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ExTrack characterizes transition kinetics and
diffusion in noisy single-particle tracks
François Simon1,2, Jean-Yves Tinevez3, and Sven van Teeffelen1,2

Single-particle tracking microscopy is a powerful technique to investigate how proteins dynamically interact with their
environment in live cells. However, the analysis of tracks is confounded by noisy molecule localization, short tracks, and rapid
transitions between different motion states, notably between immobile and diffusive states. Here, we propose a
probabilistic method termed ExTrack that uses the full spatio-temporal information of tracks to extract global model
parameters, to calculate state probabilities at every time point, to reveal distributions of state durations, and to refine the
positions of bound molecules. ExTrack works for a wide range of diffusion coefficients and transition rates, even if
experimental data deviate frommodel assumptions. We demonstrate its capacity by applying it to slowly diffusing and rapidly
transitioning bacterial envelope proteins. ExTrack greatly increases the regime of computationally analyzable noisy single-
particle tracks. The ExTrack package is available in ImageJ and Python.

Introduction
Studying the motion of proteins by single-particle tracking
(SPT) allows to characterize how proteins dynamically in-
teract with their environment (Manley et al., 2008; Kusumi
et al., 2014). Notably, SPT can reveal if and where proteins
are diffusive or immobile (Persson et al., 2013; Uphoff, 2016;
Martens et al., 2019). This information has significantly im-
proved our understanding of important biological processes
such as transcription-factor binding dynamics, antibody
recognition, cytoskeletal dynamics, or intracellular trans-
port (Kusumi et al., 2014; Pierobon et al., 2009; Monnier
et al., 2015; Stracy et al., 2016; Jézéquel et al., 2018; Callegari
et al., 2019; Li and Xie, 2011; Izeddin et al., 2014; Özbaykal et al.,
2020).

Molecules often transition between different motion states. If
transitions happen rarely and if trajectories are long, different
states such as immobile or diffusive states are reliably detected
from time-averaged quantities such as the mean-squared dis-
placement (Michalet, 2010; Elliott et al., 2011; Bosch et al., 2014;
Hansen et al., 2018). However, molecules often undergo rapid
transitions between different states (Martens et al., 2019;
Callegari et al., 2019; Pierobon et al., 2009). Furthermore, tracks
are often short as particles can bleach or diffuse out of the field
of view or focal plane (Hansen et al., 2018). In such situations,
probabilistic methods are better suited to determine global pa-
rameters such as diffusion coefficients and transition rates
(Dempster et al., 1977; Persson et al., 2013; Meent et al., 2013;
Calderon, 2014; Slator et al., 2015; Monnier et al., 2015; Smith

et al., 2019; Falcao and Coombs, 2020; Karslake et al., 2021;
Vink et al., 2020a; Rahm et al., 2021). Some of these methods
can also predict the motion states of individual molecules at
every time point (Persson et al., 2013; Monnier et al., 2015;
Briane et al., 2020; Rahm et al., 2021), which can reveal the
locations of binding sites, spatial correlations, and complex,
potentially non-Markovian dynamics (Mahmutovic et al.,
2012).

Previous probabilistic methods for diffusive models shown
to correctly estimate diffusion and transition parameters
(Persson et al., 2013; Vink et al., 2020a) are based on absolute
distances between subsequent localizations. These methods
have been developed for situations where physical displace-
ments are large in comparison with the localization uncer-
tainty for each molecule. However, when molecules transition
rapidly between states, high time resolution is needed, which
results in small physical displacements, which, in turn, make
identifying different motion states hard or impossible (Fig. 1,
a–c). On the contrary, the whole track still allows the dis-
tinction of states (Fig. 1 a), simply because subsequent posi-
tions of immobile or slowly diffusing molecules fall in the
same small area determined by localization error, while sub-
sequent positions of fast-diffusing molecules are nearly
uncorrelated.

To account for those spatial correlations, the full sequence
of track positions must be taken into account. This approach
has been used to characterize a single population of diffusing
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molecules (Berglund, 2010; Relich et al., 2016). However,
if molecules transition between states, this approach be-
comes computationally demanding because all possible se-
quences of single-molecule states need to be considered. To
avoid this computational complexity, different mean-field
approximations (Calderon, 2014; Slator et al., 2015; Bernstein
and Fricks, 2016; Lindén et al., 2017; Lindén and Elf,
2018) and machine-learning approaches (Kowalek et al.,
2019; Chen et al., 2021) have been proposed. However,
their performance across model parameters remains to
be investigated.

Here, we propose an alternative probabilistic method to ex-
tract diffusive motion states and transitions: We tackle the
combinatorial problem of different motion states by introducing
a sliding window approximation that maintains the most im-
portant spatio-temporal correlations. The method is fast and
accurate for a large range of parameters, even if physical dis-
placements are similar to the localization error. The method is
also robust with respect to deviations between data and model
assumptions. Additionally, the method annotates the state
probabilities at the single-molecule level, refines localizations
(Lindén and Elf, 2018), and extracts distributions of state

Figure 1. ExTrack permits to assess a wide range of multi-state diffusion models. (a) Example track of a molecule transitioning between immobile and
diffusive states with d1 = 2 σ. Arrows: observed displacements; dots: actual positions of immobile (blue) and diffusive (red) molecules. (b) Consecutive observed
distances of the track from a. (c) Density function of observed distances of coefficiently immobile (blue) or diffusive (red) molecules for d1 = 2 σ. (d and e) Left:
Simulated two-state (d) and three-state (e) diffusion models with diffusion length and transition rates as indicated. Right: Model parameters estimated by
ExTrack (mean ± SD) assuming a two-state (d) or three-state (e) model (localization error σ, diffusion lengths d0 and d1, initial immobile fraction F0, transition
rates k). Dotted lines: ground truth. ExTrack settings: two-state data: two sub-steps, window length = 10; three-state data: no sub-steps, window length = 7.
(f) Heatmap of the relative errors of d1, F0, ku, and kb obtained from a two-state model fit to two-state simulations as in d. Error: mean absolute relative errors
from 10 replicates per condition. White lines indicate regions of <10% error for model parameters hardest to fit for ExTrack (ku, solid), vbSPT, and anaDDA (kb,
dashed, see g). Initial parameters: d0 = 0 µm, d1 = 0.1 µm, σ = 0 µm, k = 0.1 Δt−1, F0 = 0.4. (g) Error on kb of vbSPT and anaDDA (same protocol and color map as
in f, 20 replicates were used for anaDDA to mitigate its variability). See Fig S2 a for errors on the other parameters.
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durations. We demonstrated its versatility by analyzing two
bacterial membrane proteins that diffuse slowly and transition
rapidly between immobile and diffusive states.

Results
ExTrack is a maximum-likelihood method to detect different
diffusion states in single-molecule tracks
We developed ExTrack, a maximum-likelihood estimation
(MLE)method that contains twomainmodules: A fitting module
fits a multi-state Markovian diffusion model to a data set of
noisy single-molecule tracks. This module infers global model
parameters including localization error, diffusion lengths,
transition rates, and the initial fractions of molecules (at the first
time point of all tracks). Part of these global parameters can also
be provided by the user, and localization error can even be
provided for each peak (Thompson et al., 2002; Quan et al.,
2010) if desired. ExTrack is flexible in terms of the number of
states and spatial dimensions. Additionally, it can explicitly
consider molecules leaving the field of view, which otherwise
introduces bias (Hansen et al., 2018). Based on global parame-
ters, a single-molecule annotation module then estimates state
probabilities for molecules to reside in each state at each time
point. To characterize single-molecule tracks further, we de-
veloped two additional modules: A position-refinement module
refines molecule positions by taking advantage of spatial cor-
relations between subsequent localizations, conceptually similar
to Lindén and Elf (2018). This feature allows to maintain high
temporal resolution for state transitions, while attaining high
spatial resolution for immobile molecules. A fourth module
produces histograms of state durations to reveal potential non-
Markovian transitions.

