport machineries and mechanisms for targeted de-
livery of five “primary” presynaptic cargos to ensure the as-
sembly and maintenance of functional presynapses. For axonal
transport of mitochondria and autophagy and endolysosomal
systems, we refer the readers to recent reviews (Cason and
Holzbaur, 2022; Devine and Kittler, 2018; Li and Sheng, 2022;
Misgeld and Schwarz, 2017; Roney et al., 2022).

Axonal transport machineries
Long-distance axonal transport relies on the coordination of
three key components of the transport machinery: MTs as
trafficking tracks, molecular motors driving cargo transport,
and motor adaptors and effectors that selectively connect cargo
and motors and/or activate motor processivity.

MTs
MTs are polarized tubulin polymers with fast-growing plus ends
and more stable minus ends. In the axon, parallel MTs form a
unipolar array with the plus ends pointing toward the axon
terminals. Axonal MTs serve as the major commute tracks for
various cargo binding and movement. They are stabilized by
MT-associated proteins (MAPs), which can affect motor protein
recruitment (Monroy et al., 2018). Various plus-end tracking
proteins (+TIPs), such as EB1, accumulate at the growing
MT plus end to regulate axonal MT dynamics and facilitate
their interactions with motors and cargos (Akhmanova and
Steinmetz, 2008; Miryala et al., 2022). Posttranslational MT
modifications, including acetylation, detyrosination, and ty-
rosination, affect cargo trafficking efficiency by regulating mo-
tor activity (Kapitein et al., 2010; Sirajuddin et al., 2014; Tas
et al., 2017). Tyrosinated tubulin is enriched at the plus ends
of growing MTs (near growth cones), while acetylation and
detyrosination are more likely to be seen in the middle or minus
end of MTs to maintainMT stabilization (Song and Brady, 2015).
Kinesin-1 binds preferentially to MTs that are acetylated or
detyrosinated to transport cargos along the axon (Hammond
et al., 2009; Konishi and Setou, 2009; Nakata et al., 2011),
while kinesin-3 and dynein motors prefer to bind to tyrosinated
MTs exhibiting non-selective cargo delivery to both axons and
dendrites (Nirschl et al., 2016; Tas et al., 2017). However,
the mechanisms for these modifications in selectively guiding
motor-MT engagement within axons versus dendrites remain
largely unknown.

Motor proteins
Kinesin and dynein are two major classes of MT-based and ATP-
driven molecular motors that move cargos in the anterograde
(from the soma to distal axons) and retrograde (from axonal

terminals to the soma) directions, respectively. The kinesin
superfamily (KIF) constitutes at least 45 genes in the human
genome, 38 of which are expressed in brain, and is classified into
15 subfamilies, designated as kinesin-1 to kinesin-14B (Hirokawa
et al., 2010). Motors from four of these subfamilies—kinesin-
1 (KIF5A, KIF5B, and KIF5C), kinesin-2 (KIF3 and KIF17),
kinesin-3 (KIF1A, KIF1B, KIF13, and KIF16B), and kinesin-4
(KIF21A)—drive long-distance trafficking of diverse cargos and
organelles from the soma into the axon (Gicking et al., 2022).
Kinesin-1 motors are formed from two heavy chains (KHCs) and
two light chains (KLCs); each KHC contains a catalytic motor
domain that binds to MTs and generates movement via ATP
hydrolysis, a neck linker, a coiled-coil stalk domain that medi-
ates dimerization, and an inter-head to a tail domain that asso-
ciates with a KLC. Kinesin-1 mediates axonal transport of AZ
precursors PTVs, mitochondria, and RNA granules (Fukuda
et al., 2021; Pilling et al., 2006; Su et al., 2004). Kinesin-2 mo-
tors drive the anterograde motility of vesicles containing pre-
synaptic sCAM proteins, including N-cadherin and β-catenin
(Teng et al., 2005). Kinesin-3 motors drive the motility of SVPs,
DCVs, SEs, and RNA granules (Bentley et al., 2015; Lo et al., 2011;
Okada et al., 1995; Pichon et al., 2021).

In contrast to such diversity in kinesin motor subfamilies,
retrograde axonal transport is mediated by a single cytoplasmic
dynein motor, which is a large complex consisting of two heavy
chains (DHCs) with ATPase activity, two intermediate chains
(DICs), two light intermediate chains (DLICs), and several light
chains (DLCs) (Reck-Peterson et al., 2018). In addition, the dy-
nactin complex interacts with dynein and is required for motor-
cargo association and motor processivity (Gill et al., 1991; King
and Schroer, 2000). The actin-based myosin motors, including
myosins V and VI, drive short-range cargo trafficking along
actin filaments (F-actin). At presynaptic terminals, F-actin is
highly enriched and serves as a platform for CAZ assembly, SV
recruitment and recycling, and the anchor of presynaptic
mitochondria, thus controlling presynaptic cargo switch from
MT-based trafficking to actin-based anchoring (Cingolani and
Goda, 2008; Gutnick et al., 2019; Li et al., 2020; Schroeder
et al., 2010).

Motor adaptors and effectors
A diverse array of adaptors and effectors have been identified to
serve as a linker recruiting motor proteins to specific cargos/
organelles or act as effectors activating the motility of kinesin or
dynein motors. These include the kinesin adaptors liprin-α,
Arl8, syntabulin, JIP1, JIP3, and Huntingtin (HTT). All of these
link either the kinesin KHC tail or KLC to its trafficking cargo
and/or activate the motility of anterograde axonal transport
(Colin et al., 2008; Klassen et al., 2010; Miller et al., 2005; Su
et al., 2004; Verhey et al., 2001). For dynein motors, adaptors/
effectors include HTT, Huntingtin-associated protein-1 (HAP1),
BICD1 and 2 (N-terminal domain of protein bicaudal D homolog
1 and 2), Hook1 and 3, Snapin, and JIP3. These proteins connect
specific cargos with dynein motors, enhance dynein–dynactin
interaction, or activate retrograde processivity (Caviston et al.,
2007; Celestino et al., 2022; Engelender et al., 1997; Olenick et al.,
2016; Schlager et al., 2014; Zhou et al., 2012).
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Presynaptic cargos and their transport mechanisms
SVPs
Mature SVs consist of >130 proteins involved in SV exocytosis
and endocytosis, trafficking, and refilling of neurotransmitters
(Blondeau et al., 2004; Morciano et al., 2005; Takamori et al.,
2006; Taoufiq et al., 2020). These SV components are trans-
ported separately in distinct SVP forms and then assembled
through a recycling endosome trafficking route. An immuno-EM
study in developing rat hippocampal neurons revealed plei-
omorphic vesicles (50–300 nm in size) carrying SV integral
membrane proteins, while SV-associated proteins synapsin and
α-synuclein proceed through different routes of biosynthesis
and axon transport and are sorted into the same SV clusters
when they are in axons (Tao-Cheng, 2020). Upon transport into
nascent presynapses, SVPs are thought to form mature SVs by
undergoing constitutive exo-endocytic cycling locally or by di-
rectly budding from SVPs (Rizalar et al., 2021).

Anterograde SVP transport is driven by kinesin-3 motors
(Fig. 2 A), including UNC-104 in C. elegans, Imac in Drosophila,
and KIF1A and KIF1Bβ in mammals and humans (Hall and
Hedgecock, 1991; Pack-Chung et al., 2007; Okada et al., 1995;
Zhao et al., 2001). Kinesin-3 is a monomeric motor that is au-
toinhibited by the binding of its stalk coiled-coil domain to its
motor heads. Relief from autoinhibition is achieved by cargo-
mediated motor dimerization, which promotes the fast antero-
grade transport of SVPs (>3 μm/sec) with a few pauses along
GDP-rich MT lattices (Hammond et al., 2009; Tomishige et al.,
2002). However, at MT plus ends at presynaptic terminals,
where GTP-tubulin is enriched, KIF1A shows weak MT-binding
affinity, thus favoring SVP release upon arrival at en passant
synapses (Guedes-Dias et al., 2019) (Fig. 2 A). In C. elegans, null
mutants of unc-104 lead to impaired axonal transport of SVPs,
reduced number of SVs at presynapses, and deficits in locomo-
tion (Hall and Hedgecock, 1991). Reduced UNC-104 levels in unc-
104+/− cause SVP pausing at branch points, impeding their entry
into synaptic terminals (Vasudevan et al., 2024). In Drosophila,
Imac knockout impairs the axonal transport of SVPs and for-
mation of presynaptic boutons (Pack-Chung et al., 2007). In
mice, a KIF1A loss-of-function mutation leads to decreased axo-
nal transport of SVPs and their accumulation in the soma, along
with a dramatic reduction of mature SVs at synapses, which are
associated with sensorimotor deficits and early postnatal death
(Yonekawa et al., 1998). Conversely, KIF1A overexpression pro-
motes presynaptic bouton formation (Kondo et al., 2012). In
humans, a set of mutations in KIF1A and KIF1Bβ have been linked
to abnormal axonal transport of SVPs and synapse phenotypes
observed in NDDs (Chiba et al., 2023).

