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Double-checking chromosome segregation

Helder Maiato¥23@® and Sénia Silva’2@®

Enduring chromosome segregation errors represent potential threats to genomic stability due to eventual chromosome copy
number alterations (aneuploidy) and formation of micronuclei—key intermediates of a rapid mutational process known as
chromothripsis that is found in cancer and congenital disorders. The spindle assembly checkpoint (SAC) has been viewed as
the sole surveillance mechanism that prevents chromosome segregation errors during mitosis and meiosis. However, different
types of chromosome segregation errors stemming from incorrect kinetochore-microtubule attachments satisfy the SAC and
are more frequent than previously anticipated. Remarkably, recent works have unveiled that most of these errors are
corrected during anaphase and only rarely result in aneuploidy or formation of micronuclei. Here, we discuss recent progress
in our understanding of the origin and fate of chromosome segregation errors that satisfy the SAC and shed light on the
surveillance, correction, and clearance mechanisms that prevent their transmission, to preserve genomic stability.

Introduction
300 billion cell divisions must take place every day in the human
body to ensure tissue homeostasis and function (Sender and
Milo, 2021). In vitro studies with human primary or non-
transformed cells, as well as with patient-derived organoids
from healthy tissue, determined that a potential chromosome
missegregation event occurs once every 100-1,000 mitotic di-
visions (Bolhaqueiro et al., 2019; Cimini et al., 2002; Cimini
et al,, 2001; Crasta et al., 2012; Worrall et al., 2018), a figure
that may increase more than 100-fold in chromosomally un-
stable cancer cells (Bakhoum et al., 2009a; Bakhoum et al., 2014;
Bakhoum et al., 2009b; Bolhaqueiro et al., 2019; Crasta et al.,
2012; Thompson and Compton, 2011). Even if one assumes that
this represents an overestimation due to cell culture-induced
artifacts (Knouse et al., 2018) and reduces the odds by few or-
ders of magnitude (e.g. 1/120,000 cell divisions, as in Saccharo-
myces cerevisize [Hartwell and Smith, 1985]), these numbers
suggest that healthy humans live under the constant threat of
gaining or losing chromosomes during somatic cell division, a
condition known as aneuploidy. Indeed, low levels of aneuploidy
have been detected from the very first mitotic division during
human embryonic development (Currie et al., 2022) and across
normal somatic tissues in humans and mammalian models
(Knouse et al., 2014). Aneuploidy is also frequent in the
germline (Hassold et al., 2007; Hassold and Hunt, 2001) due to a
high chromosome missegregation rate during (female) meiosis
in mammals (Holubcovi et al., 2015; Kitajima et al., 2011).
Somatic cell aneuploidy is implicated in tumorigenesis, ge-
nomic instability, tumor evolution, metastasis, drug resistance,

and reduced cancer patient survival, whereas germline aneu-
ploidy directly accounts for infertility, pregnancy loss, and de-
velopmental disorders (Bakhoum et al., 2018; Crasta et al., 2012;
Hassold and Hunt, 2001; Ippolito et al., 2021; Lee et al.,
2011; Lukow et al.,, 2021; Replogle et al., 2020; Umbreit
et al.,, 2020; van Dijk et al., 2021; Watkins et al., 2020;
Weaver et al., 2007). However, it should be noted that the
worldwide frequency of human cancers at any given moment is
relatively low, currently with a total incidence of ~1% (Global
Burden of Disease Collaborative Network, 2021). Moreover,
chromosome missegregation events arising during female mei-
osis result in less than 0.5% aneuploid liveborn (Hassold et al.,
2007; Hassold and Hunt, 2001). This indicates that, despite the
high frequency of potential chromosome missegregation events,
aneuploidy only rarely leads to disease, supporting the existence
of active surveillance, correction, and clearance mechanisms that
ensure chromosomal stability during most of our lifetime and
over consecutive generations, with possible evolutionary im-
plications in the emergence of modern humans (Mora-Bermudez
et al., 2022).

Cell cycle checkpoints are constitutive feedback control
mechanisms that delay cell cycle progression until completion
of a critical event, providing time for the correction of po-
tential errors (Hartwell and Weinert, 1989). Elimination of
checkpoints relieves this dependency, allowing cells to pro-
gress through the cell cycle in the presence of potentially
deleterious errors, eventually compromising cell viability or
assisting cell transformation. Thus, checkpoints are often seen
as non-essential pathways that only become evident in the
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presence of errors or perturbations that prevent checkpoint
satisfaction (Khodjakov and Rieder, 2009). Most chromosome
segregation errors in mitosis and meiosis are avoided by the
action of the spindle assembly checkpoint (SAC) that monitors
the presence of unattached kinetochores (Lara-Gonzalez et al.,
2021; Rieder et al., 1995; Rieder et al.,, 1994; Touati and
Wassmann, 2016). In addition, a tension-dependent correc-
tion mechanism involving Aurora B kinase at centromeres
promotes chromosome biorientation prior to anaphase
(Lampson and Grishchuk, 2017; Lampson et al., 2004; Nicklas
and Ward, 1994; Fig. 1). However, because SAC satisfaction
occurs within the framework of individual kinetochores and
is independent of opposing pulling forces (O’Connell et al.,
2008; Uchida et al., 2021), some kinetochore-microtubule
attachment errors may evade the correction machinery. This
is the case of merotelic attachments (when a single kineto-
chore attaches to microtubules oriented to both spindle poles)
that, if uncorrected, may lead to anaphase lagging chromo-
somes (laggards), or syntelic attachments (in which both ki-
netochores of a misaligned chromosome are oriented toward
the same spindle pole; Fig. 1). How cells deal with enduring
chromosome attachment errors that satisfy the SAC and might
lead to missegregation remains an exciting fundamental
question with broad clinical implications.

