
TOOLS

CLEMSite, a software for automated phenotypic
screens using light microscopy and FIB-SEM
José M. Serra Lleti1*, Anna M. Steyer1*, Nicole L. Schieber1*, Beate Neumann2, Christian Tischer2, Volker Hilsenstein2, Mike Holtstrom4,
David Unrau4, Robert Kirmse3, John M. Lucocq5, Rainer Pepperkok1,2, and Yannick Schwab1

In recent years, Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) has emerged as a flexible method that enables
semi-automated volume ultrastructural imaging. We present a toolset for adherent cells that enables tracking and finding cells,
previously identified in light microscopy (LM), in the FIB-SEM, along with the automatic acquisition of high-resolution volume
datasets. We detect the underlying grid pattern in both modalities (LM and EM), to identify common reference points.
A combination of computer vision techniques enables complete automation of the workflow. This includes setting the coincidence
point of both ion and electron beams, automated evaluation of the image quality and constantly tracking the sample position
with the microscope’s field of view reducing or even eliminating operator supervision. We show the ability to target the regions
of interest in EM within 5 µm accuracy while iterating between different targets and implementing unattended data acquisition.
Our results demonstrate that executing volume acquisition in multiple locations autonomously is possible in EM.

Introduction
EM of cultured cells provides unique access to detailed subcel-
lular architectures at a nanometer scale. Sampling strategies are
essential to ensure an accurate morphometric evaluation of
subcellular phenotypes. In cases where cells are homogeneous,
random sampling guarantees the optimal selection of the overall
population (Lucocq, 1994; Lucocq and Hacker, 2013; Gundersen
and Jensen, 1987). However, different paradigms are necessary
to measure subcellular morphologies in heterogeneous cell cul-
tures (Offner et al., 1991; Altschuler and Wu, 2010). Increasing
imaging throughput is one way to address heterogeneity, but EM
rarely achieves sufficient regimes. Correlative light and electron
microscopy (CLEM) is an efficient solution to overcome such
heterogeneity in EM. It capitalizes on the power of light mi-
croscopy (LM) to screen large samples for choosing cell sub-
populations of interest. By applying a selection process on the
light microscopy level, analysis can be focused on specific in-
dividual cells, even if the phenotype of interest is extremely
rare. Thus, various targeting strategies have been developed
since the very first CLEM was performed on cultured cells
(Porter et al., 1945; Porter, 1953). Individual areas of interest
inside the sample can be tagged employing laser-etched frames
(Colombelli et al., 2008), or cells can be seeded onto dedicated
substrates that incorporate a coordinate system (Jiménez et al.,
2010; Beckwith et al., 2015). In both cases, object correlation is

established using landmarks created with artificial fiducial
markers that are easily identifiable in both LM and EM. Over the
years, various solutions have been developed to imprint such
fiducials, such as gold or ink printing (Padman et al., 2014;
Prabhakar et al., 2018), laser or scalpel etching (Jiménez et al.,
2010; Spiegelhalter et al., 2010), or carbon evaporation
(McDonald et al., 2010).

Nowadays, commercial CLEM dishes or coverslips are rou-
tinely used for correlating fluorescence imaging of fixed or liv-
ing cells with transmission EM (TEM; Stierhof et al., 1994;
Polishchuk et al., 2000). Typical sample preparation for EM,
i.e., by chemical fixation or high-pressure freezing, includes a
resin embedding step. Upon removal of the coverslip from the
resin block, the region of interest (ROI) is located using the to-
pology of the coordinate system that marks the block surface.
For TEM imaging, the block is then trimmed so the sections
containing an ROI can fit onto an EM grid. Regardless of the
initial dimensions of the substrate, selecting the ROI usually
entails the loss of surrounding areas, preventing the analysis of
multiple cells if they were distributed across the full surface of
the culture dish or coverslip.

In recent years, volume scanning electron microscopy (SEM)
modalities have been used for CLEM on cultured cells. Besides
offering access to large volumes, both serial block-face SEM
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(SBF-SEM; Titze and Genoud, 2016) and array tomography
(Hayworth et al., 2015; Kislinger et al., 2020) also require block
trimming before imaging and therefore suffer from the same
limitations as TEM when utilized for CLEM. Focused ion beam
SEM (FIB-SEM; Russell et al., 2017) however can accommodate
the imaging of large specimens without the need for trimming.
In particular, multiple cultured cells grown on a Petri dish or
coverslip can be imaged in a CLEM workflow, even when scat-
tered across the full surface of the substrate (Cosenza et al.,
2017). Despite this capability, CLEM has been performed one
cell at a time and for a limited number of cells (Narayan and
Subramaniam, 2015; Cosenza et al., 2017; Fermie et al., 2018;
Luckner and Wanner, 2018b), because up to now, FIB-SEM
microscopes lack automation procedures to acquire multiple
sites without interruption.