Kinesin-3 motors possess a C-terminal pleckstrin homology
(PH) domain and a conserved stalk domain. The PH domain
binds phosphatidylinositol-4,5-bisphosphate on the cargo
membrane, which is critical for SVP loading onto motors
(Klopfenstein and Vale, 2004). Cargo specificity is achieved by
adaptors, which bind to the stalk domain (Fig. 2 A). For example,
liprin-α interacts directly with KIF1A through its coiled-coil do-
main (Shin et al., 2003); liprin-αmutations decrease anterograde
SVP transport (Miller et al., 2005). Similarly, HTT acts as a
scaffolding protein that colocalizes with KIF1A on VAMP2-

positive SVPs. HTT phosphorylation at S421 recruits KIF1A to
SVPs and thus enhances SVP transport (Vitet et al., 2023). The
death domain of DENN/MADD (differentially expressed in nor-
mal and neoplastic cells/MAP kinase activating death domain), a
guanine nucleotide exchange factor, binds to the stalk region of
KIF1A and KIF1Bβ, while the MADD domain interacts with the
GTPase-Rab3 on SVP membranes (Niwa et al., 2008). Thus,
DENN/MADD connects kinesin-3 with SVPs carrying GTP-
bound Rab3. RAB3A phosphorylation disrupts its binding to
MADD, thus preventing SVP loading onto KIF1A/KIF1Bβ motors
for anterograde transport (Dou et al., 2024). In DENN/MADD
knockout mice, SV numbers are reduced (Tanaka et al., 2001). In
C. elegans, the GTPase Arl8 activates unc-104/KIF1A by relieving
autoinhibition in a GTP-dependent manner (Niwa et al., 2016).
ARL8 loss-of-function results in SV accumulation at proximal
axons and a loss of distal boutons due to insufficient unc-104/
KIF1A activation (Klassen et al., 2010). Therefore, this GTPase
switch may regulate SVP transport into presynaptic terminals.
Fasciculation and elongation protein zeta-1 (FEZ1) acts as an
adaptor that activates kinesin-1 and thus drives the axonal
transport of Synaptotagmin-1 (Syt-1)–carrying SVPs (Blasius
et al., 2007). The cargo-motor coupling is controlled by the
phosphorylation state of FEZ1 via the kinase UNC-51 (Toda et al.,
2008). Interestingly, Disrupted in Schizophrenia-1 (DISC1), a
genetic risk factor for SZ, regulates Syt-1–carrying SVP transport
by binding both kinesin-1 and FEZ1; DISC1 mutation causes de-
fective transport by disrupting motor–cargo assembly (Flores
et al., 2011).

PTVs
The CAZ is organized by a set of multidomain proteins, in-
cluding two large scaffolding proteins Piccolo and Bassoon,
ELKS/CAST, Munc13s, Rab3-interacting molecules (RIMs), RIM-
binding proteins (RIM-BPs), and liprin-α (Südhof, 2012). After
being synthesized in the soma, the CAZ components are sorted
and assembled into distinct sets of Golgi-derived transport car-
gos termed PTVs (Ackermann et al., 2015; Garner et al., 2000).
PTVs are 80-nm dense core vesicles containing CAZ scaffolds,
CAMs N-cadherin, and presynaptic plasma membrane proteins
Syntaxin and SNAP-25. PTVs also gatherMunc13-1 and RIM1α in
a post-Golgi step forming a “mature” PTV (Maas et al., 2012). The
CAZ functions to dock and prime SVs for exocytosis, recruit
VGCCs to release sites, and tether synaptic adhesion molecules.
Individual CAZ scaffold size and composition can scale synaptic
strength by affecting SV release probability (Holderith et al.,
2012). As few as five PTVs could provide sufficient scaffold
proteins to form a functional CAZ in developing neurons. PTVs
have been suggested to appear prior to SVP arrival at nascent
boutons (Ahmari et al., 2000; Friedman et al., 2000; Zhai et al.,
2000) or are cotransportedwith SVPs during development (Tao-
Cheng, 2020; Vukoja et al., 2018). The SNARE proteins syntaxin
1 and SNAP-25 are also cotransported with Piccolo and Bassoon,
indicating that the SV fusion machinery is packaged with the
CAZ to lay the structural foundation for recruiting other pre-
synaptic components and SVs (Zhai et al., 2001). Similarly,
VGCCs are thought to be assembled in the soma and co-
transported to presynapses (Macabuag and Dolphin, 2015).
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Figure 2. Mechanisms driving presynaptic cargo transport. (A) The SVP transport machinery. Anterograde SVP transport is driven by the kinesin motor
KIF1A, which is autoinhibited by the binding of its stalk coiled-coil domain to its motor heads. Cargo specificity is achieved by adaptor/effector proteins which
bind to the stalk domain to relieve motor autoinhibition. DENN/MADD binds to the KIF1A stalk region and recruits the motor to SVP membranes through
cooperation with Rab3-GTP. Liprin-α and HTT serve as adaptors to recruit KIF1A to SVPs. KIF1A is also relieved from its autoinhibition status by cargo-mediated
dimerization, resulting in increased binding and processivity on MTs compared with its monomeric state. The BORC–Arl8–KIF1A complex also drives SVP
transport into axons. In addition, KIF5 motors drive axonal transport of Syt-1–carrying SVPs through interactions with FEZ1-DISC1. Upon arrival at en passant
presynaptic boutons, SVPs are unloaded by detaching motors from the GTP-tubulin bound MT plus ends. (B) The PTV transport machinery. PTVs are distinct
80-nm dense core vesicles containing the CAZ scaffolds (Piccolo and Bassoon), CAZ proteins (Munc13-1, RIM1α, and ELKS2), sCAMN-cadherin, and presynaptic
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Therefore, multiple presynaptic proteins are cotransported by
the same precursor organelle or by clusters of “distinct” carriers
through a coordinated transport that ensures the delivery of
stoichiometric amounts of AZ and SV contents for efficient
presynaptic assembly in developing neurons (Bury and Sabo,
2011; Wu et al., 2013). However, the current concept of a “dis-
tinct” presynaptic carrier model requires further validation
concerning their molecular identity, biogenesis sorting, and
transport mechanisms.

Kinesin-1 motors KIF5B and KIF5C drive anterograde PTV
transport (Fig. 2 B). Syntabulin functions as a kinesin-1 adaptor
driving PTV transport via an interaction with PTV-carrying
cargo syntaxin 1 (Su et al., 2004). Syntabulin loss-of-function
leads to impaired transport of PTVs from the soma toward distal
axons and reduced density of presynapses and AZs in developing
neurons and mature CNS in mice (Cai et al., 2007; Xiong et al.,
2021). The second adaptor-like protein for driving PTVs is FEZ1,
which binds syntaxin 1 and Munc-18 and thus loads KIF5C onto
the syntaxin-containing PTVs (Chua et al., 2012). APP-like
protein-interacting protein 1 (Aplip1), a homolog of JIP1 func-
tioning as a kinesin-1 adaptor, interacts with RIM-BP through its
proline-rich (PxxP) motif. The mutation in the motif leads to
ectopic accumulation of RIM-BP–enriched PTVs due to defective
anterograde transport (Siebert et al., 2015). PTVs have been
reported to cotransport with SVPs, promoting SVP clustering
and capture (Bury and Sabo, 2011; Lipton et al., 2018; Vukoja
et al., 2018). As a motor adaptor, Arl8 facilitates kinesin-cargo
coupling and promotes anterograde cotrafficking of PTVs and
SVPs (Wu et al., 2013). The JNK-MAP kinase signaling pathway
promotes SV and AZ protein clustering for presynaptic assem-
bly. Interestingly, Bassoon itself functions as an adaptor binding
DLC for retrograde PTV transport. Disruption of Bassoon–DLC
interactions impairs trafficking and distribution of Piccolo and
Bassoon along axons (Fejtova et al., 2009), providing insights as
to how bidirectional PTV transport is critical for precise tar-
geting of presynaptic scaffolds at en passant synaptic sites.