Mechanism of anaphase error correction

Recent high-resolution live-cell studies tracking kinetochore or
chromosome behavior through metaphase and anaphase in hu-
man somatic cells in culture have revealed that many more
chromosomes tend to lag behind in anaphase than previously
anticipated (Orr et al., 2021; Sen et al., 2021). This behavior is, at
least in part, due to prevailing merotelic attachments and can be
predicted from their oscillatory pattern during metaphase
(Cimini et al., 2004; Sen et al., 2021). Importantly, most laggards
have a transient nature and resume poleward motion, suggest-
ing an active error correction mechanism that prevents mis-
segregation. The existence of an anaphase error correction
mechanism was originally deduced from the relatively high
number of merotelic attachments in metaphase that persist
through anaphase and the much lower number of enduring
laggards (Cimini et al., 2004; Cimini et al., 2003). This led to a
model based on the microtubule ratio at kinetochores that ex-
plains how spindle elongation during anaphase prevents po-
tential segregation errors derived from merotelic attachments
(Cimini et al., 2004; Fig. 1).

The role of anaphase spindle mechanics was first established
through the observation that merotelic kinetochores with un-
even microtubules facing the poles experience a significant
stretch and elongate under tension, eventually favoring segre-
gation to the correct daughter cell. Only a small fraction (<10%)
of the merotelic kinetochores that persist through anaphase
show an even microtubule ratio facing the poles and result in
long-lasting lagging chromosomes that missegregate (Cimini
et al., 2004). Live imaging of mouse oocytes undergoing
mitosis-like meiosis II also revealed that >20% of kinetochore-
microtubule attachments are merotelic or lateral at metaphase I,
whereas only <1% of all chromosomes lag behind during anaphase
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II (Kouznetsova et al., 2019). Most striking, less than 10% of all
lagging chromosomes missegregate and give rise to aneuploid
gametes. This is also the case in insect spermatocytes where
most lagging chromosomes resulting from unbalanced mer-
otelic attachments correct during anaphase II and reintegrate in
the main nuclei (Janicke et al., 2007).

More recently, it was demonstrated that spindle elongation is
directly required for anaphase error correction (Orr et al., 2021).
The acute inactivation of the antiparallel microtubule sliding
motor kinesin-5 after SAC satisfaction and anaphase onset
showed that the attenuated anaphase spindle elongation in-
creased the frequency of anaphase cells with lagging chromo-
somes and a twofold increase in the number of lagging
chromosomes per cell relative to controls. Thus, anaphase error
correction appears to prevent aneuploidy from enduring
kinetochore-microtubule attachment errors that satisfy the
SAC during mitosis and meiosis in metazoans, but the under-
lying mechanism remains a matter of debate.

Aurora B kinase activity at centromeres plays a key role in
error correction during early mitosis (Lampson and Grishchuk,
2017). However, within ~1 min after anaphase onset, Aurora B
leaves the centromere and is actively transported by the kinesin-
6 MKklp2 toward the spindle midzone (Adriaans et al., 2020;
Gruneberg et al., 2004; Murata-Hori et al., 2002; Orr et al.,
2021), where it establishes a phosphorylation gradient on
chromosome, kinetochore, and spindle microtubule substrates
(Fuller et al., 2008; Papini et al., 2021; Sen et al., 2021; Tan and
Kapoor, 2011). Inhibition of Aurora B activity or prevention of its
relocation to the spindle midzone during metaphase (Sen et al.,
2021), as well as its acute inhibition at anaphase onset (Orr et al.,
2021), resulted in a significant increase in laggards. While it
could be argued that Aurora B inhibition during metaphase
might compromise ongoing correction of merotelic attachments
prior to anaphase onset (Cimini et al., 2003; Cimini et al., 2006;
Knowlton et al., 2006), its acute inhibition or prevention of its
relocation at anaphase onset strongly suggests that Aurora B
activity at the spindle midzone is either required to avoid new
attachment errors or for anaphase error correction. As all ki-
netochores must be attached to microtubules to satisfy the SAC,
and because attached microtubules experience little or no
turnover during anaphase (Gorbsky and Borisy, 1989; Zhai
et al.,, 1995), it is unlikely that new attachment errors take
place during anaphase, favoring the anaphase error correction
hypothesis.