ExTrack is based on a Hidden Markov Model (HMM) that
approximates a continuous-time process by a discrete-time
Markov model (Das et al., 2009). The method calculates the
probability density of observing each track given a set of global
parameters (Lindén et al., 2017). In principle, this calculation
requires to integrate the joint probability density of states, real
positions, and observed positions over all possible sequences of
hidden diffusive states and over all sequences of hidden real
(physical) molecule positions (see Materials and methods, Ex-
Track fitting module). This integration can be performed ana-
lytically by computing the sequences μ and s (Eq. 6, Materials
and methods). However, this problem is computationally in-
tractable for long tracks: Indeed, the computation time scales
with the number of possible sequences of states which increase
exponentially with the number of time points. To reduce the
computation time, we took advantage of the fact that the real
position at a given time step is little influenced by the actual
state several time points away. This allows us to introduce a
sliding-window approximation that greatly limits the compu-
tation time of ExTrack. More specifically, when recursively
computing the probability density of observing a track, we need
to consider all possible combinations of states up to the current
time point of the integration. To save computational time, the
window method averages over different sequences of states
outside of the sliding window, while explicitly considering

different combinations of states within the window (see Mate-
rials and methods, Using a window...). Choosing the window
length is a compromise between accuracy and speed.We suggest
using a window length of 3 to 7 depending on the expected
diffusion lengths. We will show later that a window length of 3
can be sufficiently large if the ratio between diffusion length and
localization precision is greater than about 2.

In many HMMs, it is assumed that state transitions can only
occur at the time points of the measurement (Das et al., 2009).
However, this approximation introduces a bias toward higher
fractions of fast diffusing molecules. Instead, we assume state
transitions to occur at the middle of steps (see Materials and
methods, Parameter fitting...). Additionally, ExTrack can con-
sider sub-steps to further reduce bias at high transition rates.

ExTrack is available both as a Python library (Simon, 2022)
and as a TrackMate module (Ershov et al., 2022) on Fiji.

Performance and comparison to alternative methods
First, we tested the performance of the ExTrack fitting module
by applying it to computationally simulated noisy tracks of
molecules (10,000 tracks of 10 positions each, if not stated
otherwise) that transition between an immobile state (state 0)
and a slowly diffusive state (state 1). The latter is characterized
by a small diffusion length d1 = 2 σ, where σ is the localization
error (Fig. 1 a). The diffusion length is the typical physical dis-
placement: d1 �

ffiffiffiffiffiffiffiffiffiffiffiffi
2D1Δt

√
with D1 the diffusion coefficient and Δt

the time step. Here, we assume symmetric binding and un-
binding rates ku = kb = 0.1 Δt−1. Thus, on average, molecules
reside in each state for 10 time steps.

The dimensionless parameter d∗1 � d1/σ can be regarded as a
signal-to-noise ratio. For a typical experiment, with σ = 20 nm
and a time step of Δt = 20 ms, a rescaled diffusion length of d* =
2 corresponds to a diffusion coefficient of D1 = 0.04 µm2 s−1,
which is representative of typical membrane proteins in vivo
(Kumar et al., 2010; Oswald et al., 2016).

ExTrack reliably estimates all global model parameters
(Fig. 1 d) despite similar observed distances for immobile and
diffusive molecules (Fig. 1 c) and despite a low number of 10
localizations per track. These estimates are robust with respect
to the initial parameters (for example, if varying the initial d*
between 0.3 and 10). Since molecules are considered at steady
state in our example, the initial fraction of immobile molecules

is given by F0 � kb
ku+ kb

� �
.

Next, we simulated tracks for a three-state model, with d∗0 =
0, d∗1 = 2, and d

∗
2 = 5, where transition rates are ki,j = 0.1 Δt−1 for all

pairs of states. Fig. 1 e demonstrates that ExTrack estimates
global model parameters reliably. If the data contain long
enough tracks, ExTrack can also correctly predict two immobile
states of different lifetimes and their associated transition rates
(Table S1). We will revisit more complex data sets below.

Returning to the simpler two-state model, ExTrack is capable
of predicting global model parameters reliably for a large range
of model parameters (Fig. 1 f). Predictions are accurate for dif-
fusion lengths as low as the localization error and transition
rates as high as 0.5 Δt−1 (for independent variations of kb and ku,
see Fig. S1 a). To account for rapid transitions and low diffusion
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lengths, we employed ExTrack considering two sub-steps and a
window length of 10. However, the method predicts parameters
almost equally reliably without sub-steps (Fig. S1), or with a
smaller window size of 3 (Fig. S1 c) while achieving improved
computation time (Fig. S1 d).

Next, we compared ExTrack with the two MLE-based
methods, vbSPT (Persson et al., 2013) and anaDDA (Vink et al.,
2020b) that use absolute distances between localizations for
parameter estimation. While vbSPT uses an HMM for the like-
lihood estimate (Persson et al., 2013), anaDDA is based on an
analytical form of the distributions of apparent diffusion co-
efficients from short tracks (Vink et al., 2020b). Both methods
are restricted to a smaller parameter range than ExTrack (Fig. 1,
f and g; and Fig. S2 a) in the tested regime. The errors of pa-
rameter estimation by vbSPT are largely due to systematic bias,
while the error of anaDDA is predominantly stochastic (Fig. S2 d;
Vink et al., 2020b). We also tested a mean-field approximation
based on track positions and considering hidden particle posi-
tions, the variational method UncertainSPT (Lindén et al., 2017).
We found that UncertainSPT performs worse and takes more
computation time than ExTrack, anaDDA, or vbSPT (Fig. S2 b).

ExTrack is robust with respect to non-ideal motion properties
Single-molecule tracks in real cells often deviate from our basic
model assumptions. Here, we investigated three different types
of such deviations: (i) variations of diffusion coefficients or lo-
calization precision, (ii) finite track lengths due to a finite field
of view or focal depth, and (iii) physical confinement.

Diffusion coefficients can show intra- or inter-track varia-
tions (Stylianidou et al., 2014; Slator et al., 2015; El Beheiry et al.,
2015), for example due to local variations of viscosity
(Stylianidou et al., 2014), and localization error can vary, for
example if molecules are out of focus. We thus simulated tracks
of a two-state model with diffusion coefficients or localization
precision drawn from a chi-squared distribution with fixed
mean and variable coefficient of variation. First, we show that
ExTrack gives very accurate predictions when localization error
is specified for each peak instead of being treated as a single
global fitting parameter (Fig. S3 a). However, even when no
prior information on localization error is given, ExTrack reliably
predicts the average model parameters for variations up to
30–50% (Fig. 2 a), in contrast to the distance-based methods
anaDDA and vbSPT (Fig. S3 c). Track-to-track variations in
diffusion coefficient of similar magnitude (up to about 50%) also
do not affect predictions of average parameters (Fig. 2 b).

In situations, where the diffusion coefficient is even more
broadly distributed, ExTrack can be used assuming a three-state
model followed by aggregation of two diffusive states (Fig. S3 b).
We tested this aggregation approach with simulations of one im-
mobile and five diffusive states, mimicking a broad distribution of
diffusion lengths and jump distances (Fig. S3 b and Table S2). The
aggregated three-state approach reliably quantifies transitions
between aggregated states and corresponding state fractions, thus
providing a practical approach to the often-encountered difficulty
of choosing the right number of diffusive states.

Second, molecules can leave the field of view depending on
microscopy modality and substrate geometry. For example,

cytoplasmic molecules studied by confocal or epi-fluorescence
microscopy diffuse in and out of the focal plane, and proteins
embedded or attached to a cylindrical membrane (for example,
in bacteria) studied by Total Internal Reflection Fluorescence (TIRF)
microscopy leave the illumination field (Fig. 2, c and d). Thus, im-
mobile or slowly diffusing molecules are over-represented among
long tracks, which have previously been described as “defocaliza-
tion bias” (Hansen et al., 2018).We alleviate this bias by taking track
termination into account explicitly (Materials and methods, Ex-
tension of ExTrack...) similarly to previous approaches (Kues and
Kubitscheck, 2002; Hansen et al., 2018). In both free 3D diffusion
and diffusion along a cylindrical membrane, ExTrack reliably esti-
mates model parameters as long as the typical dimension (focal
depth or width of the field of view) is at least twice the diffusion
length (Fig. 2, c and d).

Finally, we tested the ability of ExTrack to analyze tracks of
spatially confined molecules, as frequently found in membrane
domains or small volumes such as bacteria or intracellular
compartments. ExTrack performed robustly as long as confining
dimensions are at least two to four times larger than the diffu-
sion length (Fig. 2 e). Interestingly, while the diffusion length is
underestimated for confining dimensions smaller than about
4 d, the transition rates are predicted reliably even if the con-
fining box size is as small as 2 d.

ExTrack computes state probabilities at every time point and
refines positions
Next, we tested the performance of the single-molecule proba-
bilistic annotation module of ExTrack, which is based on global
model parameters and annotates state probabilities for every
time point (Bernstein and Fricks, 2016).