DCVs
DCVs convey neuropeptides and neurotrophins along axons to
modulate synaptic maturation and plasticity in a neuron-type-

dependent manner (Altar et al., 1997; van den Pol, 2012). Axonal
DCV transport displays a complex motility pattern: long-range
circulation and sporadic capture (Bharat et al., 2017; Wong et al.,
2012). The small GTPase Rab2 mediates DCV biogenesis and
maturation in the cell body (Ailion et al., 2014; Edwards et al.,
2009). Either kinesin-3 alone or kinesin-3 and kinesin-1 work in
concert to drive anterograde transport of DCVs from the soma
into axons (Lim et al., 2017; Lo et al., 2011), while the dynein/
dynactin complex mediates DCV retrograde transport (Kwinter
et al., 2009) (Fig. 2 C). The BORC subunit Blos1 activates Arl8 to a
GTP-bound state to promote its binding and activation of KIF1A,
thus driving DCV transport into axons. Rab2 is recruited to DCVs
by Ema, thus assisting the BORC–Arl8–kinesin complex in
driving the axonal transport of DCVs (Lund et al., 2021). An-
terograde transport of DCVs slows down and frequently pauses
at and near presynapses (Guedes-Dias et al., 2019; Nassal et al.,
2022), where DCVs are preferentially captured in an activity-
dependent manner. The calcium-binding protein calmodulin
(CaM) binds to KIF1A in response to Ca2+ signaling and thus
facilitates DCV trafficking upon increased neuronal activity
(Cavolo et al., 2016; Stucchi et al., 2018). KIF1Bβ contains a
conserved CaM binding site and likely undergoes a similar Ca2+/
CaM-dependent regulation of DCV transport. In addition, HTT
phosphorylation by AKT promotes anterograde transport of
brain-derived growth factor (BDNF)–containing DVCs by in-
creasing kinesin-1 recruitment (Colin et al., 2008).

Syt-4 binds KIF1A and is cotransported with DCVs. Phos-
phorylation of Syt-4 (S135) by JNK kinase, which is upregulated
upon neuronal activity, destabilizes Syt4-KIF1A coupling, lead-
ing to a transition from MT-based DCV trafficking to F-actin-
based capture at en passant presynaptic boutons (Bharat et al.,
2017). The Syt4-KIF1A coupling is also modulated by Ca2+/CaM
binding to KIF1A (Stucchi et al., 2018). DCV capture at synapses
may also rely on liprin-α, which captures KIF1A-bound DCVs
upon their synapse entry by interacting with KIF1A (Goodwin
and Juo, 2013). At presynaptic boutons, uncaptured DCVs can be
converted to a retrograde transport mode and return to the
proximal axon, where they again switch to the anterograde
transport route (Wong et al., 2012). Rab2 recruits dynein to
DCVs with the help of HOOK3 to activate dynein–dynactin

plasma membrane proteins Syntaxin-1 and SNAP-25. Syntabulin functions as a KIF5 adaptor driving PTV transport via an interaction with syntaxin. Syntabulin
loss-of-function leads to impaired axonal transport of PTVs from the soma toward distal axons. FEZ1 binds syntaxin, thus loading KIF5C onto PTVs. In addition,
Aplip1/JIP1 act as a kinesin-1 adaptor to mediate RIM-BP–carrying PTV transport into presynapses. Dynein motors drive retrograde PTV transport by binding to
Bassoon. PTVs are cotransported with SVPs facilitated by Arl8-GTP bound to SVP membrane. The JNK-MAP kinase pathway suppresses anterograde transport
and promotes SV and AZ protein clustering for presynaptic assembly. (C) The DCV transport machinery. DCVs convey neuropeptides and neurotrophins along
axons to modulate synapse function. Both KIF1A and KIF5 drive anterograde DCV transport into axon terminals, while dynein/dynactin mediates DCV ret-
rograde transport. Rab2 is recruited to DCVs and assists the BORC-Arl8-KIF1A complex in mediating axonal transport, which is also regulated by Ca2+/cal-
modulin upon increased neuronal activity. Phosphorylated HTT promotes anterograde transport of BDNF-containing DCVs by increasing kinesin-1 recruitment.
Rab2 also helps recruit dynein to DCVs, and HOOK3 activates dynein–dynactin motility. Myosin Va binds to DCVs via its tail domain and facilitates retrograde
transport of DCVs. Phosphorylation of Syt-4 (S135) on DCV membranes by JNK MAP kinase destabilizes Syt4-KIF1A coupling and thus unloads DCVs at en
passant presynaptic boutons. (D) The SE transport machinery. KIF1A is the motor driving anterograde transport of TrkA in Rab3-positive secretory vesicles to
axon terminals. Anterograde transport of TrkB is driven by the Slp1–CRMP-2–KIF5B complex in a Rab27B-dependent manner. JIP3 also binds TrkB and
mediates TrkB anterograde transport by linking TrkB and KLC. At presynaptic terminals, Rab5-positive SEs are formed following neurotrophin binding to its
receptors and undergo retrograde transport toward the soma. Dephosphorylated HTT by calcineurin in response to elevated Ca2+ leads to kinesin-1 de-
tachment and facilitates retrograde transport of SEs carrying BDNF-TrkB by dynein motors. HAP1 acts a dynein activator. Hook1 acts as a dynein effector to
drive retrograde transport via forming the FTS–Hook–FHIP1B–Rab5 complex. Other adaptor proteins, such as BICD1, PTPN23, and Snapin, also recruit dynein
motors to SEs to drive their retrograde signaling.
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motility (Lund et al., 2021; Olenick et al., 2016). Myosin Va binds
to DCVs via its tail domain and facilitates retrograde DCV axonal
transport (Bittins et al., 2010). Therefore, fine-tuned coordina-
tion of anterograde versus retrograde DCV motility contributes
to presynaptic targeting of neuropeptides and neurotrophins.

SEs
Propagation of retrograde neurotrophic signaling conveyed by
SEs is essential for axon growth, synaptogenesis, and plasticity.
At presynapses, neurotrophins, including nerve growth factor,
BDNF, neurotrophin-3 or -4/5, bind RTKs of the Trk family or
the p75 neurotrophin receptor (p75NTR) to trigger the internal-
ization of ligand-bound receptors into Rab5-positive SEs (Chao,
2003). Trk-harboring SEs can function locally by promoting
axonal growth and synapse formation, or distally by trans-
porting to the soma to activate transcriptional signaling neces-
sary for synapse maturation and plasticity (Harrington and
Ginty, 2013). To trigger retrograde neurotrophic signaling, the
prerequisite is the trafficking of newly synthesized RTKs (TrkA/
TrkB) from the soma to axon tips. Kinesin-1 (KIF5B) and kinesin-
3 (KIF1A) motors drive anterograde transport of RTKs in Rab3-
or Rab27B-positive secretory vesicles (Fig. 2 D) (Scott-Solomon
and Kuruvilla, 2018). In mouse sensory neurons, anterograde
transport of TrkA-carrying cargos is driven by KIF1A with the
help of GTP-bound Rab3. Dorsal root ganglia from Kif1a+/− mice
exhibit progressive sensory neuron loss and sensory neuropathy
(Tanaka et al., 2016). TrkB-carrying cargos are loaded onto
KIF5B by a complex of CRMP-2, Slp1, and Rab27B. The cyto-
plasmic tail of TrkB binds to Slp1 in a Rab27B-dependent man-
ner, and CRMP-2 connects Slp1 to KIF5B (Arimura et al., 2009).
JIP3 also mediates TrkB anterograde transport by linking TrkB
and KLC inmouse hippocampal neurons (Huang et al., 2011). JIP1
and JIP3 form a complex that functions to relieve kinesin-1 au-
toinhibition (Sun et al., 2017); overexpressing JIP1 or JIP3 en-
hances TrkB–KLC interaction and promotes TrkB transport,
while knocking down JIP1 or JIP3 diminishes TrkB anterograde
transport. It was also reported that Rab6-positive TrkB carriers
are driven by KIF1A for anterograde transport in hippocampal
neurons (Zahavi et al., 2021).

After internalization at presynaptic terminals, Trk and its
ligands—neurotrophins—are sorted into Rab5-positive early
endosomes and then trafficked to Rab7-positive late endosomes
targeted for dynein-driven retrograde transport toward the
soma (Fig. 2 D) (Deinhardt et al., 2006; Heerssen et al., 2004). In
hippocampal neurons, BDNF-TrkB signaling activates PI3K that
promotes anterograde transport of TrkB cargos into the nascent
axon and further enhances surface insertion of TrkB, creating a
self-amplifying feed-forward loop to promote axon growth
(Cheng et al., 2011). HTT, as a BDNF scaffold, can be dephos-
phorylated by calcineurin in response to Ca2+ transients in
synapses (Scaramuzzino et al., 2022). Dephosphorylation of HTT
(S421) leads to kinesin-1 detachment and thus promotes retro-
grade transport of SEs carrying BDNF-TrkB by binding to dynein
(Colin et al., 2008).