Two possible models have been proposed to explain how
a midzone-based Aurora B activity gradient mediates error
correction during anaphase (Fig. 2). One is based on the well-
established microtubule destabilizing roles of Aurora B at cen-
tromeres during early mitosis (Lampson and Grishchuk, 2017)
and proposes that, upon leaving the centromeres, a midzone
Aurora B activity gradient promotes the phosphorylation of ki-
netochore substrates to destabilize microtubule attachments
(Sen et al., 2021). In support of this model, Aurora B-mediated
phosphorylation of Knll on Ser24, which was shown to desta-
bilize kinetochore-microtubule attachments and prevent the
kinetochore recruitment of PPl phosphatase early in mitosis
(Liu et al., 2010; Welburn et al., 2010), was enriched on the
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Figure 1. How cells deal with chromosome segregation errors. In normal cells, chromosome biorientation and proper kinetochore-microtubule (KT-MT)
attachments are ensured by the SAC and a tension-dependent correction mechanism operated by Aurora B at centromeres throughout prometaphase and
metaphase. In certain contexts, like cancer, some merotelic and syntelic KT-MT attachment errors can evade the correction machinery and satisfy the SAC,
which may lead to anaphase laggards or misaligned chromosomes, respectively. Most anaphase laggards are transient and are proposed to result from un-
balanced merotelic attachments. In these transient laggards, the differential transmission of forces generated by spindle elongation (F1 > F2) will stretch and
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elongate the kinetochore eventually, favoring segregation to the correct daughter cell, thus preventing chromosomal and genetic instability. Nevertheless,
some merotelic attachments can be balanced (equal ratio of MTs toward each pole) and give rise to persistent laggards. The establishment of an Aurora B
activity gradient at the spindle midzone in anaphase assists in spindle elongation, promotes the correction of attachment errors, and prevents aneuploidy and

the formation of micronuclei. kMT, kinetochore microtubule.

midzone-facing side of kinetochores from lagging chromosomes
(Sen et al., 2021). Aurora B at the spindle midzone would pro-
mote faithful segregation by destabilizing microtubules on the
incorrect side more efficiently. In agreement, upon Aurora B
inhibition, the majority of anaphase kinetochores remained
stretched for an extended period. Assuming that midzone Au-
rora B activity indeed destabilizes kinetochore-microtubule at-
tachments, this model explains how “unbalanced” merotelic
attachments (i.e., with uneven microtubule attachments facing
each pole) may be corrected during anaphase. Nevertheless, this
model falls short in explaining why “balanced” merotelic at-
tachments that remain right at the peak of Aurora B activity at
the spindle midzone do not detach and missegregate (Cimini
et al., 2004).

An alternative model favors the idea that midzone Aurora B
activity mediates anaphase error correction of merotelic kine-
tochores by assisting the mechanical transmission of spindle
forces to a stable kinetochore-microtubule interface on lagging
chromosomes (Orr et al., 2021). Live-cell imaging studies of ki-
netochore microtubules in epithelial rat kangaroo PtK1 cells and
insect spermatocytes undergoing meiosis II have shown that
neither “balanced” nor “unbalanced” merotelic attachments
ever detach during correction in anaphase (Cimini et al., 2004;
Janicke et al., 2007), suggesting that the mechanism of anaphase
error correction does not require microtubule detachment from
kinetochores. In agreement, error correction by detachment of
kinetochore microtubules requires high Cdkl activity (Vizquez-
Novelle et al., 2014), which decreases sharply during metaphase
and throughout anaphase (Afonso et al., 2019; Clute and Pines,
1999). Moreover, kinetochores experiencing sustained tension
were recently shown to suppress Aurora B-mediated microtubule
release and never detach, with the respective kinetochore-fibers
(k-fibers) undergoing persistent microtubule polymerization (de
Regt et al.,, 2022; Long et al., 2020). Importantly, Aurora B function
at centromeres and spindle midzone can be uncoupled (Lens et al.,
2006), and previous works have implicated Aurora B in the sta-
bilization of midzone microtubules during anaphase to support
efficient spindle elongation (Ferreira et al.,, 2013; Murata-Hori
et al., 2002; Nunes Bastos et al., 2013; Uehara et al., 2013). Thus,
Aurora B might assist anaphase error correction both by stabi-
lizing kinetochore-microtubule attachments and by regulating
spindle elongation.