Fig. 3, a and b, shows tracks from the simulation of a two-
state model with an immobile and a slowly diffusive state (d* =
2). Despite the small value of d*, motion states are reliably es-
timated in this example. Then, we estimated the predictive
power of the probabilistic annotation module by applying it to
large sets of tracks with different values of d* (0.5, 1, or 2). As
expected, higher d* values result in higher confidence in pre-
dicting states (Fig. 3 c). To demonstrate the accuracy of the
probabilistic annotation, we confirmed that among all molecules
predicted to reside in the diffusive state with probability p1, the
fraction of molecules actually diffusive also equals p1 (Fig. S4 a).

Previous methods often classify molecules categorically into
the most likely state (Forney, 1973; Persson et al., 2013; Lindén
et al., 2017). We used this approach to measure the performance
of ExTrack and compare it to previous methods: First, we esti-
mated the accuracy of categorical state annotations depending
on the diffusion length and the transition rates (Fig. S4 b). In-
creasing transition rates led to worse estimates because states
are easier to estimate at time points that are distant from
transitions (Fig. S4 c). Second, we found ExTrack annotations to
be robust with respect to wrongly chosen global parameters (Fig.
S4 d). Finally, we found that the ExTrack state annotation
module performs better than vbSPT (Fig. S4 e).

Next, we tested the capacity of ExTrack to refine positions by
calculating the most likely physical position for each time point.
Fig. 3, d and e, demonstrates that the position-refinement
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module effectively reduces the localization error of immobile
molecules by

ffiffiffiffi
N

√
, where N is the number of localizations in the

immobile segment. This feature allows to obtain accurate posi-
tions of molecular binding sites inside cells, while still resolving
state transitions dynamics.

ExTrack computes distributions of state durations to
characterize transition kinetics beyond the Markov
transitions assumption
ExTrack provides a histogrammodule that generates probability
distributions of state durations. Instead of considering only the

most likely set of states, ExTrack considers a large number of
potential state vectors and weighs them with their corre-
sponding probabilities. To test the histogram module, we first
simulated a two-state model with Markovian transitions. The
predicted diffusive and immobile state durations are distributed
exponentially, as expected, and in agreement with the simulated
data (Fig. 3 f). Therefore, any deviation from exponential
decay can reveal more complex transition behavior: As an
example, we simulated molecules that transition between
two immobile states and one diffusive state (Fig. 3 g). The
histogram of immobile state durations then accurately

Figure 2. Robustness of ExTrack to various sources of bias. Heatmaps of relative errors on d1, ku, and kb in case of two-state parameter fits to two-state
simulations with one immobile state and one diffusive state, for different sources of bias, as a function of the source of bias (y axis) and transition rates k. (a and
b)We simulated track-to-track variations of localization error σ (a) or diffusion coefficient D1 (b). Varied parameters followed chi-square distributions (white
graphs in b) re-scaled so the mean localization error equals 0.02 µm (a) or the mean diffusion coefficient equals 0.25 µm2.s−1, which corresponds to a diffusion
length of d∗1 = 5 (b). (c)Membrane proteins diffuse on a cylindrical surface and leave the field of view on the sides (see cartoon). We varied the width w of the
field of view as indicated in the cartoon, while maintaining d1 and σ fixed. (d) Cytoplasmic proteins can leave the focal plane anywhere (see cartoon). We varied
the focal depth while maintaining d1 and σ fixed. (e) Particles confined in a symmetric cube. We varied the box size while maintaining d and σ fixed. 10 replicates
per condition. If not stated otherwise, d0 = 0 µm, d1 = 0.1 µm, and σ = 0.02 µm. ExTrack settings: window length = 7, no sub-steps. CV, coefficient of variation.
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reveals two sub-populations, even though ExTrack consid-
ers a two-state HMMmodel. Our approach thus indicates the
presence of a third state, as confirmed by the exponential
distributions of state durations after fitting the data to a
three-state model (Fig. 3 g).

The histogram approach is also relevant when the transitions
are non-Markovian, for example if transition rates are spatially
dependent (Mahmutovic et al., 2012; Laurent et al., 2019) or if
states have minimum durations. In summary, the histogram
module can help identify hidden states or states with non-
Markovian transitions and thus guide model choice.

Application of ExTrack to experimental tracks of bacterial
envelope proteins
To test our approach on experimental data, we used TIRF mi-
croscopy to track single GFP (monomeric super-folder-GFP)
fusions to two bacterial membrane proteins in Escherichia coli,
each involved in one of the two major pathways of cell-wall
synthesis.

First, we studied the cell-wall-inserting penicillin-binding
protein PBP1b (Video 1), which was previously described to re-
side in immobile or diffusive states (Cho et al., 2016; Vigouroux
et al., 2020). However, transition rates and potentially hidden

Figure 3. ExTrack annotates and refines single-molecule positions and extracts state-duration distributions. (a and b) Example tracks from simu-
lations of immobile and diffusive (d∗1 = 2) molecules with symmetric transition rates of 0.1 Δt−1 with short tracks of 10 positions (a) or long tracks of 25 positions
(b). Top: real positions with states in colors; bottom: noisy positions with probabilities (color bar), right: state probabilities along time. (c) Distribution of the
probability to be diffusive at the time points where the particles are actually diffusive. Similar simulations than in panel a for different d*. (d and e) Position
refinement module: Examples of two-state track (d) and three-state track (e). From left to right: Observed track and associated states probabilities; refined
positions (colored) and observed positions in gray; probability density map of the consecutive positions. Top right: State probabilities as a function of time.
Bottom right: SD of the probability density of refined positions. Simulation parameters: d∗0 = 0, d∗1 = 5, k01 = k10 = 0.1 Δt−1 (d); d∗0 = 0, d∗1 = 1.5, d∗2 = 5, all k = 0.05
Δt−1 (e). (f) Histogram module: State-duration histograms of tracks of at least 21 positions for the indicated two-state model. Dashed lines: Distributions from
ground truth. (g) Same as f for three-state tracks with two immobile states. Left: ExTrack fit assuming a two-state model; Right: ExTrack fit assuming a three-
state model.
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states remain unknown. When assuming a two-state model,
ExTrack indeed reveals an immobile and a diffusive fraction
(Fig. 4 a), with the immobile fraction increasing with de-
creasing expression level (Fig. 4 b) as expected (Vigouroux
et al., 2020). However, distributions of state durations ob-
tained through the histogram module suggest the presence of
at least two immobile populations with distinct unbinding
rates (Fig. 4 c). Since applying ExTrack assuming a three-state
model revealed one immobile and two diffusive states (rather
than two immobile states, Fig. S5 a), we also applied ExTrack
with a four-state model (Fig. 4, d and e; and Fig. S5 a). The
four-state model confirmed two diffusive states and two im-
mobile states: Among the immobile states we found a long-
lived state (lifetime of around 0.5 s) that is highly dependent
on expression level (Fig. 4 e), likely reflecting enzymatically
active PBP1b, and a short-lived state with a lifetime of about
50 ms, likely reflecting non-specific associations with the cell
wall. Thus, PBP1b displays rapid transitions between at least
four different states.

Next, we investigated the motion of RodZ, a trans-membrane
protein that physically links cytoplasmic MreB-actin filaments
to a multi-enzyme complex that inserts new peptidoglycan
while continuously moving around the cell circumference over
minutes (Van Teeffelen et al., 2011; Morgenstein et al., 2015; Van
Den Ent et al., 2010). Here, we studied the motion of GFP-RodZ
on short time scales of seconds, where continuously moving
complexes appear as immobile (Video 2). Assuming a two-state
model, the fitting module reveals that 75% of RodZmolecules are
immobile (Fig. S5 b based on rates), with a lifetime of about 0.7 s.
This time scale is much shorter than the minute-long lifetime of
the rod complex (Özbaykal et al., 2020; Cho et al., 2016; Van
Teeffelen et al., 2011) demonstrating that a majority of immo-
bile RodZ molecules is not stably associated. Instead, these
molecules might transiently bind the MreB-actin cytoskeleton.
Interestingly, RodZ molecules seem to often unbind and rebind
in very close vicinity from the initial binding site (Fig. 4 f). Such
behavior would be expected if RodZ could bind anywhere
along extended MreB filaments, since filaments constrain