In this article, we introduce CLEMSite, a software prototype
that automates serial FIB-SEM imaging of cells selected previ-
ously by fluorescence microscopy. We show that automation is
not only possible but also significantly reduces the number of
required manual interventions during EM imaging. In addition
to the automation process, we also describe the system of
landmark correlations used to find targeted cells spread over the
surface sample. Our software was evaluated in two types of
CLEM experiments, each experiment type was repeated twice.
In the first type of experiment, for each session, we selected
around 25 cells from the same dish, each cell belonging to a
different phenotype. In the second experiment, the same
amount of cells were selected randomly, this time with only one
phenotype present in the dish. We collected a significant num-
ber of EM images from multiple cells, which allowed us to
conduct morphometric analysis on different phenotypes.

Results
Introduction
By following the logical workflow of a CLEM experiment,
CLEMSite was designed modularly (Fig. 1 a). The first module,
CLEMSite-LM, is a stand-alone application to process the sets of
images acquired by light and fluorescence microscopy. CLEM-
Site-LM primarily extracts stage coordinates of target cells and
their associated landmarks. The second module, CLEMSite-EM,
is divided into three components that assist with automation:
Navigator to find and precisely navigate to the targets, Multisite
to trigger a FIB-SEM run on each position, resulting in a stack of
serial images of the corresponding ROI, and Run Checker to su-
pervise operations during each acquisition. To control the FIB-
SEM microscope, CLEMSite-EM interfaces a commercial software
(SmartSEM and ZEISS Atlas 5 from Carl Zeiss Microscopy GmbH)
through a specific application programming interface (API) pro-
vided by Zeiss. The algorithms and high-level control functions
that we developed for CLEMSite are openly accessible and free to
download from a GitHub repository (see link in Materials and
methods, Software availability).

Correlation strategy
The correlation strategy applies transformations to translate cell
positions (microscope stage coordinates) from LM into cell

positions of the FIB-SEM (Fig. 1 b). At the light microscope, cells
of interest can be selected either by manually screening or using
more assisted pipelines, such as the ones described in the ap-
plication examples below. In our experiments, the Golgi appa-
ratus morphology was used to select cells employing an
automated phenotypic screen. At each position where a cell of
interest is identified for downstream CLEM analysis, a light
microscopy acquisition job is programmed to collect a set of
images. The first set comprises one fluorescence image at low
magnification (using a 10× objective, NA = 0.4; Fig. 2 a), and one
reflected light image of the same field of view revealing the grid
pattern (Fig. 2 b). The target area, which can be a cell or more
precisely a subcellular region (e.g., the center of mass of the
Golgi apparatus, Fig. 2 a), is placed at the image center. With a
target centered, the stage coordinates are recorded for subse-
quent use in the correlation.

All images are then loaded to CLEMSite-LM. The first step of
the software is to automatically extract landmarks that will be
used as references to register the stage coordinates coming from
LM and EM images. The grid pattern imprinted on the bottom of
the culture dish is a convenient coordinate system for registra-
tion. As the screened cells are typically distributed across the
whole surface of the CLEMdish, a map of local landmarks is built
from multiple sparse images of the grid.

Since the bars constituting the grid are relatively thick at
40 μmwide, the center of their intersections is used as a fiducial
marker. In CLEMSite-LM, these centers are identified by a line
detection algorithm, which is applied to the reflected light im-
ages to find the lines present at the grid bar edges. At the grid bar
crossings, the detected grid bar edges intersect in four points,
the centroid of which is used to mark the center of each grid bar
crossing (Fig. 2 b and Fig. S1). This center point is saved in stage
coordinates as a landmark. Since each grid square is already
imprinted with a unique combination of alphanumeric charac-
ters, each calculated center point is labeled using this existing
identifier. Identification of the corresponding alphanumeric set
of characters in reflected light images is performed by a VGG16-
based convolutional neural network (CNN; Krizhevsky et al.,
2017; Fig. 2 b). The CNN was trained with a combination of
synthetic and manually annotated light microscopy images.

The last step in CLEMSite-LM is to obtain a second collection
containing the centroid stage coordinates of the target structures
(e.g., the Golgi apparatus, Fig. 2 a). In our experiments, since our
target cells are centered on the image, stage coordinates are
extracted directly from the image metadata.