Direct measurements of kinetochore-microtubule half-life
during anaphase revealed a low kinetochore-microtubule turn-
over (Gorbsky and Borisy, 1989; Zhai et al., 1995), which was
found to depend on Aurora B localization at the spindle midzone
and, consequently, its absence from centromeres (Orr et al.,
2021). However, these measurements were not directly per-
formed on lagging chromosomes with merotelic attachments.
Despite this caveat, partial destabilization of kinetochore-
microtubule attachments significantly increased the frequency
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of anaphase cells with lagging chromosomes that were unable to
be corrected (Orr et al., 2021). Moreover, phosphorylation/acti-
vation of Plkl at Thr210, an indicator of stable kinetochore-
microtubule attachments during early mitosis (Liu et al., 2012)
that is thought to be regulated by Aurora B (Carmena et al.,
2012), was specifically enriched at kinetochores of anaphase
lagging chromosomes induced by the formation of merotelic
attachments (Orr et al., 2021). The microtubule-associated
protein Astrin that decorates stable end-on kinetochore-
microtubule attachments (Mack and Compton, 2001; Manning
etal., 2010) was also found enriched at anaphase kinetochores
proximal to the spindle midzone, including on lagging chro-
mosomes, in an Aurora B-dependent manner (Papini et al.,
2021). Phosphorylation of two additional Aurora B sub-
strates at kinetochores, Dsnl on Ser109 and CENP-A on Ser7, also
follows a gradient pattern centered on Aurora B at the spindle
midzone during anaphase (Papini et al., 2021). In particular, Dsnl
phosphorylation on Serl09 was proposed to regulate kinetochore
disassembly as cells progress through anaphase (Papini et al.,
2021). Altogether, these data are at odds with models envision-
ing a destabilizing role by Aurora B at the spindle midzone and
provide evidence that anaphase error correction requires
stable kinetochore-microtubule attachments. As even subtle
phosphorylation changes on key molecules that regulate
kinetochore-microtubule attachment stability depend on
Aurora B and Cdkl activity (Kucharski et al., 2022), future
investigation should focus on understanding how the cumu-
lative phosphorylation of different Aurora B substrates with
potentially opposing roles at kinetochores impacts overall
kinetochore function during anaphase (when Cdk1 activity is
low). This knowledge will be necessary to understand how a
midzone Aurora B activity gradient mediates anaphase error
correction and to test whether similar mechanisms operate
during meiosis. Moreover, because Aurora B is overexpressed
in highly aneuploid cancers (Pfister et al., 2018; Smith et al.,
2005; Takeshita et al., 2013) and its overexpression was re-
cently shown to inhibit Aurora B activity toward different
kinetochore substrates (Britigan et al., 2022), it will be im-
portant to investigate whether anaphase surveillance and
error correction mechanisms are disrupted in human cancers.

Coordination of anaphase error correction with nuclear
envelope reassembly: Passive unsupervised control or

active surveillance?

The finding of a distinct phosphorylation state on Aurora B
substrates at kinetochores of anaphase lagging chromosomes
(Fuller et al., 2008; Orr et al., 2021; Papini et al., 2021; Sen et al.,
2021) suggests that the mechanism underlying anaphase error
correction involves active signaling. Phosphorylation of Aurora
B substrates on chromosomes/chromatin, such as Histone H3 on
Serl0, has long been known to decrease as a function of the
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Figure 2. Models for anaphase error correction mediated by an Aurora B activity gradient at the spindle midzone. Model 1: Upon leaving the cen-
tromeres, Aurora B establishes an activity gradient at the midzone and phosphorylates specific kinetochore substrates, like pKnll (Ser24), leading to the
destabilization of kinetochore-microtubule (KT-MT) attachments. In the presence of unbalanced merotelic attachments, microtubules on the incorrect side
would efficiently be destabilized. This model cannot explain the persistence of KT-MT attachments seen experimentally in permanent laggards at the spindle

Maiato and Silva Journal of Cell Biology
Double-checking chromosome segregation https://doi.org/10.1083/jcb.202301106

920z Atenuged 0| uo3senb Aq 4pd90110£20Z A2l/9L¥0SYL/901 L0£2028/G/2ZZ/4Ppd-8loe/qol/B10"sseidnu//:dny woy papeojumog

5 of 15


https://doi.org/10.1083/jcb.202301106

TR
(: k(J
IV

midzone (balanced merotelic attachments). Model 2: Midzone Aurora B activity promotes anaphase error correction of merotelic kinetochores by stabilizing
KT-MT attachments, evidenced by the accumulation of marks such as pPlk1 (Thr210). This stabilization would assist in the mechanical transmission of spindle
elongation forces to promote the correction of unbalanced merotelic attachments on transient lagging chromosomes. Balanced merotelic attachments would
be expected to result in permanent laggards that remain attached with microtubules, in line with observations in living PtK1 cells and 3D electron microscopy
reconstructions (i-iv; modified with permission from Salmon et al., 2005). Microtubules (magenta) and kinetochores (green) are depicted. White arrowheads

indicate permanent or transient merotelic attachments. Scale bar is 5 pm.

distance migrated by chromosomes during anaphase (Afonso
et al., 2014; Fuller et al.,, 2008; Orr et al., 2021). While the
functional significance of Histone H3 phosphorylation on Serl0
remains unclear, a midzone-based Aurora B activity gradient on
chromosomes was proposed to mediate a chromosome separa-
tion checkpoint that delays chromosome decondensation and
nuclear envelope reassembly (NER) in response to incomplete
chromosome separation during anaphase in metazoans, includ-
ing humans (Afonso et al., 2014; Maiato et al., 2015; Fig. 3). This
spatiotemporal control of NER ensures that the nuclear envelope
does not form prematurely on separating chromosome masses
during normal anaphase, contributing to the correct segregation
into two euploid daughter cells. In addition, spatiotemporal control
of NER is particularly evident on anaphase lagging chromosomes,
which show a delay in NER relative to normally separating chro-
mosomes in the same cell (Afonso et al., 2014; de Castro et al., 2017,
Liu et al., 2018; Orr et al., 2021). Importantly, even on normally
separating chromosome masses, NER is asymmetric, starting on
the pole-facing side as the chromosomes approach the poles while
remaining “open” toward the midzone until late anaphase
(Giittinger et al., 2009). Most striking, the dependence of NER on
chromosome separation during anaphase can be experimentally
relieved by inhibiting Aurora B activity at anaphase onset (Afonso
et al,, 2014; Liu et al., 2018) or by preventing its association with
the spindle midzone, causing all chromosomes, including laggards,
to simultaneously initiate NER (Afonso et al., 2014; Orr et al., 2021).