Neurotrophin signaling mediated by SEs conveys synapse-to-
nucleus communication, helping neurons respond to presyn-
aptic signaling with transcriptional changes (Terenzio et al.,

2017; Yamashita, 2019). Multiple motor adaptors/effectors and
sorting pathways are involved in the retrograde transport of
SEs. HAP1 is required for TrkB internalization upon BDNF
binding and activation of dynein motility through its interaction
with the p150Glued dynactin subunit (Lim et al., 2018). Hook1 acts
as a dynein effector to drive retrograde transport of both Rab5-
and Rab7-positive SEs carrying BDNF-TrkB (Olenick et al.,
2019), likely by forming an FTS–Hook–FHIP1B–Rab5 complex
(Christensen et al., 2021) (Fig. 2 D). BICD1, a dynein adaptor, is
also necessary for retrograde transport of TrkB- and p75-
containing SEs (Terenzio et al., 2014). PTPN23, a member of
the endosomal sorting complex, binds BICD1 and contributes to
dynein recruitment to SEs (Budzinska et al., 2020). Snapin, an
adaptor binding to dynein DIC, helps recruit dynein motors to
BDNF-TrkB–carrying SEs for retrograde axonal transport (Zhou
et al., 2012). Snapin knockout mice exhibit embryonic and neo-
natal death accompanied by abnormal brain development
manifested as reduced cortical plates and cell density (Zhou
et al., 2011). Some activated BDNF-TrkB complexes are colo-
calized with LC3b-II–positive autophagic organelles that un-
dergo retrograde transport to confer long-range signaling
capabilities (Kononenko et al., 2017; Andres-Alonso et al., 2019).
Upon reaching the soma, SEs exhibit extended periods of signal
up to 25 h via Coronin-1–mediated local recycling and re-
internalization of RTKs into Rab11-positive recycling endosomes
that escape lysosomal targeting and degradation (Moya-
Alvarado et al., 2022; Suo et al., 2014). Rab11-positive endo-
somes can further traffic recycled RTKs outward to the axon for
a feedback loop of neurotrophic signaling amplification (Ascaño
et al., 2009). BICD1 also plays a role in maintaining the balance
between RTK receptor degradation and recycling (Terenzio et al.,
2014). Such persistent singling may help activate transcriptional
programs necessary for neurite growth and synapse formation.
SEs originating from distal axons can also be transported all the
way to dendrite arbors to regulate synaptic connectivity (Sharma
et al., 2010).

mRNA transport via RNA granules
One mechanism of presynaptic protein replenishment involves
the axonal transport of mRNAs in RNA granules to presynaptic
sites for local translation (Batista et al., 2017; Turner-Bridger
et al., 2018). RNA profiling studies have revealed more than
1,000 different mRNAs enriched in axons and presynaptic ter-
minals, thus providing a platform for local protein synthesis for
structural and functional maintenance and remodeling of pre-
synapses (Cajigas et al., 2012; Dalla Costa et al., 2021; Hafner
et al., 2019). In neurons, mRNAs transcribed in the nucleus
are packaged into large protein complexes called ribonucleo-
proteins (RNPs) through association with RNA-binding proteins
(RBPs). After nuclear export, RNPs undergo long-distance axo-
nal transport driven directly by motors (Kanai et al., 2004;
Sladewski et al., 2013). mRNA transport in axons may also occur
via hitchhiking of RNA granules on moving organelles, such as
endosomes, lysosomes, or mitochondria (Cioni et al., 2019;
Gershoni-Emek et al., 2018; Liao et al., 2019). Synaptic mRNA
arrest and anchoring are thought to rely on F-actin as well as
deactivation of driving motors (Sladewski et al., 2013).
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The 39 and 59 untranslated regions of mRNAs play key roles
in transport and localization selectivity (Andreassi and Riccio,
2009; Merianda et al., 2013; Tushev et al., 2018). Multiple motifs
or cis-acting elements are necessary and sufficient for mRNA
localization into axons, including the “zip code” motif, MAIL
(mail for axonal importin localization) motif, and AU-rich se-
quences bearing AUUUA element; many RBPs can also bind to a
single RNA element, suggesting that different mRNAs may be
cotransported by the same RBP in a single RNA granule (Lee
et al., 2018). The number of localization motifs on a single
mRNA is linearly correlated with the number of motors loaded,
thus affecting its processivity or run length (Sladewski et al.,
2013). However, how different RBPs recruit motor proteins to
form a transport granule in axons and whether this process
requires additional adaptors remains unclear. Future studies are
needed to reveal mechanisms underlying localization and
translation of mRNA for the maintenance of synaptic remodel-
ing and plasticity.

NDD-linked mutations in the axonal transport machinery
During nervous system development, any perturbation in
axonal transport will cause a mistargeted distribution of pre-
synaptic proteins/cargos, leading to impaired presynaptic
formation and maintenance. Missense mutations and small ge-
nomic deletions or rearrangements in genes encoding the
transport machinery are increasingly revealed via disease-
related genome screening. Growing lines of evidence indicate
that axonal transport disruption contributes to a broad spectrum
of NDDs. Presynaptic assembly and maturation are regulated
at multiple levels and through redundant mechanisms that in-
tegrate biosynthesis, transport, and assembly of presynaptic
building blocks (Emperador-Melero and Kaeser, 2020). It is thus
challenging to determine whether defective axonal transport
alone has a major pathogenic role or is just an epiphenomenon
that may occur in a short time window. In this section, we
summarize NDD-associated mutations in genes encoding
transport machineries that result in a wide range of NDD phe-
notypes, including lissencephaly, ASD, mental retardation, ID,
cognitive and motor impairment, complex cortical malforma-
tions, and infant-onset epilepsy (Table 1). Although some of
these mutations impair MT stability, motor activity, or motor-
cargo coupling, presynaptic assembly and maintenance have not
been examined in vitro or in vivo nerve systems. One of the well-
characterized models with identifiable phenotypes of defective
axonal transport and presynaptic assembly is the ASD-linked
mutation of KIF5 adaptor syntabulin for PTV transport (Xiong
et al., 2021). These observations may direct future studies by
testing the emerging hypothesis that defective axonal transport
is one of the mechanisms contributing to synaptic pathology in
NDDs (Badal and Puthanveettil, 2022; Lasser et al., 2018; Sleigh
et al., 2019).

Microtubules
MTs are composed of α- and β-tubulin heterodimers, which
undergo a dynamic process of polymerization (growing state)
and depolymerization (shrinking state). After neurite extension
during early neurodevelopment, MT stabilization is essential for

axon specification and the polarity of developing neurons
(Conde and Cáceres, 2009; Hoogenraad and Bradke, 2009).
MTs control fundamental processes occurring during neuro-
development, including intracellular transport, axon guidance,
and synapse formation. Stabilized MTs can recruit kinesin-
1 motors to initiate polarized trafficking of various organelles
and cargos that are necessary for the formation of axons and
synapses. Mutations in tubulin genes disturb MT stability
leading to abnormalities in brain development commonly re-
ferred to as tubulinopathies, including lissencephaly (“smooth
brain”), polymicrogyria (“excessive cerebral cortex folding and
malformations of cortical layering”), and malformations of cor-
tical development. Strikingly, ∼300 mutations have been de-
scribed in the genes encoding α- and β-tubulins, including
TUBA1A, TUBA1C, TUBA4A, TUBB1, TUBB2A, TUBB2B, TUBB3,
TUBB4A, TUBB4B, and TUBB8, from patients displaying severe
brain malformations associated with ID and refractory child-
hood epilepsy (Fourel and Boscheron, 2020; Pham and
Morrissette, 2019). These mutations are thought to disrupt
MT dynamics by switching from growth to shrinkage (depo-
lymerization), which disrupts axon growth, presynaptic cargo
transport, and synaptogenesis (Fig. 3). Mutations in tubulin
genes, such as TUBB3, not only affectMT stability but also reduce
kinesin localization to MTs, thus disrupting axonal transport
(Minoura et al., 2016; Niwa et al., 2013). Future studies using
neurons differentiated from patient-derived induced pluripotent
stem cells (iPSCs) will provide direct evidence of how these tu-
bulin mutations affect presynaptic assembly.