Figure 4. Characterizing PBP1b and RodZ motion. (a–e) Analysis of GFP-PBP1b tracks (time step 25 ms) using ExTrack with two (a–c) or four states (d and
e). (a) GFP-PBP1b track (130% expression level). Color bar: Probability of diffusion. (b) Diffusion lengths and fractions from two-state parameter fitting. (three
replicates, each with >17,000 tracks of at least three positions, with average lifetimes from 6.3 to 7.5 positions). (c) State-duration histograms of PBP1b tracks
of at least 21 positions (>600 tracks per replicate with average lifetimes from 28.5 to 32 positions), using global parameters from fitting a two-state model (a
and Fig. S5). (d) Example PBP1b track (from 130% expression level) with associated state probabilities along time (first position on the left). (e) Fractions from
four-state parameter fitting to the same datasets used in a. (f–h) Analysis of GFP-RodZ molecules (40 ms frame times). (f) RodZ tracks with overlapping
binding sites. Color bar: Probability of diffusion. (g) Cartoon illustrating the rebinding of diffusive RodZ molecules to extended MreB-actin filaments in two
dimensions. Blue solid line indicates distance between initial position and position after four diffusive steps for molecules rebinding (left) or continuing diffusion
(right). (h)Histograms of distances between initial bound site and the site after four diffusive steps. Tracks rebind in closer vicinity to the initial binding site 33%
more often than expected in case of randommotion. Mann–Whitney U test: P value = 1.6e−6. See Materials and methods, Computational analysis... for details.
Error bars and shaded regions: SDs between replicates.
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diffusion in two dimensions (Fig. 4 g). To test whether
proximal rebinding occurs more often than randomly, we
compared tracks that were initially bound, then diffusive for
four steps, and then either rebound or remained diffusive
(Fig. 4 g). Short distances were indeed over-represented
among rebinding molecules compared to molecules that re-
mained diffusive (Fig. 4 h). This behavior contrasts with
PBP1b, which appears to bind to random sites (Fig. S5 e). The
annotation module of ExTrack thus allows us to identify
spatial patterns of molecule binding that can be responsible
for non-Markovian binding (Mahmutovic et al., 2012).

Discussion
In summary, ExTrack provides a suite of robust tools to char-
acterize single-particle tracks, extracting global model parame-
ters, state probabilities at every time point, refined positions,
and histograms of state durations, even if tracks are noisy,
transitions are rapid, and tracks deviate from idealized model
assumptions.

In tracking experiments, a major challenge is to identify the
relevant number of immobile and diffusive states. Multiple
previous methods obtain this number automatically (Persson
et al., 2013; Meent et al., 2013; Smith et al., 2019; Lindén and
Elf, 2018; Karslake et al., 2021). However, at least some of these
approaches have been reported to overestimate the number of
states (Lindén and Elf, 2018; Vink et al., 2020a; Smith et al.,
2019). In more recent approaches, a high number of states are
fixed, followed by aggregation into one aggregated immobile
state and one aggregated diffusive state, based on a user-defined
diffusion-coefficient threshold (Metelev et al., 2022). Here, we
propose an alternative and iterative approach to complex
tracking data: Data are initially fit to a coarse-grained two- or
three-state model that can subsequently be expanded depending
on desired variables and fitting results. For example, if one is
predominantly interested in the exchange between immobile
and diffusive molecules but not in the presence of multiple
diffusive states, we propose a coarse-grained two-state or an
aggregated three-state model that reliably predicts immobile-
diffusive transitions, even if diffusion coefficient is variable or
if molecules transition between different diffusive states
(Fig. 2 b and Fig. S3 b). At the same time, ExTrack can also
distinguish multiple diffusive states explicitly (Fig. 1 e). Addi-
tionally, the distribution of immobile state durations can reveal
the presence of multiple immobile fractions, which can then
motivate the increase of the number of states.

The capacity of ExTrack to work with noisy single-
molecule tracks is based on the explicit consideration of all
sequences of states within a sliding window when computing
the probability of every track, while states outside the sliding
window are taken into account through averaging to limit
computation time. In the future, this versatile principle can
be extended to capture different and more complex dynamics,
for example by considering persistent motion (Pierobon et al.,
2009; Monnier et al., 2015), anomalous diffusion (Chen et al.,
2021), and spatial maps of diffusion coefficients or states (El
Beheiry et al., 2015).

Materials and methods
In the following sections, we will describe the ExTrack method
with its four different modules: the fitting module, the annota-
tionmodule, the position-refinementmodule, and the histogram
module. Subsequently, we will describe implementation and
computational time, the generation of computationally simu-
lated data sets, the interpretation of results by vbSPT, and the
experimental methods.

ExTrack fitting module
Introduction
ExTrack fits a multi-state diffusion model to noisy single-
particle tracking data. We assume that tracks come about ac-
cording to a continuous-time Markov model, where molecules
transition randomly between N diffusive states at rates ki. As
long as molecules reside in state i, they undergo Brownian dif-
fusion with diffusion coefficient Di. Additionally, observed po-
sitions ci are displaced from real positions ri according to a
Gaussian distribution fσ(ki – ri), where the SD equals the locali-
zation error σ. Here and in the following, fx(y) generally denotes
a Gaussian distribution of SD x. The N-state diffusion model is
thus characterized by the parameters θ = (σ, Di, Fi, ki,j) for all
states i, j 2 (1, …, N). Here, Fi are the fractions of molecules re-
siding in state i at the first position of the track. Later, we will
introduce additional parameters for additional spatial di-
mensions and for the treatment of non-constant track lengths.

Parameters are estimated based on an MLE approach, which,
in turn, is based on accurately computing fC(C | θ), the proba-
bility density of observing a track of positions C = (c1, c2, ..., cn).
The likelihood of the parameters given the data (θ | all C) then
equals the product of fC(C | θ) for all tracks C. Bymaximizing this
function, we can find θp, the optimal estimator of the underlying
parameters. Optimal parameters θp are found by MLE using the
Powell method. ExTrack also allows to fix individual or multiple
parameters. This generally speeds up the fitting process and
reduces variations in the remaining parameters. In this realm,
we also found that fixing the localization error to a slightly
wrong value has little impact on the fitting of the other pa-
rameters as long as it does not deviate by more than about
20–30%. Here and in the following, we treat localization error as
a model parameter, but the user can also provide spot-specific
localization errors based on photon counts (Thompson et al.,
2002).

In the following sections, we will first compute fC. This cal-
culation is presented in one spatial dimension (1D). However,
the model is easily extendable to 2D or 3D due to the indepen-
dence of the displacements and localization error in each axis, as
we will see below.

Parameter fitting based on the probability distribution of
observed positions
Tracks are generally described by their sequence of observed
positions C = (c1, c2, ..., cn). Those positions come about based on
the sequence of physical molecule positions R = (r1, r2, ..., rn),
which, in turn, are the stochastic result of the sequence of dif-
fusive states B = (b1, b2, ..., bn). For a given track C, the probability
density function fc can be calculated from fC,B,R, the joint
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probability density function of the observed positions C = (c1,
..., cn), the real (physical) molecule positions R = (r1, ..., rn), and
the time-dependent diffusion states B = (b1, ..., bn), by integration
over all the possible values of R and by summation over all the
possible values of B:

fC C|θ( ) �
X

B

fC,B C, B | θ( ) �
X

B

∫
R
fC,B,R C,B,R | θ( )dR (1)

where we defined the joint probability density function fC,B(C,
B | θ) of having C and B given θ. The joint probability density
fC,B,R can be decomposed into a product of three terms: the a
priori probability of B, the probability density of the physical
displacements fR|B, and the probability density of the distances
between real position and observed positions fC|R, respectively:

fC,B,R C,B,R | θ( ) � P B | θ( ) fR|B R | B, θ( ) fC|R C | R, θ( ). (2)

Here, the a priori probability of the sequence of states P (B |
θ), which we refer to as β for brevity, results from the Mar-
kovian processes of transitioning between states (Cox and
Miller, 2017). β is obtained as

β � P B | θ( ) � Fb1 ∏
n−1

i�1
pbi ,bi+1, (3)

where Fb1 indicates the fraction of molecules in state b1 at time
point 1, and where pbi,bi+1 indicates the probability to transition
from state bi at time point i to bi+1 at time point i+1. The transition
probabilities can be computed from the continuous-time tran-
sition rates (see Approximating continuous transitions...). The
initial fraction Fb1 can either be an independent parameter or
constrained by transition rates at steady state (for a two-state
model, F0 � k10/ k10 + k01( )). fR|B is the probability density func-
tion of real positions R given the sequence of states B and θ. fC|R
is the probability density function of the sequence of observed
positions C given the real positions R and θ.

fC|R can be expressed as a product of Gaussian distributions
with SD equal to σ:

fC|R C | R, θ( ) � ∏ n
i�1fσ ci − ri( ).