But why is the spatiotemporal control of NER important? On
one hand, preventing premature NER on incompletely separated
chromosomes during normal anaphase protects against poly-
ploidy. Whole-genome duplication is a common evolutionary
event that is also frequent in >30% of human tumors early in
tumorigenesis and is thought to promote chromosomal instability
and metastasis by providing a selective advantage in certain
contexts (Ben-David and Amon, 2020; Bielski et al., 2018;
Dewhurst et al., 2014; Gemble et al., 2022; Newcomb et al., 2021;
Prasad et al., 2022; Priestley et al., 2019; Storchova and Pellman,
2004; Zack et al., 2013). On the other hand, spatiotemporal control
of NER would allow the correction of anaphase lagging chromo-
somes and prevent formation of micronuclei (Afonso et al., 2014).
Micronuclei are well-established genotoxicity biomarkers that
have regained attention due to their causal link with chromo-
thripsis (Fenech et al., 2020). Chromothripsis is a widespread
mutational phenomenon characterized by massive genomic re-
arrangements, which was recently implicated in tumor evolution,
acquired drug resistance, and oncogene activation, as well as
a possible cause of congenital disorders (Crasta et al., 2012;
Kloosterman and Cuppen, 2013; Ly and Cleveland, 2017; Shoshani
et al., 2021; Stephens et al., 2011; Zhang et al., 2015). Thus, spa-
tiotemporal control of NER prevents polyploidy, aneuploidy, and
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possible downstream genomic rearrangements, allowing chro-
mosomes to separate and error correction to take place during
anaphase. But whether or not this involves active surveillance or
is passively unsupervised remains controversial.

One may argue that a delay of just a few minutes in a process
that is normally completed within 5-10 min in human somatic cells
cannot be explained by a robust checkpoint mediated by Aurora B
at the spindle midzone. Instead, midzone microtubules may act
independently of Aurora B activity by forming a physical barrier
that selectively prevents the recruitment of non-core nuclear en-
velope proteins (those targeted to the chromosome peripheral re-
gions during NER [Kutay et al., 2021]), including nuclear pore
complex (NPC) proteins, (Liu et al., 2018; Fig. 3). Thus, completion
of NER on lagging chromosomes would be strictly dependent on
the disassembly of midzone microtubules as cells exit mitosis, with
irreversible nuclear envelope defects on lagging chromosomes
emerging as an unsupervised pathological condition that inevitably
links mitotic errors to chromothripsis (Liu et al., 2018; Liu and
Pellman, 2020). However, the formation of a functional spindle
midzone depends on Aurora B activity (Ferreira et al, 2013;
Murata-Hori et al., 2002; Nunes Bastos et al., 2013; Uehara et al,,
2013). Moreover, dynamic microtubules are necessary for
Aurora B accumulation at the spindle midzone and to increase
Aurora B activity toward several microtubule-associated
substrates (Murata-Hori et al., 2002; Noujaim et al., 2014;
Wheatley et al., 2001), making it difficult to distinguish a
“passive” role of microtubules, from “active” microtubule-
dependent Aurora B-mediated signaling.

In an attempt to separate the role of microtubules from that
of Aurora B at the spindle midzone in the spatiotemporal control
of NER, high-resolution live-cell microscopy was used to si-
multaneously monitor Aurora B activity on chromosomes, the
recruitment of NPC proteins, and the distribution of spindle
midzone microtubules throughout anaphase, upon manipulation
of Aurora B midzone localization (Orr et al., 2021). These ex-
periments suggested that a midzone-based Aurora B phosphor-
ylation gradient, rather than midzone microtubules per se,
delays the completion of NER on anaphase lagging chromosomes
in human cells. Nevertheless, a minority of enduring lagging
chromosomes that fail to correct during anaphase might still
result in micronuclei with defective nuclear envelopes (Liu
et al., 2018). Another study showed that micronuclei that arise
from mitotic slippage in the absence of microtubules fail to
properly localize lamin Bl to the nuclear envelope, thereby
promoting micronuclear rupture and concomitant DNA damage
(Kneissig et al., 2019). Thus, microtubules are neither sufficient
nor required to cause nuclear envelope defects on micronuclei.