MT modification
MAPs, +TIPs, and signaling proteins involved in posttransla-
tional modifications play critical roles in MT nucleation, as-
sembly, or stability. Mutations in these proteins were reported
in patients with lissencephaly, ID, and ASD, resulting in MT
destabilization and impaired axonal transport (Fig. 3). For ex-
ample, LIS1 is one of the first identified MT-related genes in
type-I lissencephaly patients (Reiner et al., 1993). LIS1 increases
the MT-binding of dynein and activates dynein by relieving its
autoinhibited form, thus facilitating retrograde transport (Htet
et al., 2020; Karasmanis et al., 2023). Lis1-null mice die prena-
tally and Lis1+/− mice display deficits in motor coordination and
cognition, as well as severe brain abnormalities (Hirotsune et al.,
1998; Youn et al., 2009), while increased LIS1 expression causes
severe brain malformation (Bi et al., 2009). CAP-Gly domain-
containing linker protein 1 (CLIP1) is localized at +TIP of
growing MTs and regulates MT-based axonal transport in de-
veloping neurons by recruiting dynein to MTs through its in-
teraction with LIS1 (Coquelle et al., 2002). A mutation deleting
CLIP1 was identified in families of ID patients (Larti et al., 2015).

Kinesin motors
The kinesin-3 motor KIF1A mediates axonal transport of a large
population of presynaptic cargos, including SVPs, matured SVs,
DCVs, as well as some PTVs (Fig. 4 A). Whole-genome se-
quencing identified more than 100-point mutations in KIF1A
with dominant and recessive inheritance from patients suffering
from a broad spectrum of KIF1A-associated neurological
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Table 1. NDD-linked mutations in genes encoding axonal transport machineries

Protein Gene with
mutation

Inheritance Disease: Phenotypes References

Microtubules

α1A-tubulin TUBA1A AD: Missense/insertion/
deletion mutations

LIS3: Congenital microcephaly, mental
retardation, no language development

Fallet-Bianco et al., 2014; Poirier
et al., 2013

β2A-tubulin Class IIa TUBB2A AD: Missense mutations CDCBM5: Intellectual disability, hypotonia,
developmental delay, epilepsy

Cushion et al., 2014; Rodan et al.,
2017; Schmidt et al., 2021

β-tubulin Class I TUBB AD: Missense mutations CDCBM6: Delayed psychomotor development
and microcephaly

Breuss et al., 2012

β2B-tubulin Class IIb TUBB2B AD: Missense mutations CDCBM7: Microcephaly, mental retardation,
severe neuromotor impairment, no visual
contact, infantile seizures

Cederquist et al., 2012;
Laquerriere et al., 2016

β3-tubulin Class III TUBB3 AD: Missense mutations CDCBM1: Mental retardation, strabismus, axial
hypotonia, and spasticity

Fallet-Bianco et al., 2014; Poirier
et al., 2010

β6-tubulin Class V TUBB6 AD: Missense mutations FPVEPD: Bilateral ptosis and facial palsy, severe
rhinophonia aperta with speech articulation
defects

Fazeli et al., 2017

γ1-tubulin TUBG1 AD: Missense mutations CDCBM4: Complex cortical malformations,
intellectual disability

Poirier et al., 2013

Motor proteins

Kinesin-1 KIF5A AD: Missense mutations in
tail domain

NEIMY: Myoclonic seizures, lack of
developmental progress

Duis et al., 2016; Rydzanicz et al.,
2017

AD: Missense mutations in
motor/stalk/tail domain

SPG 10: Limb spasticity and weakness,
sensorimotor polyneuropathy, cognitive
impairment

de Boer et al., 2021; de Souza
et al., 2017; Méreaux et al., 2022

AD: Missense mutations in
stalk domain

CMT2: Chronic axonal motor and sensory
polyneuropathy

de Boer et al., 2021

KIF5B AR: Missense mutations Developmental and speech delay Charng et al., 2016

KIF5C AD: Missense mutations in
motor domain

CDCBM2: Microcephaly, developed clonic
seizures, severe intellectual disability

de Ligt et al., 2012; Poirier et al.,
2013

Kinesin-2 KIF3B AD: Missense mutations in
motor domain

SZ: Cognitive impairment, delusions,
hallucinations, disorganized speech and
movements

Alsabban et al., 2020

Kinesin-3 KIF1A AD: Missense mutations in
motor domain

NESCAVS: Global developmental delay,
intellectual disabilities, seizures

Lee et al., 2015; Ohba et al., 2015

AD: Missense mutations in
motor domain

HSES: Severe brain edema and atrophy,
developmental delay, peripheral neuropathy,
autonomic dysfunction

Isobe et al., 2022

AR: Truncating mutation HSN2C: Early onset of hereditary sensory
neuropathy, distal muscle weakness, slowed
speech development

Rivière et al., 2011

AD/AR: Missense mutations
in motor domain

SPG30: Early childhood onset unsteady spastic
gait, hyperreflexia of the lower limbs, learning
disabilities

Citterio et al., 2015; Klebe et al.,
2012; Nemani et al., 2020;
Pennings et al., 2020

KIF1Bβ AD: Missense mutations in
motor domain

CMT2A: Chronic axonal motor and sensory
polyneuropathy

Xu et al., 2018; Zhao et al., 2001

Dynein DYNC1H1 AD: Missense mutations in
motor/tail domain

CDCBM13: Global developmental delay,
intellectual disability, seizures

Poirier et al., 2013; Vissers et al.,
2010; Willemsen et al., 2012

AD: Missense mutations in
tail domain

SMALED1: Early childhood onset of muscle
weakness and atrophy

Harms et al., 2012; Tsurusaki
et al., 2012

Myosin V MYO5A AR: Nonsense or truncating
mutation

Hindbrain malformation and developmental delay Charng et al., 2016
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disorder (KAND) (see https://Kif1a.org) (Boyle et al., 2021).
KIF1A autosomal dominant mutations cause moderate to severe
developmental delay with ID and cerebellar atrophy, while
recessive mutations lead to progressive spastic paraplegia and
hereditary sensory neuropathy. Most variants in KIF1A locate in
the motor domain with loss-of-function mutations and a few
gain-of-function mutations (Chiba et al., 2023; Nair et al., 2023;).
Some KIF1A variants (Thr99Met, Glu239Lys, and Pro305Leu)
disruptmotor activity in a dominant-negativemanner, impeding
axonal transport and accumulating SVs in the somadendrites
with reduction in presynapses (Fig. 4 B) (Anazawa et al., 2022;
Morikawa et al., 2022). Other KIF1A mutations (Ala255Val,
Val8Met, and Arg350Gly) disrupt its autoinhibition, leading to
abnormally hyperactive motors and overtransport of SVPs to
axon tips but disturb the proper distribution of SVPs to en pas-
sant synapses in C. elegans (Fig. 4 C) (Chiba et al., 2019). Patients
carrying Arg13His and Asn222His KIF1A mutations are at a high

risk of ASD, characterized bymoderate to severe deficits in social
interaction and communication (Huang et al., 2021; Kurihara
et al., 2020). Two heterozygous mutations in KIF1Bβ (Gln98Leu
and Tyr1087Cys) were identified in patients with Charcot-
Marie-Tooth disease type 2A1 (CMT2A1) presenting with
childhood-onset motor retardation (Zhao et al., 2001). The
Gln98Leu variant resides in the conserved ATP-binding site and
significantly reduces ATPase activity, resulting in perinuclear
accumulation of mutant KIF1Bβ. The Tyr1087Cys variant de-
creases KIF1Bβ cargo binding capacity and impairs the axonal
transport of insulin-like growth factor 1 receptor, which is crit-
ical for neuronal survival and axonal development (Xu et al.,
2018).

For the kinesin-1 family, numerous missense KIF5A muta-
tions located in the motor and stalk domains have been linked
to spastic paraplegia type 10 (SPG10), a genetic neuro-
developmental disorder (Carosi et al., 2015; Crimella et al., 2012;

Table 1. NDD-linked mutations in genes encoding axonal transport machineries (Continued)

Protein Gene with
mutation

Inheritance Disease: Phenotypes References

Motor adaptors and regulatory proteins

Kinesin-binding protein KIF1BP/KBP AR: Nonsense mutation GOSHS: Intellectual disability, microcephaly Brooks et al., 2005; Drévillon
et al., 2013

AR: Truncating mutations Polymicrogyria: Microcephaly Valence et al., 2013

Bicaudal D2 BICD2 AD: Missense mutations SMALED2A: Early childhood onset of muscle
weakness and atrophy

Neveling et al., 2013; Peeters
et al., 2013

AD: Missense mutations SMALED2B: Decreased fetal movements, severe
hypotonia, muscle atrophy, and respiratory
insufficiency after birth

Koboldt et al., 2018; Ravenscroft
et al., 2016; Storbeck et al., 2017

Lissencephaly 1 PAFAH1B1 AD: Missense or truncating
mutations

LIS: Developmental delay, early onset of seizures Reiner et al., 1993; Saillour et al.,
2009