Next, we express fR|B(R | B, θ) as a product of Gaussians:

fR|B R | B, θ( ) � 1
l
∏
n−1

i�1
fδi ri+1 − ri( ). (4)

Here, l is the length of the space of real positions. Without any
prior on R, we consider the limit l → ∞. However, since l only
appears as a constant prefactor, we can ignore it in the calcu-
lation of the log likelihood. According to previous suggestions,
the width of the distribution δi should equal the diffusion length
corresponding to the current state bi (Das et al., 2009). However,
this discretization of the continuous-time Markov process in-
troduces a bias toward diffusive motion. This is easily illustrated
in case of an immobile-diffusive model: There, a particle initially
immobile starts moving before the first measured time point
where the particle is observed to be diffusive. Similarly, it stops
moving after the last time point, where it is observed to be
diffusive. Then, a model assuming diffusion to only be depen-
dent on the current hidden state will overestimate the time
spent in the diffusive state by up to half a step in case of high

diffusion. Logically, this results in underestimating the binding
rate (Fig. S2 c), immobile fraction, and diffusion length when
transitions are frequent. To alleviate this issue, we assume
transitions to occur at the middle of two time points. The SD of
the probability density function fδ then equally depends on
states at each of the two subsequent time points, with

δi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
d2bi + d2bi+1

��
2

q
.

This assumption effectively decreases the bias inherent to the
discrete approximation of continuous tracks (Fig. S2 c). Later, we
will also introduce sub-steps between time points that improve
the approximation (see Approximating continuous transitions...).

Taking advantage of the expressions of fC|R, and fR|B,, Eq.
2 becomes

fC,B,R C,B,R | θ( ) � β
l

∏
n−1

i�1
fδi ri+1 − ri( ) fσ ri − ci( )

� 	
× fσ rn − cn( ).

Inserting this expression into Eq. 1, we then integrate step-
wise over all real positions R = (r1, ..., rn). This allows us to use
the recursion principle (Relich et al., 2016) to compute
fC,B(C, B | θ): The first step consists in integrating the two
Gaussian distributions dependent on r1 (displacement and lo-
calization error terms). This integration results in a Gaussian

distribution fs1(r2 − c1), of SD s1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + δ 2

1

q
(constituting a

convolution of two independent random variables with Gauss-
ian distributions). For each of the next integrals over ri, we in-
tegrate the product of three Gaussian distributions (for the
random displacement ri+1 − ri, the localization error ri − ci, and
the previous term of the distribution fsi−1). The result of this
integration can be expressed by a scalar Ki times a Gaussian
distribution fsi according to

∫
ri 2R

fδi ri+1 − ri( )fσ ri − ci( )fsi−1 ri − μi−1( )dri � Ki ∗ fsi ri+1 − μi( ), (5)

where fsi is a Gaussian distribution of SD si andmean 0. The SD si
and mean μi can be expressed depending on si-1 and μi-1:

si �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2i σ

2 + δ2i s
2
i−1 + σ2s2i−1

σ2 + s2i−1
,

s

μi �
μi−1σ

2 + cis2i−1
σ2 + s2i−1

,

Ki �
exp



− (ci−μi−1)2

2(σ2+s2i−1)
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π(σ2 + s2i−1)

q . (6)

The recursion process can then be summarized by the se-
quences s1 : sn-1 and μ1 : μn-1 which depend on C, B, and θ. At the
last step (integration over rn), we integrate the product of the
two remaining Gaussian distributions: the previous term
fsn−1(rn − μn−1) and the localization error term fσ(cn − rn) as de-
scribed for the first step to compute the density function
fC,B C,B | θ( ).

Finally, we compute the value of the probability density
function of the observed track fC(C | θ) as the sum of fC,B(C, B | θ)
over all possible B.

Simon et al. Journal of Cell Biology 9 of 15

ExTrack characterizes single-particle tracks https://doi.org/10.1083/jcb.202208059

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/222/5/e202208059/1448826/jcb_202208059.pdf by guest on 09 February 2026

https://doi.org/10.1083/jcb.202208059


Extension to 2D and 3D
Since diffusive motion is independent in each spatial dimension,
the principle described above for one dimension can simply be
extended to two or three dimensions by multiplication of inde-
pendent distribution functions. For example, in 2D, the function
fC,B(C, B | θ) is simply replaced by the product fC,B(Cx, B | θ)
fC,B(Cy, B | θ). In principle, each axis can have a different local-
ization error and different diffusion lengths for each state. This
is especially true for localization in the direction of the optical
axis compared to the lateral axes. ExTrack, therefore, allows
independent localization errors for each axis.

Alternatively, the user can also provide localization error for
each peak, for example using the Cramer–Rao lower bound es-
timate (Ober et al., 2004; Lindén et al., 2017). Since these and
other estimators might underestimate the true localization er-
ror, peak-wise localization estimates can also be implemented as
scaling factors that are then assumed to be linearly related to the
true localization error estimated by ExTrack.

Using a window to reduce calculation time
This method has a number of operations which initially scales
with Nn, where N is the number of states and n is the number of
time points. This means the calculation time can become un-
realistically long when analyzing long tracks. To alleviate this
issue, we developed a window method to allow it to work with
longer tracks in a reasonable time scaling with nNm+1 (m the
window length of minimal value 1). For computational reasons,
we advise to use a window length of 7 for two-state models, 5 for
three-state models, and 3 or 4 for more states.

Here, we briefly motivate and describe the implementation
of the windowmethod: During the recurrence process described
above, Eqs. 5 and 6, fs can be regarded as a density probability
function of the position ri+1 knowing the previous observed
positions c1,… , ci and states from positions 1 to i + 1. We realized
that the current localization of a particle is very little affected by
its state m steps ago when m >> 1. Thus, for a given track, two
sequences of states varying only in their first state should give
very similar fsi. The values μm and sm of these normal dis-
tributions should also be similar.

For example, if the track has been diffusive during at least
one of the positions from steps i−m to i, the current observed
position ci is much more informative for the real position ri+1
than the first observed position c1. If the molecule has been
immobile from position i−m to i, all observed positions ci−m to ci
are equally informative. However, even the past 5–7 positions
are likely sufficient to predict the distribution fsi.

As we saw in Parameter fitting..., for a given sequence of
states B, computing fC,B(C, B | θ) is nothing but computing three
sequences s1:sn, μ1:μn, and K1:Kn until the last step where we
simply have to compute fsn (cn).

In the recursion process, in case of a two-state model, we
start by computing four values each for s2, μ2, and K2 that wewill
differentiate as s2,(b1 ,b2), μ2,(b1 ,b2), and K2,(b1 ,b2), corresponding to
the transition between the state b1 at time point 1 and state b2 at
time point 2. For this recursion step, the four values of s2, μ2, and
K2 arise from the following four combinations of states (0, 0), (0,
1), (1, 0), (1, 1). At i = 3, we get eight possible state combinations,

at i = 4 we get 16, etc. At step m, any sequence of states has a
characteristic μm,(b1 ,b2,…,bm+1), sm,(b1 ,b2,…,bm+1), and Km,(b1,b2,…,bm+1). To
limit the number of considered sequences to 2m, we can merge
μm,(0,b2,…,bm+1) and μm,(1,b2,…,bm+1) to an average μm,(∗,b2,…,bm+1) (same
for s2 and K):

μm, ∗,b2 ,…,bm+1( ) � αm, 0,b2 ,…,bm+1( ) μm, 0,b2 ,…,bm+1( )

+ αm, 1,b2 ,…,bm+1( ) μm, 1,b2 ,…,bm+1( ),

s2m, ∗,b2 ,…,bm+1( ) � αm, 0,b2 ,…,bm+1( ) s
2
m, 0,b2 ,…,bm+1( )

+ αm, 1,b2 ,…,bm+1( ) s
2
m, 1,b2 ,…,bm+1( ),

Km,(∗,b2 ,…,bm+1) � Km,(0,b2 ,…,bm+1) + Km,(1,b2 ,…,bm+1).

where α are the averaging weights according to the joint prob-
ability density of the observed position c1 to cm, and states b1 to
bm+1 fC,B c1, c2,…, cm( ), b1, b2,…, bm+1( )|θ( ) . For brevity, we ex-
press this probability density as Pm,(b1 ,b2,…,bm+1) in the following
expression for α:

αm, 0,b2 ,…,bm+1( ) �
Pm, 0,b2 ,…,bm+1( )

Pm, 0,b2 ,…,bm+1( ) + Pm, 1,b2 ,…,bm+1( )
,

αm,(1,b2 ,…,bm+1) �
Pm,(1,b2 ,…,bm+1)

Pm,(0,b2 ,…,bm+1) + Pm,(1,b2 ,…,bm+1)
.