Quantitative microscopy analyses further revealed that
even just a small but significant delay in the completion of
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Figure 3. Role of Aurora B in anaphase error correction and the spatiotemporal coordination of mitotic exit. The midzone-based Aurora B activity
gradient was proposed to establish a chromosome separation checkpoint that delays chromosome decondensation and NER on incompletely separated
chromosomes, including laggards. This allows their correction and reintegration into the main nuclei (Aurora B activity gradient ON). By inhibiting Aurora B
activity or preventing its midzone localization, NER is initiated synchronously on all chromosomes, regardless of separation (Aurora B activity gradient OFF),
independently of the presence of midzone/midbody microtubule bundles. White arrowheads indicate lagging chromosomes. Time-lapse series was modified

from Orr et al. (2021). Scale bar is 5 um. MT, microtubule.

NER relative to the main segregating chromosome masses
allows most anaphase lagging chromosomes in human cells to
gradually correct and move away from the spindle midzone.
Moreover, this delay depended on the establishment of a
midzone-based Aurora B phosphorylation gradient that pre-
vented formation of micronuclei (Orr et al., 2021; Sen et al.,
2021). Therefore, consistent with the transient nature of most
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anaphase lagging chromosomes, NER delay does not inevita-
bly result in pathological conditions associated with micro-
nucleus formation. This appears to be the case even upon
induction of massive chromosome segregation errors by ex-
perimental abrogation of the SAC and/or by preventing the
formation of a tight metaphase plate, with the vast majority of
anaphase lagging chromosomes not resulting in micronuclei
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(Cohen-Sharir et al., 2021; Fonseca et al., 2019; Klaasen et al.,
2022; Worrall et al., 2018).

Concerning potential targets involved in the spatiotemporal
regulation of NER, Aurora B may regulate Condensin I removal
and/or recruitment of HP1 and LBR as chromosomes separate
during anaphase (Afonso et al., 2014; Giet and Glover, 2001; Lipp
et al., 2007; Nakazawa et al., 2011; Ono et al., 2004; Orr et al.,
2021; Tada et al.,, 2011; Takemoto et al., 2007; Warecki and
Sullivan, 2018) or may more directly regulate the phosphoryla-
tion of lamins and NPC proteins (reviewed by Afonso et al.,
2017). In parallel, Aurora B at the spindle midzone might regu-
late the phosphorylation of targets involved in NER by control-
ling residual but highly localized Cdk1 activity and counteracting
PP1/PP2A phosphatase activities in space and time during ana-
phase (Afonso et al., 2019; de Castro et al., 2017; Holder et al.,
2020; Mathieu et al., 2013; Vagnarelli, 2021; Zhou and Homer,
2022). Future work will be necessary to dissect the mechanistic
underpins involved in the spatiotemporal regulation of NER by
Aurora B.

When anaphase surveillance and correction mechanisms
fail—dealing with aneuploidy and micronuclei

Anaphase lagging chromosomes that escape surveillance and
correction mechanisms operating in anaphase rarely mis-
segregate to give rise to aneuploidy, but they may lead to the
formation of micronuclei (Cimini et al., 2004; Thompson and
Compton, 2011). Importantly, aneuploidy and micronuclei in
non-transformed cells are normally poorly tolerated and have
been shown to cause a p53-dependent reduction in cell prolif-
eration/viability (Fonseca et al., 2019; Li et al., 2010; Narkar
et al., 2021; Pfau et al., 2016; Sablina et al., 1998; Santaguida
et al.,, 2017; Thompson and Compton, 2008; Thompson and
Compton, 2010). This appears to involve differential phosphor-
ylation of histone H3.3 at Ser3l, an Aurora B target (Li et al,,
2017), which is necessary for p53 accumulation in the nucleus of
aneuploid daughter cells (Hinchcliffe et al., 2016). However, p53
activation and cell cycle arrest in response to aneuploidy do not
seem to be universal and might depend on the cell type, the
nature of the segregation errors, and cell culture conditions
(Narkar et al., 2021; Santaguida et al., 2017; Soto et al., 2017). In
the context of certain cancers where tumor suppressor genes
(including p53) are frequently mutated, aneuploidy and micro-
nuclei have been shown to increase cell fitness and proliferative
potential, potentiating tumor evolution (Ben-David et al., 2014;
Ly et al,, 2011; Rutledge et al., 2016).

Micronuclei derived from chromosome segregation errors
have four possible outcomes upon mitotic exit: (1) persistence as
independent structures; (2) reincorporation into the main nu-
cleus; (3) degradation; or (4) extrusion (reviewed in Hintzsche
et al.,, 2017). Approximately 70% of micronuclei appear to persist
as independent structures, whereas the remaining fraction dis-
appears either by reincorporation into the main nucleus in the
subsequent mitosis (Crasta et al., 2012; Hatch et al., 2013; Huang
etal., 2012; Soto et al., 2018), lysosome-mediated autophagy (Bartsch
et al., 2017; Rello-Varona et al., 2012; Zhao et al., 2021), or extrusion
through the cytoplasmic membrane (Schriever-Schwemmer et al.,
1997; Shimizu et al., 2000). For those micronuclei that persist,
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nuclear envelope rupture and collapse were reported to occur
in up to 60% of the cases (Hatch et al., 2013). The underlying
causes appear to be linked with a lower density of NPCs, de-
fective content of lamin Bl, and other essential nuclear enve-
lope components (Crasta et al., 2012; Géraud et al., 1989; Hatch
et al., 2013; Hatch and Hetzer, 2016), possibly due to delayed
recruitment of non-core nuclear envelope and NPC proteins to
anaphase lagging chromosomes (Afonso et al., 2014; Liu et al.,
2018; Orr et al., 2021). This may expose DNA to damage during
cytokinetic furrow ingression and directly lead to structural
chromosome aberrations (Janssen et al.,, 2011). In addition,
nuclear envelope defects lead to loss of compartmentalization
and severely impair transport in and out of micronuclei, thus
affecting the ability to undertake proper DNA repair, tran-
scription, and replication (Crasta et al., 2012; Hatch et al., 2013;
Okamoto et al., 2012).