NudE
neurodevelopment
protein 1

NDE1 AR: Truncating or nonsense
mutations

LIS4: Severe microcephaly, mental retardation,
early-onset epilepsy

Abdel-Hamid et al., 2019;
Alkuraya et al., 2011

AR: Nonsense mutation or
intragenic deletion

MHAC: Microcephaly, motor and mental
retardation

Abdel-Hamid et al., 2019; Guven
et al., 2012

Syntabulin SYBU N/A: Missense mutation Autism: Delayed or absent language
development, learning disability, repetitive
speech or motor behaviors, social deficits, seizure

Herman et al., 2016; Xiong et al.,
2021

Disrupted in
schizophrenia 1

DISC1 N/A: Missense mutation SZ9: Cognitive impairment, delusions,
hallucinations, disorganized speech and
movements

Schumacher et al., 2009; Song
et al., 2008

FMRP FMR1 XLD: Missense and truncating
mutations, unstable
expanded CCG repeat

FXS: Impaired intellectual development, autistic
traits, distinct facial features, and seizures

De Boulle et al., 1993; Grønskov
et al., 2011; Kremer et al., 1991

CLIPs CLIP1 AR ARID: Intellectual disability Larti et al., 2015

NDD-linked genetic mutations in genes encoding the axonal transport machinery, along with their inheritance patterns and disease phenotypes.
Inheritance: AD, autosomal dominant; AR, autosomal recessive; N/A, not applicable; XLD, X-linked dominant; ARID, autosomal recessive intellectual disability;
CDCBM1-13, complex cortical dysplasia with other brain malformations-1-13; CMT2, Charcot-Marie-Tooth disease 2; FPVEPD, facial palsy with ptosis and
velopharyngeal dysfunction; FXS, fragile X syndrome; GOSHS, Goldberg-Shprintzen syndrome; HSES, hemorrhagic shock and encephalopathy syndrome;
HSN2C, hereditary sensory neuropathy type IIC; IAHSP, infantile-onset ascending hereditary spastic paralysis; LIS, lissencephaly; LIS3, lissencephaly 3; LIS4,
lissencephaly 4; MHAC, microhydranencephaly; NEIMY, neonatal intractable myoclonus; NESCAVS, neurodegeneration and spasticity with or without
cerebellar atrophy or cortical visual impairment syndrome; SCZD, schizophrenia; SMALED1, lower extremity-predominant spinal muscular atrophy-1;
SMALED2A, childhood-onset lower extremity-predominant spinal muscular atrophy-2A; SMALED2B, prenatal-onset lower extremity-predominant spinal
muscular atrophy-2B; SPG10, spastic paraplegia type 10; SPG30, spastic paraplegia type 30.
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Méreaux et al., 2022). These KIF5A mutants show abnormal
motor ATPase activity and perturbed axonal transport. Three
KIF5A de novo stop-loss frameshift variants were reported in
patients suffering from severe infantile-onset myoclonic seiz-
ures and early developmental arrest (Duis et al., 2016; Rydzanicz
et al., 2017). These mutations either cause truncation (921delC)
or abnormal elongation (2854delC and 2934delG) of the KIF5A
C-terminus. A whole exome sequencing study revealed a ho-
mozygous KIF5B variant (His751Arg) in a family with brain
malformation and ID (Charng et al., 2016). A heterozygous
variant in the KIF5C motor domain (Glu237Lys) was reported
in patients with severe ID (de Ligt et al., 2012; Poirier et al.,
2013).

The kinesin-2 motor KIF3 is one of the most abundantly ex-
pressed KIFs in the nervous system (Kondo et al., 1994). KIF3 is a
heterotrimer containing two distinct heavy chains, KIF3A and
KIF3B, and one light chain, KAP3. KIF3 plays a role in neurite
elongation and branching by transporting a variety of organ-
elles, including fodrin-associated vesicles and collapsin response
mediator protein 2 (CRMP2)-containing vesicles (Takeda et al.,
2000; Yoshihara et al., 2021). A KIF3B nonsense mutation
(Arg654Ter) was found in SZ patients (Alsabban et al., 2020).
Neurite hyperbranching resulting from impaired transport of
CRMP2-containing vesicles is a causative mechanism of KIF3B-
related SZ pathogenesis. KIF3 expression is reduced in brains
of patients with SZ. Kif3b+/− mutant mice display a range of

behavioral characteristics of SZ, and KIF3B (Arg654Ter) mutant
protein fails to rescue the cellular phenotypes observed in
Kif3b+/− neurons (Yoshihara et al., 2021).

Dynein motors
Over 100 de novo heterozygous mutations in the DYNC1H1 gene
have been identified in patients with malformations of cortical
development and/or developmental delay and ID (Ge et al., 2023;
Poirier et al., 2013; Willemsen et al., 2012), as well as early
childhood-onset motor retardation (Jamuar et al., 2014; Weedon
et al., 2011), or a combination of these phenotypes. These var-
iants are scattered throughout the dynein motor stem, motor,
and neck domains and have a dominant-negative or gain-of-
function effect (Amabile et al., 2020; Hoang et al., 2017). Func-
tional analysis of 14 DYNC1H1 patient mutations showed that
most mutations result in impaired motility due to reduced
dynein expression/stability (Lys671Glu) or compromised proc-
essivity (Arg1962Cys and His3822Pro) (Fig. 4 B). A combination
of clinical, molecular, and cellular investigations will provide
mechanistic insights into the relationships between axonal
transport defects in DYNC1H1 mutations and presynaptic as-
sembly/maturation in NDDs.

Motor adaptors and effectors
Kinesin-binding protein (KBP, KIF1BP) directly binds to the
motor domain of KIF1A and KIF1B. This binding inhibits motor-

Figure 3. NDD-linked mutations in MTs. MTs are hollow tubes that are composed of α- and β-tubulin heterodimers, which undergo dynamic cycles of
growth (polymerization) and shrinkage (depolymerization). Newly incorporated tubulin is bound to guanosine triphosphate (GTP) that gets rapidly hydrolyzed
upon polymerization, generating guanosine diphosphate (GDP)–bound tubulin along the MT lattice. Hundreds of mutations in genes encoding tubulin were
reported in patients presenting with NDDs. These mutations were thought to disrupt MT dynamics via switching from growth to shrinkage (depolymerization),
which disrupts axon growth, presynaptic cargo transport, and synaptogenesis. MT dynamics are also regulated byMAPs and +TIPs. Mutations in these proteins
were reported in patients with NDDs, resulting in MT destabilization and impaired axonal transport. MT-stabilizing agents have shown some beneficial effects
in ameliorating neurological and behavioral deficits in somemodels of NDDs. The C-terminal tail of α-tubulin undergoes posttranslational modifications such as
acetylation, which facilitates the recruitment of motor proteins to MTs. Decreased α-tubulin acetylation and increased levels of tubulin-specific histone
deacetylase 6 were observed in certain NDD-linkedmodels. Treatment with HDAC6 inhibitor Tubastatin A is thought to counteract MT defects and restore MT-
based cargo trafficking.

Xiong and Sheng Journal of Cell Biology 12 of 23

Axonal transport of presynaptic cargos https://doi.org/10.1083/jcb.202401145

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/223/6/e202401145/1926883/jcb_202401145.pdf by guest on 09 February 2026

https://doi.org/10.1083/jcb.202401145


MT attachment and thus interferes with cargo transport
(Atherton et al., 2020). While overexpressing KBP inhibits ax-
onal transport of SVPs in cultured hippocampal neurons and in
C. elegans sensory neurons (Kevenaar et al., 2016), depleting KBP
results in abnormal KIF1A and SV accumulation in axonal
growth cones. Mice lacking KBP die shortly after birth with
smaller brains. In addition, KBP can alter MT dynamics by in-
hibiting MT-depolymerizing kinesins, such as KIF18A. Human
genetic data shows that homozygous mutations in KBP are linked
to Goldberg-Shprintzen syndrome (GOSHS) distinguished by ID,

microcephaly, and axonal neuropathy (Brooks et al., 2005;
Valence et al., 2013; Salehpour et al., 2017).