In this way, two sequences of states are merged (for example,
the sequences starting with [0,0,0,1,1,1] and [1,0,0,1,1,1]). We
thus reduce the number of μm, s2m, and Km from 2m+1 to 2m. By
recursion of this principle over all steps from m to n−1 we limit
the computation time to 2m+1 for a two-state model, or, more
generally, to Nm+1 for a N-state model. In the following section,
we will introduce sub-steps between the discrete observation
time points. Our approach is easily generalized to sub-steps by
considering state vectors. Applying our approach with a window
length m = 5–7, we observed similar functional dependencies of
the likelihood on the model parameters θ, allowing us to dras-
tically speed up our method without losing accuracy.

Approximating continuous transitions with a discrete model of one
or multiple sub-steps per time frame
ExTrack fits data of a continuous-time process to a discrete-time
Markov model. Without the introduction of sub-steps, ExTrack
assumes that transitions can only happen once per time step. It
then estimates transition probabilities per time step, which
must be translated into transition rates ki, that describe the
continuous-time Markov model. For continuous-time Markov
processes, transition probabilities can be converted into rates
according to a simple relationship P = eGΔt, where P is the
transition probability matrix, which contains the transition
probabilities pi,j from state i to j, and where G is the generator
matrix with elements Gi,j = ki,j for i ≠ j and Gi,i � −P

i ≠ j
ki,j (Pishro-Nik,

2016). Here, the transition probabilities pi,j allow the molecule to
transition from state i to j through any number of intermediate
states.

However, the implementation of this relation into ExTrack
leads to a systematic overestimation of transition rates. The
reason for this overestimation is found in our approximate
representation of the distribution of physical displacements
between time points (Eq. 4), which is based on the false
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assumption that transitions can only occur at the middle of
steps, contrary to the continuous-time nature of the underlying
physical process. We found that this error could be compensated
for by using a slightly different approximation for state tran-
sitions pi,j � 1 − exp −ki,j Δt

� �
. In the limit of small ki, Δt, this

approximation asymptotically equals the exact expression P =
eGΔt, which also asymptotically equals pi,j = ki,j Δt. We found that
ExTrack using the approximate relationship performs better in
the case of two-state and three-state models for a large range of
transition rates. However, ExTrack (Python version) also allows
using the generator-matrix-based relationship if the user desires.

When transition rates are high (when k Δt > 0.4 for the two-
state model), our method allows to sub-divide time steps into a
number of u sub-steps (where u = 2 corresponds to dividing each
step into two). This allows ExTrack to account for multiple
transitions and transition times that are different from the mid-
points of time steps Δt. To take states at sub-steps into account,
we introduce a new state vector B = (b1,1, b1,2,… b1,u,… , bn-1,u, bn,1)
and new physical positions, that require integration according to
Eq. 1. This integration is straightforward: The probability β (Eq.
2) is simply replaced by the product of all state transitions be-
tween subsequent sub-positions. The probability distribution of
real positions (Eq. 4) is replaced by the corresponding distri-
bution of sub-positions. Since the physical displacement during
Δt is the sum of Gaussian random variables (the sub-displace-
ments), the functional form of Eq. 4 (a product of n−1 Gaus-
sians) can be maintained while replacing the SDs δi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2i + d2i+1

p
by δi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPu
k�1

δ 2
i,k/u,

s
where δi,k are the corresponding diffusion

lengths for the sub-steps.
The use of a window length m will allow the user to do ac-

curate computations form sub-steps. Thus, at a givenm, the number
of observed positions c considered within the window equals
floor(m,u). To consider the same number of observed positions per
window, one thus needs to increase the window length. A trade-off
between number of states, window length, and number of sub-steps
has to be found (see Implementation and computation time).

Extension of ExTrack to consider a finite field of view
Tracks can terminate due to different reasons: photobleaching,
diffusive molecules leaving the field of view, or molecules
transiently not being detected. The process of leaving the field of
view requires diffusive motion. Observation of long-lived mol-
ecules within a finite field of view can thus show a bias toward
non-moving or slowly moving molecules. An extension of Ex-
Track can take this bias into account by explicitly modeling the
probability of track termination. We consider two contributions
to track termination: first, a constant termination probability pK,
which is independently of the motion state. This probability
summarizes photobleaching and the probability to not detect a
molecule, for example because of low signal-to-noise ratio;
second, a probability of leaving the field of view (or observation
volume) pL that depends on the diffusion length and the di-
mensions of the field of view. In the case of a cytoplasmic par-
ticle tracked through epi-fluorescence or confocal microscopy,
the monitored length is the depth of field (or focal depth). In case

of a membrane protein moving around a cylindrical cell imaged
in TIRF microscopy, the monitored length is a fraction of the cell
diameter (Fig. 2, c and d).

In principle, pL can be calculated depending on the position of
the molecule with respect to the boundaries of the field of view.
However, we decided to implement an approximate form of
pL(δi) that does not require this information and instead con-
siders the position of the observed molecule as random inside
the field of view. Within this approximation, the probability of
leaving the field of view is given by:

pL(δi) � 1 − ∫
x2 [0,l]

F


l − x
δi

�
− F


−x
δi

�
dx,

where F(x) is the cumulative density function of the standard
normal law.

We thus modify fC,B,R(C,B,R | θ) in Eq. 2 by multiplication of
the left-hand terms with the probability of observing a track of n
positions, which is given by:

(1 − pL(δi))n−1(1 − pK)n−1[pK + (1 − pK)pL(δn)].

Annotation module
The annotation module allows to compute the probabilities to be
in any state at any time point of all tracks. According to condi-
tional probabilities and results from ExTrack fitting module, we
can compute the probability of the sequences of states given the
parameters θ for each track C:

P B | C, θ( ) � fC,B C,B | θ( )
fC C | θ( ) .

For a given track C, at each time point i, the probability of the
current state bi to be in state s 2 {0, 1} can then be computed by
summing over all B with bi = s:

P bi � s | C, θ( ) �
X
B

P bi � s | B, θ( ) fC,B C, B | θ( )
fC C | θ( ) .

The annotation module can also take advantage of the win-
dow approximation described in Using a window... to reduce
computation time and make the computation tractable in case of
long tracks. Since the annotation module does not require pa-
rameter fitting and thus many iterations, the window length can
be chosen larger than for the fitting module. A large window
length is also more important for precise state prediction than
for accurate global parameter fitting.

Position-refinement module
ExTrack can improve the estimation of molecule positions based
on a track, in particular if molecules move slowly. Positions can
be estimated by computing the probability density function of
each real positions ri (Lindén et al., 2017). To do so, we compute
fC(C | θ) without integrating at position ri. This results in a
probability density function f (ri |C, θ) (Fig. 3, d and e), which is a
sum of Gaussian functions for each sequence of states.While this
probability density can be obtained explicitly, it is much faster to
obtain the expected value and SD of the density function. Those
values are computed by averaging the parameters of the
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Gaussian distributions associated with each sequence of states
weighted by their respective probability. Like for the fitting
method, the window method is applied (see Using a window...).

Histogram module
Computing state-duration histograms allows to assess non-
Markovian transition behaviors or to reveal multiple hidden
states with different transition rates. For a given state, the resulting
rate is then the sum of track-termination rate (bleaching, track
termination due to low signal-to-noise ratio, leaving the focal plan)
and the transition rates to other states. If the track-termination rate
is low, the histogram allows to identify one or multiple transition
rates (see, for example, Fig. 3, f and g). Picking only long tracks can
help removing the contribution from bleaching.

ExTrack estimates the histograms ℎs for each state s:

hs i( ) �
X
C

X
B

g i, s | B( ) fC,B C,B | θ( )
fC C | θ( ) ,

with g(i, s | B) the number of sequences of i consecutive time
points of state s in the sequence of states B. As long tracks have to
be assessed and all states of B kept in memory, the window
method cannot be applied. We thus only keep the most likely B
(1,000 in Fig. 3, f and g).

Implementation and computation time
ExTrack is available as a Python (Python 3) package (Simon,
2022). A version with the core functionality is also available as
a TrackMate module (Ershov et al., 2022) on Fiji. The TrackMate
implementation can fit data to a two-state model and annotate
states according to the results from the fit or manually chosen
parameters. It then allows interactive visualization of tracks
colored with state probabilities for each displacement. We allow
parallelization with GPU (cupy library; Python version only) or
multiple CPUs (both Python and TrackMate versions).