The loss of compartmentalization on micronuclei exposes
DNA to the cytosolic environment that triggers the action of
cGAS, a strong double-stranded DNA (dsDNA) sensor that
mounts a type-I IFN innate immune response through its
adaptor protein STING, referred to as the cGAS-STING pathway
(Bartsch et al., 2017; Harding et al., 2017; MacKenzie et al., 2017).
The activation of the cGAS-STING pathway has been associated
with mitotic cell death, senescence, and apoptosis of micro-
nucleated cells (Harding et al., 2017; Santaguida et al., 2017; Yang
et al, 2017; Zierhut et al., 2019). Interestingly, Aurora B-
mediated phosphorylation of chromatin-associated cGAS was
recently shown to prevent its premature activation during mi-
tosis (Li et al.,, 2021). Moreover, chromatin bridges were also
recently proposed to activate the cGAS-STING pathway in an
Aurora B-dependent manner (Flynn et al., 2021). These findings
link Aurora B-dependent surveillance and correction mecha-
nisms operating during anaphase with those involved in the
post-mitotic clearance of aneuploid and micronucleated cells to
preserve genomic stability (Fig. 4).

Given the possible role of p53 in limiting the proliferation of
aneuploid and micronucleated cells, an outstanding question is
whether the cGAS-STING pathway somehow crosstalks with
p53. Recently, a mutant form of p53 was shown to suppress
innate immune signaling through the cGAS-STING pathway,
resulting in immune evasion and tumor progression (Ghosh
et al., 2021). In this context, p53 promoted the degradation of
the DNA endonuclease TREXI via the proteasome, resulting in
the accumulation of cytosolic dsDNA from ruptured micronuclei
and consequently triggering a cGAS-STING-mediated innate
immune response (Ghosh et al., 2023). Thus, the tumor sup-
pressor role of p53 might involve active signaling through the
cGAS-STING pathway (Fig. 4).

While a lot remains to be known regarding the mechanisms
underlying cGAS-STING-mediated immunosurveillance of mi-
totic errors and their respective implications for tumor evolu-
tion, defective micronuclei are now well established as potential
hubs for chromothripsis (Crasta et al., 2012; Hastings et al.,
2009; Kneissig et al., 2019; Liu et al.,, 2011; Stephens et al.,
2011; Zhang et al., 2015). Chromothripsis (and other similar
catastrophic events that together define chromoanagenesis) has
entered the spotlight since it provides an explanation for many
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Figure 4. Cellular response to aneuploidy and formation of micronuclei. Histone H3.3, an Aurora B target, is differentially phosphorylated at Ser31 on
laggards (center) and misaligned chromosomes (right) in metaphase and anaphase cells, which is necessary for p53 accumulation in the nucleus of aneuploid
daughter cells. Chromosomes that do not segregate with the main chromosome mass are enclosed by nuclear envelope (NE) components in a differential
manner, which can lead to defective deposition of NPCs and other non-core components to the newly formed NE. The integrity of NE on micronuclei derived
from misaligned chromosomes is currently unknown. Micronuclei (mNE) with a defective NE can rupture and expose their DNA to the cytosolic environment,
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leading to extensive DNA damage. p53 promotes the degradation of TREX1 endonuclease via the proteasome, facilitating the activation of cGAS-STING and
consequent innate immune response due to the accumulation of cytosolic dsDNA from ruptured micronuclei, which are potential hubs for chromothripsis.
Aneuploidy and micronuclei in non-transformed cells cause a p53-dependent reduction in cell proliferation and viability. Alterations in the p53 status may
alternatively increase fitness and proliferative potential in certain contexts, potentiating tumor evolution and metastasis.