Our previous studies provided direct evidence supporting an
axonal transport mechanism underlying autism-like synaptic
dysfunction and social behavioral traits. Syntabulin functions as
a kinesin-1 adaptor driving PTV transport for synapse assembly
and maintenance (Cai et al., 2007; Su et al., 2004). Syntabulin
expression in mouse brains peaks during the first 2 wk after
birth and then progressively declines with brain maturation
(Xiong et al., 2021). The syntabulin gene (SYBU) is located within

Figure 4. NDD-linked mutations in motors and adaptors. (A) Kinesin and dynein are MT-based and ATP-driven molecular motors that move cargos in the
anterograde and retrograde directions, respectively. Proper axonal transport is essential for presynaptic assembly. (B) Loss-of-function mutations: growing
numbers of NDD-linked variants in genes encoding motors and adaptors are loss-of-function mutations that lead to MT-motor detachment, motor-cargo
disassembly, or disruption of motor stability and activity, therefore impairing axonal transport of presynaptic cargos, inducing the accumulation of presynaptic
components in the somadendritic regions and reduction in axon elongation and presynaptic formation. (C) Hyperactive mutations: certain NDD-linked variants
in dynein regulatory proteins BICD2 display hyperactive motor activity by enhancing formation of the dynein–dynactin motor complex. Some KIF1A variants
disrupt its autoinhibition leading to abnormally hyperactive motors and over-transport of SVPs to axon tips, disturbing axon branching and outgrowth as well
as the targeted distribution of presynaptic cargos along axons.
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the autism susceptibility loci 8q22-24 (Chen et al., 2017; Sánchez
Delgado et al., 2014). A recent whole exome sequencing study
identified an autism-linked de novomissense variant (Arg59Gln)
in the human SYBU gene (Herman et al., 2016). These findings
raise a fundamental question of a mechanistic link between
defects in syntabulin-mediated PTV transport and autism-like
phenotypes. We recently demonstrated striking phenotypes in
Sybu conditional knockout (cKO) mice: (1) impaired transport of
PTVs from the soma towards distal axons, (2) reduced density of
presynapses and AZs in mouse brains, and (3) altered synaptic
transmission and plasticity (Fig. 4 B). Intriguingly, Sybu cKO
mice also exhibit core autism-like traits, including defective
social recognition and communication, increased stereotypic
behavior, and impaired spatial learning and memory (Xiong
et al., 2021). Functional studies confirmed that the autism-
linked missense variant (Arg59Gln) loses its adapter capacity
for binding kinesin-1 motors and thus impairs anterograde ax-
onal transport of PTVs. These phenotypes establish for the first
time that human autism-linked deficits in axonal PTV transport
contribute to autism-like behavioral abnormalities.

Disease-linked mutations in dynein regulatory proteins, in-
cluding BICD2 and nuclear distribution protein E1 (NDE1), are
also associated with a broad phenotypic spectrum from early-
onset peripheral neuropathies to malformations of cortical
development (Lipka et al., 2013). BICD2 binds to the dynein–
dynactin motor complex through its coiled-coil domains and
thus modulates dynein-driven cargo transport, such as mRNA
and Rab6-positive secretory vesicles (Grigoriev et al., 2007;
Sladewski et al., 2018). Dominant missense mutations in BICD2
were linked to prenatal/childhood-onset spinal muscular atrophy
(SMALED), a developmental disease of motor neurons affecting
the lower limbs (Neveling et al., 2013; Rossor et al., 2015; Storbeck
et al., 2017; Trimouille et al., 2018). Certain BICD2 mutants
(Ser107Leu, Asn188Thr, Ile189Phe, and Phe739Ile) display hyper-
activated motors by enhancing dynein–dynactin motor complex
formation (Fig. 4 C). However, increased retrograde transport
blocks neurite outgrowth in rat hippocampal neurons (Huynh and
Vale, 2017). These studies suggest that an imbalanced anterograde
versus retrograde axonal transport may underlie NDDs.

The fragile X mental retardation protein (FMRP) is an
mRNA-binding protein involved in the transport, localization,
and translational regulation of a subset of dendritic mRNAs
(Grossman et al., 2006); its loss is associated with ID and ASD
(O’Donnell and Warren, 2002). FMRP and its homologs, FXR1P
and FXR2P, are highly expressed in the developing brain and
observed in the form of discrete granules (fragile X granules)
localized in axons and presynaptic terminals in a set of mouse
brain regions (Christie et al., 2009). FMRP loss leads to cell-
autonomous defects in presynaptic terminal formation in orga-
notypic mouse hippocampal slices (Hanson and Madison, 2007).
Interestingly, BICD2 colocalizes with FMRP transport particles
and facilitates their bidirectional trafficking (Bianco et al., 2010),
which may also involve kinesin-1 and dynein motors (Splinter
et al., 2010). FMRP protein levels are reduced in neurons over-
expressing disease variant BICD2 (Lys730Met), which displays
reduced FMRP puncta trafficking into processes leading to ab-
normal neuron morphogenesis (Bianco et al., 2010).

NDE1 and its ortholog NDEL1 work together with LIS1 to
promote dynein motor activity (Garrott et al., 2022). Truncating
mutations in NDE1were reported in patients with lissencephaly-
4 (Alkuraya et al., 2011; Bakircioglu et al., 2011). As a DISC1
binding partner, NED1/NDEL1 may also play a role in the etiol-
ogy of SZ (Burdick et al., 2008). Rare NED1 mutations within
exon 7 contribute to SZ susceptibility by affecting axonal out-
growth (Kimura et al., 2015). NDEL1, FEZ1, and LIS1 expression
levels are significantly reduced in the hippocampus of SZ pa-
tients carrying DISC1 polymorphisms (Ser704Cys) (Lipska et al.,
2006). These genetic studies support the emerging concept that
disruptions in presynaptic cargo transport are the earliest con-
tributors to the pathogenesis of a broad spectrum of NDDs;
therefore, restoration of these transport defects is an attractive
therapeutic strategy.

Therapeutic restoration of defective axonal transport in NDDs
At present, significant attention is focused on three promising
themes: (1) stabilizingMTs to restore trafficking tracks; (2) targeting
signaling pathways to modify transport machinery; and (3) gene-
based editing to correct mutations in tubulin, motors, and adaptors.

MT stabilizers
A well-stabilized MT network constitutes a base for efficient
axonal transport. Alterations in MT dynamics are one of the
major causative mechanisms for many NDDs. MT-stabilizing
agents have shown some beneficial effects on ameliorating
neurological and behavioral deficits in various models of NDDs,
including ID, ASD, SZ, and epilepsy (Fig. 3) (Bonini et al., 2017;
Gambino et al., 2022; Liaci et al., 2021). For example, Epothilone
D (EpoD), a taxol-related compound that interacts with tubulin
to stabilize MTs, ameliorates synaptic function and behavior in
mouse models of neuropathy and SZ (Andrieux et al., 2006;
Brunden et al., 2010). At nanomolar concentrations, EpoD im-
proves MT density and axonal transport, reduces axonal dys-
trophy, and enhances cognitive performance (Zhang et al.,
2012). MT stabilization can also be achieved by targeting MT-
regulating proteins. Calpain inhibitors that protect LIS1 from
proteolysis can recover retrograde transport and improve be-
havioral performance in LIS1+/− mice (Toba et al., 2013; Yamada
et al., 2009). Alterations in tubulin posttranslational modifications
have been reported in certain forms of NDDs (Moutin et al., 2021).
For example, Rett Syndrome (RTT), a severe NDDwith ID, autistic
features, and motor dysfunction, is caused by loss-of-function
mutations in the X-linkedmethyl-CpG-binding protein 2 (MECP2).
Decreased acetylated α-tubulin levels, but increased tubulin-
specific histone deacetylase 6 (HDAC6) levels, were observed in
Mecp2-deficient cells (Gold et al., 2015). Treatment with the HDAC6
inhibitor Tubastatin A can counteract MT defects and thus restore
the recruitment of kinesin-1 and dynein motors to promote
MT-based cargo trafficking. As promising results are emerging
in animal models and clinical trials, MT-targeted interventions
represent an attractive therapeutic opportunity.

Targeting signaling pathways
NDD-linked mutations in genes encoding motors and adaptors
also contribute to altered axonal transport. Therefore, the
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signaling modulation of these motors or adaptors is another
therapeutic approach to restore axonal transport. Several pro-
tein kinases that directly phosphorylate motors and adaptors are
suggested as potential targets. For example, GSK3β, involved in
regulation of both kinesin-1 and dynein-driven axonal transport
(Du et al., 2010; Gao et al., 2015), was reported to be upregulated
in a subset of NDDs. Increased GSK3β activity appeared to dis-
rupt axonal transport through the dissociation of motors and
their cargos via phosphorylating KLC and DIC, respectively
(Banerjee et al., 2021; Dolma et al., 2014). In addition, treatment
with lithium or GSK3β inhibitors suppress GSK3β activity and
thus corrects behavioral phenotypes in animal models of
NDDs, including ID, ASD, SZ, and epilepsy (Fuchs et al., 2015;
Guo et al., 2012; Mao et al., 2009). In RTT, BDNF signaling is
disrupted through an HTT-mediated transport mechanism.
Surprisingly, promoting HTT-Ser421 phosphorylation by
FK506, a calcineurin inhibitor, restores axonal transport of
BDNF-carrying SEs and thus improves behavioral phenotypes
and survival of Mecp2 knockout mice (Ehinger et al., 2020).
These studies suggest that restoring axonal transport by tar-
geting signaling pathways is an alternative approach, although
off-target effects and crosstalk of signaling cascades need to be
considered.