As mentioned in Approximating continuous transitions..., a
trade-off between number of statesN, window lengthm, and the
number of sub-steps u has to be found for reasonable compu-
tation time. When running the ExTrack fitting module on a
computer with Intel Core i7-9700 processor (10,000 tracks of 10
positions) for 200 iterations using a two-state model, a window
length ofm = 2, and no sub-step (u = 1) the analysis can be as fast
as 20 s. For the dependency of computation time on numbers of
states, sub-steps, and window length, see Fig. S1 c.

To save computation time, we recommend to initially run
ExTrack with low values of u and m and then to increase u if
model predictions suggest high transition rates or m for low
predicted diffusion lengths. Specifically, we suggest making the
following adjustments: If localization error is negligible, for in-
stance if there is no immobile state and all di > 2σ, window
length m can be set to its minimal value of 1. Similarly, m =
1 should perform well if there is one immobile state and all
diffusive states have large di > 5. In such cases, multiple sub-
steps can be used at little computation cost. More generally, if
predicted transition rates are larger than 0.4 Δt−1 but localization
error is not negligible, we suggest increasing u to 2 for most
accurate estimates (Fig. S1 b vs. Fig. 1 f). In the hardest cases of

small dp ( 2 and high transition rates (≥0.4), we recommend
using u = 2 and m ≥ 8.

Computational simulation of tracks
To test the predictive power of the different methods, we con-
ducted overdamped Brownian Dynamics simulations of tracks in
two or three spatial dimensions with molecules transitioning
randomly between the different states at discrete time points. To
mimic a continuous-timeMarkovmodel for state transitions, we
used a small time step τ = Δt/50 � 1/ki,j, where ki,j are the
transition rates. Brownian Dynamics simulations were carried
out by randomly drawing physical displacements in each spatial
dimension from Gaussian distributions of SD

ffiffiffiffiffiffiffiffi
2Dτ

√
, where D is

the diffusion coefficient corresponding to the diffusive state. An
additional Gaussian distributed noise of SD σ was added to
simulate localization uncertainty.

Except if specified otherwise, we simulated 10,000 tracks of
10 time points with localization error σ = 0.02 µm, Δt = 0.06 s, d0
= 0 µm, d1 = 0.1 µm, bound fraction F0 = 0.5, transition fractions
per steps k01 = k10 = 0.1 Δt−1, with infinite field of view and
perfectly stroboscopic tracks. We also assumed that molecules
reached steady state, that is, F0 · k01 � (1 − F0) · k10.

To test the robustness of ExTrack and the other methods to
more complex behaviors, we also simulated tracks with varia-
tions of localization error or diffusion coefficients, a finite field
of view or physical confinement as follows (see Fig. 2 for
illustrations):

Track-to-track variations of localization error (or diffusion
coefficients) were simulated with localization error σ (or dif-
fusion coefficient D) following χ2 distributions of given co-
efficients of variation and mean 0.02 µm (or 0.25 µm2 s−1 for D),
Δt = 0.02 s. Models with multiple diffusion states were simu-
lated as continuous-time transitions with model parameters
detailed in Table S2.

To simulate a finite field of view in two dimensions, we
simulated tracks in a box that is infinite in one spatial dimension
(y) and finite in the other dimension (x) with size 3l, where l is
the size of the field of view. All tracks or part of tracks that fall
into the field of view are considered for further analysis. A single
particle can thus result in several tracks if leaving the field of
view and coming back. A finite field of view in three spatial
dimensions was simulated analogously: The simulation box is
infinite in x- and y-directions, while the box has periodic
boundary conditions in the z-direction.

To simulate physical confinement, we considered tracks to
move within a square area of indicated side length, using re-
flecting boundary conditions.

We also simulated tracks with one bound state and several
intractable diffusive states to determine whether ExTrack
could accurately estimate global binding and unbind with a
coarse-grained three-state model. In Fig. S3, we show the
results obtained from simulations of tracks with one bound
state and five diffusive states of dp = [2,3,4,5,6]. transition
rates (in Δt−1): k01 = 0.03, k02 = 0.02, k03 = 0.06, k04 = 0.04,
k05 = 0.05, k10 = 0.04, k12 = 0.05, k13 = 0.1, k14 = 0.07, k15 = 0.04, k20 =
0.19, k21 = 0.01, k23 = 0.04, k24 = 0.06, k25 = 0.1, k30 = 0.02, k31 = 0.03,
k32 = 0.05, k34 = 0.05, k35 = 0.1, k40 = 0.1, k41 = 0.04, k42 = 0.04,
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k43 = 0.01, k45 = 0.05, k50 = 0.15, k51 = 0.05, k52 = 0.01, k53 =
0.02, k54 = 0.05. The 10,000 tracks of 10 time points were then
fitted to a three-state model, window length = 6.

Comparison to vbSPT
To compare our results with vbSPT, we fixed the number of states
to two so both algorithms performed exactly the same task. vbSPT
does not consider localization error but a metric that wewill call u.
In case of pure diffusion, u = D · Δt but in case of immobile particle
with localization error u = σ2/2 in principle. We can thus infer σ
and D according to σ � ffiffiffiffiffiffiffiffiffiffiffi

2 · u0√
and D = (u1 − u0)/Δ.

Computational analysis of molecule rebinding
To assess the propensity of RodZ molecules to rebind in close
vicinity of their initial binding site, we first annotated tracks
using parameters obtained from the ExTrack fitting module
(three biological replicates). We considered the 16 first time
points of tracks of at least 16 time points (pooling the tracks of
the three replicates). Among tracks labeled as initially immobile
for at least three time points (pimmobile > 0.5) then diffusive for
four time points (with at least three time points of probability
pdiffusive > 0.7), we grouped tracks into two sub-groups, the ones
rebinding right after and the ones which continue to diffuse for at
least one more time point. The histograms represent the dis-
tributions of distances between initially bound position and the
position at the fourth time point after unbinding. If molecules
were to rebind at random locations, the distributions of the dis-
tribution of distances for rebinding particles should be the as for
particles, which continue to diffuse. Neither PBP1b (Fig. S5 e) nor
tracks obtained from immobile fluorescent beads (of similar sig-
nal-to-noise ratio) showed any significant rebinding, which ex-
cludes wrong conclusions on RodZ data due to mis-annotations.

Cell cultures
We used the IPTG-inducible GFP-RodZ strain FB60(iFB273;
ΔrodZ, Plac:: gfp-rodZ) by Bendezú et al. (2009) and the GFP-
PBP1b-containing strain AV51 (msfgfp-mrcB, ΔmrcA; Vigouroux
et al., 2020). Cells were grown overnight at 37°C (shaking) in LB
medium and then washed and diluted at least 1:1,000 in M63
minimal medium (Miller, 1,972) supplemented with 0.1% casa-
mino acids, thiamine (5 × 10−5%), glucose (0.2%), and MgSO4 (1
mM) and grown for 6 h to early exponential phase (maximum
OD600 of 0.1) at 30°C (shaking). Cells were then spread on an
agar pad made from the same M63 media as described above.
RodZ production was induced with 100 µM IPTG. In the strain
AV51, CRISPR repression of msfGFP-PBP1b is induced with
100 ng/ml of anhydro-tetracycline (Acros Organics). When
necessary, strains were supplemented with kanamycine (50 µg/
ml) or carbenicillin (100 µg/ml) during overnight cultures. Bi-
ological replicates result from independent cultures starting
from separate colonies.

Single-particle tracking of msfGFP-PBP1b and GFP-RodZ
proteins
Cells were all positioned in the same focal plan in between an
agar pad (1%) and a coverslip to be imaged in TIRF microscopy.
Coverslips were cleaned by 60 min sonication in saturated KOH

solution followed by two washing steps (15 min sonication in
milli-Q water). Single-particle tracking of GFP-PBP1b was per-
formed with a custom-designed fluorescence microscope based
on an ASI Rapid Automated Modular Microscope System,
equipped with a 100× TIRF objective (Apo TIRF, 100×, NA 1.49,
Nikon), Coherent Sapphire 488–200 laser, and a dichroic
beamsplitter (Di03-R488/561-t3-25 × 36, Semrock). Excitation
was controlled with an acousto-optic tunable filter (AA Opto-
electronics) through an Arduino (15 ms light exposure per
frame). Images were acquired using an Andor iXon Ultra
EMCCD camera with an effective pixel size of 130 nm. Image
acquisition was supervised with MicroManager.

Tracks were built from movies using TrackMate with LoG
peak detection (estimated blob diameter of 0.5 µm, quality
threshold of 15, with subpixel localization). Then, peaks were
linked into tracks using the “Simple LAP Tracker” (max dis-
tances of 0.4 µm, and “gap” of 2).