After sample preparation for EM, removal of the coverslip,
and coating with a thick layer of gold, samples are transferred to
the FIB-SEM chamber, where they are left to equilibrate for 1 d
before starting the experiment. The next day, the examined
sample is positioned for optimal visualization of the grid (see
Materials and methods, Correlation in EM). In the beginning,
CLEMSite-EM requires an image from a random initial position
of the sample surface to be used as a calibration step. The
Navigator module prompts the user to indicate which grid
square (identified by the alphanumeric identifier) is in the SEM
image and in which orientation. The landmarks are then de-
tected by the same line detector used by CLEMSite-LM. As a
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Figure 1. Schematic representation of the correlative light and electron microscopy software CLEMSite. (a) Overview of the different elements of
CLEMSite, CLEMSite-LM, and CLEMSite-EM. CLEMSite-EM is divided into three modules: the Navigator, which allows to store and move to different positions in
the SEM, thenMultisite, which drives the FIB-SEM acquisitions, and the Run Checker, which controls and reports during the FIB-SEM runs. (b)Workflow for the
automated acquisition of multiple correlated datasets. Light microscopy is performed to find specific phenotypes (“LM phenotyping”). From them, individual
cells are selected (“LM targets”) and their corresponding landmarks and positions are recorded using CLEMSite-LM. (i) This scheme illustrates that for “LM
targets, the low magnification overview shows the selected cellular targets (green circles), the landmarks (pink circles) used for correlating across imaging
modalities, and the alphanumeric coordinate system that is patterned on the cell culture dish. On the right, a higher magnification image shows more clearly
the Golgi as the cellular target (green circle), and the landmark used (pink circle) provided by the patterned culture dish, whose position is referred to the
closest alphanumeric coordinates of the culture dish. (ii) Inside the FIB-SEM, “EM targets” refers to the process of obtaining the positions of the cells in the EM
(stage coordinates). For that, a transformation matrix T is calculated based on the respective landmark positions of LM and EM (LM landmarks list in pink and
EM landmarks list in black). This matrix transforms an LM Target list (cell positions in LM stage coordinates in green) into an EM target list (cell positions in EM
stage coordinates in orange). On the right, the blue trapezoid and rectangle represent the milled and targeted region on the surface of the sample, inside the
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fail-safe, landmarks can also be manually identified by clicking
over them.

Based on the culture dish manufacturer’s known grid layout
(consisting of letters and numbers) and four landmarks, the
software creates a linear model that represents a simple qua-
dratic lattice to predict the position of all landmarks in stage
coordinates. This preliminary model-based prediction of land-
mark positions has a targeting accuracy of ∼5 ± 20 µm (mea-
sured as root mean square error [RMSE]), which is insufficient
for precise localization of the cell and therefore requires addi-
tional refinements. This involves obtaining more landmarks
over the sample surface. Thus, at each predicted landmark, an
SEM image is automatically taken, and a U-net-based CNN
(Ronneberger et al., 2015) is used to compute the probability of
each image pixel being part of a grid bar edge (Fig. 2 c). The line
detector is applied again to the resulting grid bar edges to give
the center point. This process is repeated throughout the sample
surface to find and associate each landmark identified previ-
ously in light microscopy images.

When enough landmarks are collected, an affine 2D trans-
formation is computed to register the landmarks from LM and
EM. The transformation is applied to all LM stage coordinates of
target cells to predict their position in SEM stage coordinates at
the surface of the resin block (Fig. 2 d). When all four experi-
ments are taken into consideration, this global transformation
reduces the error in target accuracy down to 13 ± 6 µm. If the
grid pattern is sharp and the block surface does not present any
defects such as cracks, scratches, or dust, grid edges are detected
perfectly, and the center point of the landmark can be calculated
with higher accuracy (Fig. S2). In our case, we had two such
experiments, reaching a global targeting accuracy (RMSE) of 8 ±
5 µm.

A local transformation delineates the third and final targeting
refinement to further increase the targeting accuracy. It is cal-
culated before each FIB-SEM acquisition, using only the land-
marks close to the target (a total of eight landmarks falling in a
radius of 1,200 µm). By applying this local refinement, we ob-
tained a final targeting accuracy of 8 ± 4 µm for all the experi-
ments (average of n = 10 cells per experiment over N = 4
experiments), or of 5 ± 3 µm with the pristine blocks (average of
n = 10 cells per experiment over N = 2 experiments). These re-
sults were validated by registering manually the fluorescence
image and the SEM view of the sample surface in the predicted
position (Fig. 2 e and Table S1).

Thus, with our experiments, we exemplify how it is possible
to perform automated detection and registration of landmarks
from both LM and SEM imaging modalities, which can lead to a
final correlation with an accuracy of targeting close to 5 µm.
Besides, the correlation can be performed over relatively large
sampling areas: in the experiments, a surface region of ∼8 ×
8 mm2 was completely mapped.

Automation of FIB-SEM imaging of multiple cells
Once the correlations between cell positions in light and electron
microscopy have been determined, the Multisite module of
CLEMSite-EM executes the FIB steps of our automation work-
flow. The following steps, usually performed by a trained human
operator, are triggered autonomously: localization of the coin-
cidence point, needed to bring the FIB and SEM beams to point at
the same position (Fig. 3 a); milling of the trench to expose the
imaging surface and detection of the trench to ensure a well-
positioned imaging field of view (FOV; Fig. 3 b); automated de-
tection of image features in the imaged surface needed to find an
optimal location for the initial autofocus and autostigmation
(AFAS; Fig. 3 c); and finally the stack acquisition (Fig. 3 d). These
four steps are executed sequentially for all targets (Fig. 3 e).

The sample is positioned at the target coordinates of the first
cell, and the Multisite module performs the coincidence point
alignment of both the electron and ion beams, a step which, in a
typical acquisition would be carried out manually (Fig. 3 a and
Fig. S3 a). To preserve the target from the burning radiation of
themark, the sample is shifted 50 µm in x. The working distance
is checked by autofocus and adjusted by the z-movement of the
stage. A square fiducial area (20 × 20 µm2) is then created at the
surface of the block by FIB sputtering at a high current (7 nA).
This square is then imaged by FIB and SEM sequentially (using
the SE detector). The offset (in the y-direction) between the
center of the sputtered square (i.e., the focus point of the ion
beam) and the center of the e-beam image is then utilized to
calculate the z-offset by applying a trigonometric relation (Fig.
S3). A further refinement is achieved by cross-correlating im-
ages of the sputtered mark captured using the FIB (imaging
current, 50 pA) and SEM modes. The measured difference in
micrometers is then applied to the SEM beam shift to correct the
FOV position.