Gene therapy
Thousands of genetic mutations have been associated with dis-
tinct types of NDDs. Given that the exact mechanism, timing,
and progression of the molecular pathology are largely un-
known, 90% of rare NDDs do not currently have an approved
treatment. Gene-based editing opens a new avenue for the
treatment of NDDs through expression of exogenous or sup-
pression of endogenous genes. Gene therapy has been recently
shown to be effective in various animal models of NDDs, such as
ASD and epilepsy (Megagiannis et al., 2022; Ozlu et al., 2021;
Turner et al., 2021), with several strategies moving toward
clinical trials. We previously showed that axonal retrograde
transport could be rescued via AAV9-based gene delivery of
dynein adaptor Snapin, which reduces disease progression in
Amyotrophic Lateral Sclerosis (ALS) mice model (Xie et al.,
2015). Recent technological innovations, including improved
therapeutic delivery of genetic material and the development
of in vivo CRISPR-based gene editing, will further improve the
feasibility of personalized gene therapy that corrects causa-
tive gene mutations to reverse defective axonal transport
in NDDs.

Conclusions and perspectives
NDDs are recognized as one class of “synaptic disorders” where
alterations in synaptic structures and functions impair both lo-
cal and global brain connectivity and information processing.
Proper synaptic transmission requires seamless integration of
biogenesis, sorting, transport, and assembly of presynaptic
components, and maintenance and remodeling of synaptic
structures. While synapse development is regulated in multiple
steps, the targeted delivery of presynaptic cargos is vital to
building and maintaining functional synapses, which requires
intricate mechanisms to orchestrate bidirectional transport of

various cargos between cell bodies and axon terminals. Recent
studies have started to uncover presynaptic mechanisms un-
derlying NDD-linked axonal transport defects. Mutations in
genes encoding the axonal transport machinery disturb axonal
trafficking in early developmental stages contributing to “syn-
aptopathies,” one of the predominant mechanisms underlying
NDDs. A particular area of future investigations will be the
molecular compositions and identity of various presynaptic
cargos: specifically, (1) how a unique presynaptic cargo can be
sorted and packaged in the soma and loaded by a specific set of
transport motors and adaptors, (2) how motors initiate and
terminate their transport, (3) howmotor activity is controlled by
local cues within the axon and how motors unload cargos with
high precision at thousands of en passant boutons and terminal
presynapses, (4) whether multiple CAZ and SV proteins package
into one transport cargo or cluster together for cotransport, and
(5) whether all CAZ components arrive at nascent synapses si-
multaneously or sequentially. Addressing these fundamental
questions will continue to build a more coherent view of
mechanisms that maintain synaptic assembly, maturation, and
remodeling during brain development and throughout life. Al-
though genetic screenings have identified a growing list of NDD-
linked mutations in genes encoding the transport machinery,
pathological mechanisms related to these disease variants are
rarely studied. As we learn more about the specific interactions
among MTs, motors, adaptors, and cargos being transported,
the pathobiology induced by these NDD-linked mutations
may become clearer. Future studies using advanced single-
molecule live imaging and in vivo approaches, combined
with high-throughput genomics and proteomics, will provide
new insights into NDD-linked causative mechanisms under-
lying axon transport defects of presynaptic cargos during
neurodevelopment. Knowledge from human iPSC-derived
models, along with gene-editing approaches, could have sig-
nificant impact on the development of potential therapeutic
restoration of defective axonal transport for currently
incurable NDDs.
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network: An in vivo intracellular labeling study. J. Comp. Neurol. 339:
181–208. https://doi.org/10.1002/cne.903390204

Li, S., G.J. Xiong, N. Huang, and Z.H. Sheng. 2020. The cross-talk of energy
sensing and mitochondrial anchoring sustains synaptic efficacy by
maintaining presynaptic metabolism. Nat. Metab. 2:1077–1095. https://
doi.org/10.1038/s42255-020-00289-0

Liaci, C., M. Camera, G. Caslini, S. Rando, S. Contino, V. Romano, and G.R.
Merlo. 2021. Neuronal cytoskeleton in intellectual disability: From
systems biology and modeling to therapeutic opportunities. Int. J. Mol.
Sci. 22:6167. https://doi.org/10.3390/ijms22116167

Liao, Y.C., M.S. Fernandopulle, G. Wang, H. Choi, L. Hao, C.M. Drerup, R.
Patel, S. Qamar, J. Nixon-Abell, Y. Shen, et al. 2019. RNA granules
hitchhike on lysosomes for long-distance transport, using Annexin A11
as a molecular tether. Cell. 179:147–164.e20. https://doi.org/10.1016/j.cell
.2019.08.050

Lim, A., A. Rechtsteiner, and W.M. Saxton. 2017. Two kinesins drive anter-
ograde neuropeptide transport.Mol. Biol. Cell. 28:3542–3553. https://doi
.org/10.1091/mbc.e16-12-0820

Lim, Y., L.L. Wu, S. Chen, Y. Sun, S.L. Vijayaraj, M. Yang, L. Bobrovskaya, D.
Keating, X.J. Li, and X.F. Zhou. 2018. HAP1 is required for endocytosis
and signalling of BDNF and its receptors in neurons.Mol. Neurobiol. 55:
1815–1830. https://doi.org/10.1007/s12035-016-0379-0

Lipka, J., M. Kuijpers, J. Jaworski, and C.C. Hoogenraad. 2013. Mutations in
cytoplasmic dynein and its regulators cause malformations of cortical
development and neurodegenerative diseases. Biochem. Soc. Trans. 41:
1605–1612. https://doi.org/10.1042/BST20130188

Lipska, B.K., T. Peters, T.M. Hyde, N. Halim, C. Horowitz, S. Mitkus, C.S.
Weickert, M. Matsumoto, A. Sawa, R.E. Straub, et al. 2006. Expression
of DISC1 binding partners is reduced in schizophrenia and associated
with DISC1 SNPs. Hum. Mol. Genet. 15:1245–1258. https://doi.org/10
.1093/hmg/ddl040

Lipton, D.M., C.I. Maeder, and K. Shen. 2018. Rapid assembly of presynaptic
materials behind the growth cone in dopaminergic neurons is mediated

by precise regulation of axonal transport. Cell Rep. 24:2709–2722.
https://doi.org/10.1016/j.celrep.2018.07.096

Lo, K.Y., A. Kuzmin, S.M. Unger, J.D. Petersen, and M.A. Silverman. 2011.
KIF1A is the primary anterograde motor protein required for the axonal
transport of dense-core vesicles in cultured hippocampal neurons.
Neurosci. Lett. 491:168–173. https://doi.org/10.1016/j.neulet.2011.01.018

Lund, V.K., M.D. Lycas, A. Schack, R.C. Andersen, U. Gether, and O. Kjaerulff.
2021. Rab2 drives axonal transport of dense core vesicles and lysosomal
organelles. Cell Rep. 35:108973. https://doi.org/10.1016/j.celrep.2021
.108973

Maas, C., V.I. Torres, W.D. Altrock, S. Leal-Ortiz, D. Wagh, R.T. Terry-Lor-
enzo, A. Fejtova, E.D. Gundelfinger, N.E. Ziv, and C.C. Garner. 2012.
Formation of Golgi-derived active zone precursor vesicles. J. Neurosci.
32:11095–11108. https://doi.org/10.1523/JNEUROSCI.0195-12.2012

Macabuag, N., and A.C. Dolphin. 2015. Alternative splicing in Ca(V)2.2 reg-
ulates neuronal trafficking via adaptor protein complex-1 adaptor
protein motifs. J. Neurosci. 35:14636–14652. https://doi.org/10.1523/
JNEUROSCI.3034-15.2015

Mao, Y., X. Ge, C.L. Frank, J.M. Madison, A.N. Koehler, M.K. Doud, C. Tassa,
E.M. Berry, T. Soda, K.K. Singh, et al. 2009. Disrupted in schizophrenia
1 regulates neuronal progenitor proliferation via modulation of
GSK3beta/beta-catenin signaling. Cell. 136:1017–1031. https://doi.org/10
.1016/j.cell.2008.12.044

Megagiannis, P., R. Suresh, G.A. Rouleau, and Y. Zhou. 2022. Reversibility
and therapeutic development for neurodevelopmental disorders, in-
sights from genetic animal models. Adv. Drug Deliv. Rev. 191:114562.
https://doi.org/10.1016/j.addr.2022.114562
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