chromosomal abnormalities observed in human cancers (re-
viewed in Holland and Cleveland, 2012). Despite the initially
reported low incidence in cancer cells (Cai et al., 2014; Stephens
et al., 2011), technical advances in genome sequencing have re-
vealed an astonishing frequency of nearly 30% of chromo-
thripsis in 2,543 analyzed samples, covering 37 different cancer
types (Cortés-Ciriano et al., 2020). However, it remains unclear
whether micronuclei and associated chromothripsis are drivers
of cancer and its evolution or a downstream consequence of yet
other driving events. The fact that chromothripsis has been
observed in both primary tumors and metastasis (Kloosterman
et al., 2011), together with the huge variation in the frequency
observed between different tumor types, with some being par-
ticularly prone and others totally refractory (Cortés-Ciriano
et al,, 2020; Malhotra et al., 2013), suggests that chromo-
thripsis depends on various genetic and/or environmental fac-
tors. For instance, p53 has been associated with restricting the
occurrence of chromothripsis events in some cancers (Rausch
et al., 2012). Interestingly, micronuclei and chromothripsis are
not necessarily malignant events and can be stably transmitted
over several generations in healthy individuals (Bertelsen et al.,
2016; Chiang et al., 2012; de Pagter et al., 2015; Hopf et al., 2020;
Peace et al., 1999). In agreement, micronuclei resulting from loss
of interchromosome compaction during anaphase in mice
knockout for the kinesin-8 Kifl8a, a microtubule plus-end-di-
rected motor that suppresses microtubule polymerization (Du
et al., 2010), form apparently stable nuclear envelopes and do
not promote tumorigenesis (Fonseca etal., 2019; Sepaniac et al.,
2021). In fact, loss of Kifi8a appears to protect against tumor
formation upon chemical-induced carcinogenesis (Zhu et al.,
2013). Altogether, micronuclei and extreme chromosome
rearrangements that may derive from them, including
breakage of multiple protein-coding genes, can be tolerated
and do not necessarily result in cancer. Nevertheless, chro-
mothripsis in healthy individuals does appear to affect re-
production and increases the risk of miscarriages and severe
congenital disorders, probably through problems in meiosis
(Bertelsen et al., 2016; de Pagter et al., 2015).

Final remarks and outlook

While the high rates of aneuploidy during female meiosis have
been linked to a weakened SAC and intrinsically unstable
kinetochore-microtubule attachments (Kitajima et al., 2011;
Kyogoku and Kitajima, 2017; Touati and Wassmann, 2016;
Yoshida et al., 2015), aneuploid cancer cells are known to have a
robust SAC (Rieder and Maiato, 2004; Tighe et al., 2001). Thus,
aneuploidy and all downstream consequences in cancer might
instead be due to errors arising from incorrect kinetochore-
microtubule attachments that satisfy a perfectly functioning
SAC. Recent evidence also indicated that many more merotelic
kinetochore-microtubule attachments than previously thought
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result in anaphase lagging chromosomes that satisfy the SAC in
human cultured cells (Orr et al., 2021; Sen et al., 2021), but only
rarely result in micronuclei, hinting at the existence of active
surveillance and correction mechanisms during anaphase that
we are just starting to understand. Interestingly, although most
micronuclei in cancer cells derive from anaphase lagging chro-
mosomes that rarely missegregate (Thompson and Compton,
2011), a recent study has shown that misaligned chromosomes
that satisfy the SAC often directly missegregate without lagging
behind in anaphase and have the highest probability to form
micronuclei (Gomes et al., 2022), representing a major source of
chromosomal instability in primary and metastatic breast tu-
mors (Tucker et al., 2023; Fig. 1). In line with these findings,
recent experiments in which CENP-E activity was inhibited in
human cells suggest that endomembrane “ensheathing” of mis-
aligned chromosomes might facilitate the formation of micro-
nuclei and delay SAC satisfaction (Ferrandiz et al., 2022).
Correction of erroneous attachments underlying some chro-
mosome alignment defects (e.g., syntelic attachments) also
appears to be less robust in cancer cells with overly stabilized
kinetochore-microtubule attachments (Bakhoum et al., 2009a;
Salimian et al., 2011; Fig. 1). Moreover, hyperstabilization of
kinetochore-microtubule attachments in otherwise normal
non-transformed human cells leads to SAC satisfaction in the
presence of misaligned chromosomes, especially under con-
ditions that promote the formation of syntelic attachments
(Brito et al., 2008; Klaasen et al., 2022; Yang et al., 2009).
Lastly, misaligned chromosomes that satisfy the SAC may also
arise due to k-fiber minus-end detachment from mitotic
spindle poles after biorientation and directly lead to chro-
mosome missegregation and micronuclei (van Toorn et al.,
2023). Thus, similar to chromosome non-disjunction during
female meiosis, accounting for most aneuploidies in humans
(Hassold et al., 2007), misaligned chromosomes that establish
syntelic attachments and satisfy the SAC may represent a
previously overlooked mechanism driving chromosomal/ge-
nomic instability during cancer cell division, while compro-
mising embryonic viability.

In addition to direct missegregation from misaligned chro-
mosomes, late-aligning chromosomes associated with peripheral
nuclear positioning during interphase are also more prone to lag
behind in anaphase and missegregate at higher frequencies
(Klaasen et al., 2022; Kuniyasu et al., 2018). Likewise, failure to
cluster parental pronuclei genomes upon fertilization has also
been shown to promote chromosome congression defects (and
anaphase lagging chromosomes) that give rise to micronuclei
and impair embryonic development (Cavazza et al., 2021).

Overall, these recent findings instigate future studies to de-
termine the underlying mechanisms that normally prevent an-
euploidy during mitosis and meiosis, while continuing to
evaluate the contribution of aneuploidy-inducing events of
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different origin and how cells deal with them in health and
disease contexts.
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