Following the automated coincidence point alignment, the
software proceeds with estimating the position of the target cell
using the local transformation based on the closest landmarks as
described above. After moving back to the estimated position,
the software automatically triggers ZEISS Atlas 5 to mill a
trench, which exposes a cross-section orthogonal to the surface
of the block.When themilling is finished, an SEM image is taken
with the ESB detector at a FOV of 305 × 305 µm2, and the
trapezoid shape of the trench is detected using thresholding and
shape recognition (Fig. 3 b and Fig. S3 b).

The center of this shape is used as a reference to position the
FOV to be imaged during volume acquisition. The FOV is then
changed to 36.4 × 36.4 μm2 to capture an image of the cross-
section at higher magnification (Fig. 3 c). A feature detector
(Harris Corner detector [Harris and Stephens, 1988]) is applied
to this image to identify salient points with high contrast and
complex pixel neighborhoods. Such point features usually
cluster around complex cellular structures; therefore, they can

FIB-SEM. The black circle indicates the target coordinates in EM for the landmark, which should have its equivalent pink circle on LM stage coordinates. All of
this correlation work is performed using the Navigator. (iii) Finally, in “FIB-SEM acquisitions,” cell image volumes are acquired at the “EM target” positions using
Multisite and Run Checker. At each location of interest, the focused ion beam (red arrowhead) and the electron beam (blue arrowhead) are iteratively used to
acquire datasets. The acquired data is finally analyzed to characterize different phenotypes (“EM phenotyping”).
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Figure 2. Coordinate system mapping and automatic detection for the correlation strategy. (a) Cell of interest selected using fluorescence microscopy
by scanning low magnification images (first and second image). In our experiments, we targeted the Golgi apparatus center of mass (a, third image, white
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be clustered using k-means. The k-means centroids are addi-
tionally filtered and prioritized by higher variance, high entropy,
and their proximity to the center of the image. The first element
in the filtered list can thus be stored for the subsequent appli-
cation of autofocus and autostigmation procedures (AFAS;
Fig. 3 c). In the absence of a cell on the cross-section, the AFAS
function is automatically targeted to the edge between the cross-
section and the surface of the block. An image stack is then ac-
quired (Fig. 3 d). The dimensions of the image stack, as well as
the z resolution, are set when initializing the run, through the
CLEMSite interface (Fig. S4 a).Whilst every cell of one run can be
acquired with the same recipe (as defined in ZEISS Atlas 5 in
sample preparation, where total volume to be acquired, slice
thickness, and FIB currents applied are defined at each step),
CLEMSite-EM also offers the individual definition of recipes,
allowing a per cell adaptation of the shape or volume.

The Run Checker module of CLEMSite-EM (Fig. S4 b) super-
vises each stack acquisition and corrects the position of the FOV
if an image drift occurs in the y-direction. Similar solutions were
presented in (Marturi et al., 2013) and (Jin and Li, 2015), but in
ours, the drift is computed using ASIFT point feature corre-
spondences (Lowe, 2004; Yu and Morel, 2011), which are opti-
mally filtered using RANSAC (Fischler and Bolles, 1981). When a
drift is detected, the next image is corrected accordingly by
adjusting the SEM beam shift. If the difference between slices is
too big that is not possible to detect enough SIFT point features
to align them, the image is aligned with respect to the gold
coating on the top part of the image. Run Checker also continu-
ously monitors the run for periodic autofocus and stigmatism.
For each image acquired, Vollath’s autocorrelation and a Lap-
lacian metric (Pertuz et al., 2013) are used to measure, respec-
tively, the quality of focus and stigmatism. When these values
differ more than 25% between two consecutive slices, a warning
message in the user interface and an e-mail is automatically sent
to the user, who can then decide to interfere and correct the drift
manually.

After completion of one volume acquisition, CLEMSite-EM
restores the original microscope conditions, drives the stage to

the next target cell (using the Navigator module), and starts a
new FIB-SEM run (Multisite module). This process is repeated
until all targets are acquired (Fig. 3 e). When the Gallium source
no longer produces a coherent ion beam, the FIB interrupts the
current run. Upon reheating the Gallium source, the run is then
manually resumed to proceed with the next cells. For a typical
FIB-SEM acquisition recipe at ourmicroscope (as outlined below
in case study 1), 15 to 20 consecutive cells can be acquired before
it becomes necessary to reheat. Thus, CLEMSite provides a
unique solution for the automated targeted 3D acquisition of
multiple cells previously identified by light microscopy.