Data analysis with ExTrack was restricted to tracks with at
least three positions. For the longest tracks, only the first 50
positions were analyzed.

Online supplemental material
Fig. S1 shows ExTrack parameter fitting. Fig. S2 shows error on
two-statemodel parameters for different methods. Fig. S3 shows
robustness of ExTrack to biases due to wrong model assump-
tions. Fig. S4 shows capacity of the annotation module. Fig. S5
shows complementary results for GFP-PBP1b and GFP-RodZ
tracks. Video 1 shows msfGFP-PBP1b single-particle tracking.
Video 2 shows GFP-RodZ single-particle tracking. Table S1
shows using ExTrack to fit parameters of a three-state model to
different simulations of three-state data with qualitatively dif-
ferent types of transitions. Table S2 shows two-state and three-
state fits of tracks from simulated particles either in immobile
state (state 0) or in one of five diffusive states (states 1–5).

Data availability
Single-particle tracks, ExTrack results, and selected movies of
the experiments corresponding to Fig. 4 are available on the
Zenondo repository (https://doi.org/10.5281/zenodo.7548793).
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Figure S1. ExTrack parameter fitting. (a) 3Dmaps of the mean error on extracted parameters from simulations similar to those in Fig. 1, of two-state models
with one immobile and one diffusive state as a function of diffusion length dp, unbinding rate ku, and binding rate kb. Errors are obtained from five replicates.
Errors are indicated as absolute or relative errors, as indicated. ExTrack settings: no sub-steps, window length = 7. (b and c) Heat maps of mean relative error
on extracted parameters from the same simulations as in Fig. 1, but inferred with no sub-steps. ExTrack settings: no sub-steps, window length = 10 (b) or 3 (c).
(d) Computation time of ExTrack fitting module applied to 1,000 tracks of 100 positions each with 200 iterations (typical number of iterations needed for the fit
of a two-state model) depending on the window lengthm (without sub-steps or with two sub-steps; left) or depending on the number of states N (without sub-
steps; right), using seven cores of a Intel Core i7-9700 processor. For details see Materials and methods, Implementation and computation time.
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Figure S2. Error on two-state model parameters for different methods. (a) Heat maps of mean relative error on extracted parameters from the same
two-state simulations as in Fig. 1 for vbSPT and anaDDA. In the case of anaDDA, 20 replicates were used to assess its heat maps instead of 10 due to its higher
variability. (b and c) Plots of estimated transition rates as a function of the actual rates for a subset of the simulations in a. (b) Results from UncertainSPT for
different diffusion lengths. Gray curve: Ideal model. (c) Results from a modified version of ExTrack with a time-discretization approach (labeled Classical),
which assumes transitions to occur at time points of molecule observations, and with our approach (labeled ExTrack), which assumes transitions to occur at the
middle of each time step (see Materials and methods, Parameter fitting...). Tracks simulated with d∗0 = 0, d∗1 = 5. (d) Error, SD, and bias of parameters predicted
by ExTrack, vbSPT, and anaDDA depending on the number of tracks in case of two-state tracks (five positions per track, ku = kb = 0.1 Δt, d∗0 � 0, and d∗1 � 5). The
error (root mean square error) can be decomposed into bias (absolute value of the difference between the average estimate from all replicates and true

parameter) and SD (std) of the estimated parameters. Error =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2 + std2

p
. Obtained from 100 replicates. Here, all estimated values are relative to their true

value. ExTrack settings: number of sub-steps = 2, window length = 10.
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Figure S3. Robustness of ExTrack to biases due to wrong model assumptions. (a) Predictions of d1, ku, and kb in case of two-state parameter fits to two-
state simulations with one immobile state and one diffusive state. Position at each time point show variable localization errors σ. Peak-wise localization errors
were specified to the model. σ followed a chi-square distributions re-scaled so the mean localization error equals 0.02 µm (for sample distributions, see inset of
Fig. 2 b). Simulations with d1 = 0.1 µm and k = ku = kb = 0.1Δt−1. 10 replicates per condition. ExTrack settings: window length = 7, no sub-steps. (b) We
considered tracks from simulated particles with one immobile state (d∗0 = 0) and five diffusive states with similar diffusion lengths of values 0.04, 0.06, 0.08,
0.1, and 0.12 µm (corresponding to d∗ from 2 to 6), transition rates were set to randomly picked values (SeeMaterials and methods, Computation simulation of
tracks for more details on the transition rates values). This model results in indistinguishable diffusive tracks. Left: Distribution of displacements (for each
dimension) of the five diffusive states. Right: Bar plots of true and estimated parameters obtained from fitting to a three-state model followed by aggregation
of the diffusive states and computation of the resulting parameters. Here, the fractions are the global fractions computed from rates. See Table S2 for other
results. (c) Heatmaps of relative errors on d1, ku, and kb with variable diffusion coefficient following the same protocol than in Fig. 2 b for vbSPT and anaDDA.
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Figure S4. Capacity of the annotation module. Assessment of the annotation module accuracy by comparing state estimations (either probabilistic or
categorical) with ground truth from simulated tracks. If not stated otherwise, d∗0 = 0, d

∗
1 = 5, and ku = kb = 0.1 Δt

−1. (a) Fraction of time points actually in diffusive
state depending on the probability to be diffusive estimated by ExTrack. More specifically, time points are binned according to their probability to be diffusive (x
axis) and for each bin we computed the fraction actually in diffusive state (y axis). Binning of 0.01. (b–d) Categorical state predictions are obtained by picking
the state with highest probability for each time point. The fraction of mislabeled time points can thus be computed by comparison to the known true states of
the simulated tracks. (b) Heatmap of the fractions of mislabeled time points depending on d∗1 and k (10,000 tracks of 10 time points). (c) Fraction of mislabeled
time points depending on (temporal) distance to transition time points. (d) Fractions of mislabeled time points using correct parameters except for one of them
specified in the legend. x-axis: Relative error of the varied parameter compared to the true value underlying the simulated tracks. For this particular simulation,
we used 10,000 tracks of 20 time points. Window length of 10. (e) Fraction of mislabeled time points depending on d∗1 for ExTrack and vbSPT. The grey dotted
curve (annotated as Error dif.) is the relative difference of the fraction of mislabeled time points between vbSPT and ExTrack (errorvbSPT–errorExTrack)/er-
rorExTrack (10,000 tracks of 10 time points).
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Video 1. msfGFP-PBP1b single-particle tracking.msfGFP-PBP1b particles acquired with TIRF illumination, acquisition at a frame rate of 40 fps (displayed at
10 fps), pixel size = 130 nm. Overlay of the tracks detected with TrackMate and labeled according to two-state parameter fitting and state probability from
ExTrack (jet scale: blue = bound, red = diffusive).

Figure S5. Complementary results for GFP-PBP1b and GFP-RodZ tracks. (a) Results from parameter fits to experimental tracks of GFP-PBP1b of at least
three time points (and considering not more than the first 50 time points) assuming two, three, or four states in ExTrack (three replicates per condition, each
replicate has at least 17,000 tracks of average lifetime from 6.3 to 7.5 positions). ExTrack settings: Window length = 4 for two/three states and 5 for four states,
no sub-steps. State fractions obtained from rates. (b–d) ExTrack analysis of GFP-RodZ data (same as in Fig. 4, f–h). (b) Parameters found by ExTrack for GFP-
RodZ tracks (three replicates, each replicate has at least 25,000 tracks of average lifetime from 6.3 to 7.4 positions), considering all tracks with at least three
time points and restricting analysis to the 50 first time points. (c) Histogram of the time spent in bound or diffusive states, among tracks of at least 21 time
points using parameters from b. (d) Examples of long bound RodZ tracks in linear motion. (e) PBP1b rebinding. Histograms of the distances in between initially
bound position and after four diffusive steps of PBP1b tracks that are subsequently either rebinding (blue) or not rebinding (red; see Materials and methods).
Histograms show no noticeable difference. Error bars and shaded regions: SDs between replicates.
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Video 2. GFP-RodZ single-particle tracking. GFP-RodZ fusion proteins tracked with TIRF illumination, acquisition at a frame rate of 25 fps (displayed at 10
fps), pixel size = 130 nm. Overlay of the tracks detected with TrackMate and labeled according to two-state parameter fitting and state probability from
ExTrack (jet scale: blue = bound, red = diffusive).

Provided online are two tables. Table S1 shows using ExTrack to fit parameters of a three-state model to different simulations of
three-state data with qualitatively different types of transitions. Table S2 shows two-state and three-state fits of tracks from
simulated particles either in immobile state (state 0) or in one of five diffusive states (states 1–5).
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