Applications
We illustrate CLEMSite’s capabilities with two applications. In
the first, the Golgi apparatus morphology of HeLa cells is per-
turbed with siRNA knockdowns by adapting a previously de-
scribed solid-phase reverse transfection protocol (Erfle et al.,
2008), where several siRNA knockdowns can be performed in
a single experiment. This approach represents an efficient
screening tool to identify specific genes involved in Golgi ap-
paratus morphology.

In the second application, we illustrate a follow-up of this
screen, where morphological perturbations of the Golgi appa-
ratus are further evaluated by focusing on one of the siRNA
treatments, i.e., knocking down the COPB1 gene expression. This
treatment was chosen based on its prominent phenotype. Var-
iable transfection efficiency leads to a heterogeneous distribu-
tion of the phenotypes. We address this heterogeneity with our
CLEM approach in which the target cells are selected according
to their phenotype as visible by fluorescence microscopy. Using
such a phenotype-enriched selection of cells enables us to collect
sufficient data for a morphometric evaluation at the EM level.

Case study 1: Integrated multiple knockdown CLEM screen
Organelle morphologies can be observed by fluorescence light
microscopy and used as a proxy to identify which genes are
involved in various cellular functions. Previous experiments
showed how the Golgi apparatus organization can be studied by

cross). The image position is translated to stage position coordinates and stored in the “LM targets list” (green). (b) Simultaneously, reflected light images (b,
first image) are stored, and later used to extract the stage coordinates of landmarks (LM landmarks list, pink). The image is analyzed and a line detector is applied
(red lines). The intersection of the lines is used to find grid bar crossings (b, second image including inset). The corresponding detected edges are converted to
lines that automatically mark 4 points (b, second image, red dots). Those points are used to determine the center point (second image, yellow dot), and they
will be part of the “LM landmarks list.” By convention, the top left corner (yellow arrowhead) is named by associating its unique center point (yellow dot) with
the alphanumeric identifier imprinted onto the glass dish bottom. To identify the alphanumeric character on the image, the reflected light image is auto-
matically thresholded and cleaned (b, third right image) using a combination of traditional image analysis pipelines (see Fig. S1) and then passed through a
convolutional neural network for classification, in this case, 8Q. (c) In the FIB-SEM, the strategy of mapping is repeated: scan images are taken by the Navigator
module (c, first image), and the grid bar crossings are detected to calculate the center point (red marks). In SEM, it is difficult to do automatic detection of the
alphanumeric character (indicated by a dotted black line, not the process of automatic detection). For this reason, the first character must be identified by the
user and then given as input to the map. Each grid bar crossing surrounding the character is imaged (yellow remark at the bottom). Here, a different con-
volutional neural network is used to evaluate the probabilities of being a line on each crossing (c, second image, red marks). The identification of the center
position of the crossing is very similar to the one in LM, here the intersections (c, third image, red dots) are identified after line detection, and the center point is
stored as a position (c, third image, yellow dot). This process continues at each predicted landmark to give a list of landmarks (EM landmarks list). (d) A
transformation is computed to register the positions from the LM and the EM landmarks lists (pink, black), which is then applied to the LM targets list (green) to
predict the respective EM targets list (orange) across the sample at the FIB-SEM. (e) At the end of the experiment, the position of the cell can be validated using
manual registration. FM (first image, top left) and SEM (second image, top right) images were superimposed manually using the cell contours. For this, the FM
images were flipped, rotated, and scaled (first image, bottom left). The position of the LM target (white cross) is then compared with the predicted target in the
SEM (black cross) (second image, bottom right). This overlay of SEM with LM images was repeated for each experiment, obtaining a final targeting accuracy of
5 ± 3 µm (RMSD over n = 10). Scale bars: (a) 200, 25, 25 µm; (b) 200, 100 µm with small window upper left corner 25, 50 µm; (c) all 100 µm; (e) all 50 µm.
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Figure 3. Schematics of some of the implemented components to achieve FIB-SEM automation and its results. (a) Automated Coincidence Point
routine is illustrated schematically. When not tuned, the two beams are usually pointing at different positions of the sample surface (green plane, blue point for
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tagging GalNAcT2, a resident enzyme of the Golgi apparatus,
with a fluorescent protein (Storrie et al., 1998; Simpson et al.,
2007). To efficiently screen the effects of different knockdowns,
we have adapted an integrated experimental approach based on
solid-phase reverse transfection (Erfle et al., 2008). By depos-
iting drops of siRNA transfection mix, multiple treatments are
distributed as an array at the surface of one single gridded
culture dish. With such a layout, up to 32 spots can be deposited
(Fig. 4 a).

After a 72-h incubation period, the cells on each siRNA spot
are automatically imaged by confocal fluorescence microscopy.
For this, four fields of view in each treatment spot are imaged
with a 10× objective (NA = 0.4, Leica HC APO). The position of
these fields is generated systematically using a matrix pattern.
The resulting fluorescence images are then processed in Cell-
Profiler (Carpenter et al., 2006), where the nuclei (DAPI chan-
nel) and a total of four features associated with the Golgi
apparatus (GFP channel) from individual cells are extracted.
Upon perturbation of the secretory pathway, the Golgi apparatus
morphology can display a variety of phenotypes (Simpson et al.,
2012), which we classified into four typical appearance catego-
ries: fragmented, diffuse, tubular, and condensed (Fig. S5 a). We
designed the four features to score each one of such morphol-
ogies individually (fragmentation, diffuseness, tubularity, and
condensation) to measure the impact of each siRNA treatment
(Fig. S5 b). Thus, a high score on one of the features serves as an
indicator of the presence of the phenotype.

For this proof-of-concept experiment, the expression of 14
genes was challenged (Table S2). The most striking effects were
observed when perturbing the expression of subunits of the
COP1 complex, associated with non-clathrin-coated vesicles
(Fig. 4, b and c). For the three subunits tested (COPB1, COPB2,
and COPG1), a considerable number of cells started to display a
diffuse GalNAcT2-GFP signal, as visible by fluorescence mi-
croscopy after 72 h of treatment (Fig. 4, b and c). Under these
experimental conditions, the other gene knockdowns did not
display noticeable phenotypes (Fig. S5 b), likely because the
sample size was not big enough to detect subtle variations in the
Golgi morphology.

Applying our automated CLEM workflow, we selected two to
three cells per condition for further ultrastructural analysis by

FIB-SEM. A total of 34 cells were automatically targeted (plus
two control cells acquired manually) and acquired across three
runs. For treatments with siRNA perturbing the expression of
subunits of the COP1 complex, the cells were chosen from the
pool that displayed the highest diffuseness score (Fig. 4 b, cells
highlighted as triangles on the plot), a pool that was clearly
distinguishable from the control condition. For other genes,
even though the image analysis did not reveal any outstanding
subpopulation, we picked randomly between the cells displaying
the highest scores associated with the expected phenotype, as
hypothesized from previous experiments (Fig. S5 b, selected
cells highlighted as triangles).

At the EM level, five out of the six cells treated with COPB
siRNAs with a diffuse phenotype displayed total disruption of
the Golgi stack, which would normally display three to four
closely associated cisternae. Instead, the region with enriched
GalNAcT2-GFP fluorescence signal was filled with numerous
vesicles (50–300 nm in diameter), suggesting a complete dis-
assembly of the Golgi stacks upon knocking down the COPB1,
COPB2, or COPG1 genes (as observed in the COPB1 of Fig. 4 c).
For the remaining cell, a mixture of Golgi stacks and vesicles was
observed.

The selected cells from the other siRNA treatments (Table S2)
were also imaged by FIB-SEM to detect any subtle perturbations
of the Golgi morphology at the ultrastructural level. For each
condition tested though, the Golgi apparatus was visible and a
stereological analysis (Ferguson et al., 2017) of the stack com-
position or stack volume did not reveal any differences with
respect to the control (Fig. S5 c).

Altogether this experiment shows that our software can be
utilized to screen for cellular and subcellular phenotypes in a
large-scale CLEM experiment. When used in an integrated ex-
periment with different siRNA treatments, CLEMSite enables
automated and fast screening for protein knockdown effects on
the fine ultrastructure of the Golgi apparatus.

Case study 2: Screening for phenotypes
Specific gene knockdowns lead to perturbed phenotypes of the
Golgi apparatus. As shown in the previous experiment, a strik-
ing phenotypic change occurs when cells are treated with
siRNAs targeting subunits of the COP1 complex. Integrated screens

FIB center, red point for SEM center). The orange plane below shows the case where the ideal position (yellow point) is achieved for both FIB and SEM beams.
In the software routine, a square is sputtered with the ion beam on the sample surface. The offset between the two beams is calculated based on the difference
between the center of the sputtered mark in the SEM and FIB images (dy, distance between red and blue positions in the green plane). The z height (dz) of the
stage is then corrected, and a further refinement using the SEM beam shift is performed by calculating the translation of the square mark between FIB (50 pA
image) and SEM images. (b) Milling & Trench Detection: (1) After finding the coincidence point, a trench is milled to expose a cross-section at the region of
interest. (2) The trench is detected to accurately position the field of view. First, three-level thresholding is applied to the image, followed by the detection of
the biggest connected component that fits a trapezoid shape. From the final binary shape, boundaries of the trapezoid are found (3): the top corners (red
circles), the trapezoid top center (blue circle), and the trapezoid center (light blue circle). (c) Image features detection: The image of the cross-section surface is
analyzed and scored for the best focus positions to perform autofocus and autostigmatism. Features inside the image are found by using Harris corner de-
tection and the variance of a small region surrounding each detected corner position. The initial features (red points) highlight the high contrast and complex
areas of the imaging surface which usually cluster on cellular structures. Features are clustered and their centroids (green dots) are then filtered and prioritized
to detect the first 6 ones suitable for AFAS (blue points). Due to the brightness/contrast settings to make the cell visible well inside the cross-section, the top
surface of the sample above the cellular edge, which is covered with a gold coat, is only faintly visible. This region is excluded from the analysis of the cross-
section to prevent autofocus outside the proper field of view. (d) Acquired data: Images are acquired at 200 nm intervals (in z) throughout the Golgi apparatus
region. The resulting stack is used for 3D render and quantifications. (e)Multi-site images: Result of an experiment, where multiple targets had been acquired
automatically across the full surface of the sample. Scale bars: (a) all 50 µm; (b) all 25 µm; (c) 5 µm; (d) slices all 2 µm, model 5 µm; (e) 500, 50 µm.
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Figure 4. Automated screen of 14 siRNAs after 72 h solid-phase transfection knockdown. (a) Transmitted light image of one Petri dish with the 32 siRNA
spots (left), where each siRNAs transfection mix is placed in the culture dish following a definite arrangement, see Table S2 for further details (right).
(b) Morphological features of the Golgi apparatus scoring tubularity, diffuseness, fragmentation, and condensation for COPB1 (n = 26), COPB2 (n = 34),
COPG1(n = 88) in comparison to negative control (Neg9, n = 305). Values of each feature are normalized with respect to the mean of the control. During the
light microscopy workflow, cells transfected with COP siRNAs display a phenotype that can be identified because of their high value in diffuseness. As an
example, we selected one cell of each COP-related siRNA (black triangles), to display in (c) the final result of the correlative experiment. (c) Selected correlated
cells control (Neg9), COPB1, COPB2, and COPG1 (top to bottom): overview merged fluorescent, reflected light image and image of the siRNA spot (LM merged
overview), the fluorescent image of a selected cell (LM selection target cell), a cross-section through the selected cell in the region of the Golgi apparatus
acquired automatically with the FIB-SEM (EM single slice from FIB-SEM volume) and a zoom into the Golgi region (EM Golgi region). Three corner siRNA spots
are highlighted with fluorescent gelatine (Alexa 594), shown as a red outline, whereas the last corner siRNA spot is highlighted with gelatine (Oregon green)
shown as a green outline to make the orientation always recognizable. Scale bars: (c) left to right, 100, 10, 1, 1 µm.
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with several treatments provide a reduced surface area where
cells are exposed to siRNA. This in turn limits the number of
phenotypic cells accessible for each condition. Therefore, we
performed a second experiment, where the entire cell popula-
tion of a culture dish was exposed to the treatment. We focused
on a COPB1 siRNA treatment by liquid-phase transfection and
evaluated it after 48 h of incubation. Although a larger number
of cells displayed a diffuse phenotype under these conditions,
the observed phenotypic diversity justified the use of CLEM to
perform an ultrastructural analysis on the most perturbed cells.

As described above, a measure of cytoplasm fluorescence
intensity levels was used as a score to select the diffuse pheno-
type. By defining a threshold on this score, all cells with a high
value of cytoplasmic diffusion were selected and then the dif-
fusion phenotype was validated manually for each cell using a
customized Jupyter notebook (see Materials and methods). Us-
ing adaptive feedback microscopy (Tischer et al., 2014), the
identified target cells were automatically re-imaged on the LM,
acquiring the image sets necessary for the correlation (reflected
light and confocal fluorescence at 10× magnification, see Results,
Correlation strategy). Higher magnification z-stacks of the cell
and Golgi apparatus were also acquired with the 40× objective
(zoom factor ×4) to document the spatial distribution of the
organelles. The 3D information acquired here was valuable, for
example, to be registered to the 3D FIB-SEM volumes (Fermie
et al., 2018).

In the next step, the set of LM images was processed as de-
scribed previously, to establish a list of LM landmarks and a
precise list of target cell locations. The cells were prepared for
EM and transferred to the FIB-SEM where CLEMSite autono-
mously acquired image stacks at each target location. In the
example shown in Fig. 5, the LM screen resulted in the selection
of 90 cells. Given the prototypic nature of ourworkflow, we kept
this initial number higher to compensate for the loss of targets
when progressing downstream. A first selection removed the
cells that were too close to each other (<150 µm) or that were on
regions damaged during sample preparation (resin defects,
scratches at the surface of the block; see Materials and methods,
Correlation in electron microscopy). Following this filtering
step, a final selection of 30 to 40 cells was acquired as FIB-SEM
stacks. After this, we examined the automatic acquisitions to get
the ones that had sufficient quality for analyzing the fine mor-
phology of the Golgi apparatus. Common criteria to discard ac-
quired stacks were out of focus during acquisition due to
technical failure, partially acquired samples due to targeting
inaccuracies, or non-valid samples due to damages on the sam-
ple surface, cells being multinucleated or mitotic (see Tables S3
and S4).

Altogether, on average, around 20 cell volumes per experi-
ment were acquired and analyzed (Fig. 5 a and Videos 1 and 2)
over an automated run that lasted 8 d, including one required
stop for manual reheating of the gallium source. Note that these
cells were distributed across a 40 mm2 surface area with a
maximum distance of 8.2 mm between cells. Our program fully
automatically and efficiently performs correlations between
fluorescence microscopy and FIB-SEM data. As an example,
the rendered segmentation of the FIB-SEM volume perfectly

recapitulates the cell morphology seen in FM (Fig. 5 b), dem-
onstrating the accuracy of the correlation. The resolution of the
FIB-SEM images is sufficient to analyze the ultrastructural
details of numerous cells. In our case (COPB1 knockdown) we
could reveal how the Golgi complex transitions from a stacked
organization to an accumulation of vesicles (Fig. 5 c).

Discussion
Performing CLEM on cultured cells, after selecting cells based on
their phenotype during the LM step, is an efficient way to
achieve ultrastructural analysis on targeted subpopulations.
This selection is performed before the EM sample preparation
and often one cell at a time. Because of an unprecedented effi-
cacy to interrogate the cell ultrastructure in 3D, volume SEM
imaging (Titze and Genoud, 2016) is gaining popularity in the
life sciences. Volume SEM has been used in CLEM experiments
to capture phenotypic cells in culture (Mellouk et al., 2014;
Russell et al., 2017; Ohta et al., 2021). In most cases, volume SEM
and CLEMwere combined to capture the 3D ultrastructure at the
highest spatial resolution possible (isotropic for FIB-SEM). Yet,
the resulting low imaging throughput, in combination with in-
dividual cell picking, previously rendered volume SEM im-
practical for ultrastructural screens. Only in rare cases, several
cells were analyzed in a single experiment (Cosenza et al., 2017).
Consequently, volume CLEM is rarely used for screening large
populations of cells.

Using the novel workflow we developed, it was shown that
correlative imaging using FIB-SEM can acquire multiple targets
within a single experiment (up to 30 over 1 wk of acquisition)
with full automation. Detection of local landmarks imprinted in
the culture substrate enables automated correlation and tar-
geting with a 5 µm accuracy. We estimate that this number
could still be improved by customizing a gridded substrate with
a smaller mesh size, consequently, shortening the distance be-
tween landmarks and targets. Our detection algorithm could be
extrapolated to other customized dishes or commercial sub-
strates for cell culture in SEM samples (Luckner and Wanner,
2018b). An advantage of using local landmarks for the correla-
tion is that they mitigate the impact of sample surface defects or
optical aberration across long distances. Alternatively, targeting
individual cells with a FIB-SEM has been achieved by mapping
the resin-embedded cells with microscopic x-ray computed to-
mography (Hoffman et al., 2020). We speculate that such tools
could be an alternative to a gridded substrate yet cannot predict
its adaptability to large resin blocks such as the ones we used in
this study.

Thanks to the utilization of a FIB-SEM, nearly the whole
sample surface is accessible, enabling the correlation of multiple
cells. In the case of highly distributed and distant rare events
(Guérin et al., 2019), the respective targets are still within reach.
We demonstrate the workflow on commercial dishes with a
usable surface on the order of 40 mm2, but much larger surface
areas are possible. The limitation is dictated mainly by the di-
mensions and travel range of the microscope stage. With such
potential, the other main feature of our software is the ability to
trigger an autonomous acquisition in multiple sites in one
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microscopy session. This fully automated triggering has not
previously been achieved on biological samples. This is made
possible through the automation of key steps of the imaging
pipeline, i.e., (1) setting the coincidence point of both ion and
electron beams, (2) automated selection of key focusing ROIs
using computer vision, and (3) constant tracking of the sample
position within the field of view of the microscope. In summary,
all interactions with the microscope that are usually supervised
by a human operator during acquisition, be it several hours or
days, are automated.

One essential strategy for increasing the acquisition
throughput is the decision to decrease the resolution in the
z-dimension, thus prioritizing the speed of acquisition and ul-
timately the total number of cells acquired in one run. For many
of the morphological features used, low z resolution has been
proven efficient to score phenotypic variability at the subcel-
lular level (Lucocq and Hacker, 2013). Here, the images in one
volume are acquired every 200 nm, a step size much larger than
typically used for isotropic voxel acquisition (e.g., 4–8-nm res-
olutions). The resulting gain in speed is significant, leading to
only 6 h necessary to acquire one full cell (including the creation
of the trench). This is in stark contrast to isotropic acquisitions
that can take from days to weeks per adherent cultured cells (Xu
et al., 2017; Luckner and Wanner, 2018a; Hoffman et al., 2020).

Extrapolating acquisition time to a screen of about 30 cells, our
workflow can deliver results in 10 d compared to isovoxel acqui-
sition regimes that would require more than 6 mo of machine
time. Therefore, CLEMSite is intended to be the foundation of
a screening tool for performing quantitative assessments of
morphological variations. It could help to reveal rare or novel
phenotypes at the ultrastructural level, and simultaneously in-
crease the number of observations. Other acquisition regimes of
FIB-SEM can be considered if higher resolutions are required, but
at the cost of a (much) lower throughput.

We believe that other research questions could benefit from
this type of screening. As an example, the Human Protein Atlas
Image Classification competition (Ouyang et al., 2019; Le et al.,
2022) managed to classify multiple organelles of individual cells
in fluorescence microscopy. Such machine-learning models
could be used to find rare events or particularly interesting
phenotypes. In another example, in host–pathogen interactions,
early infected cells might start to display a recognizable phe-
notype in a small subpopulation of cells (Santarella-Mellwig
et al., 2018). In both cases, those marked cells could be used to
establish a FIB-SEM screening to discover new morphological
differences at the micrometer level.

To expand the applicability of these screenings beyond the
proof-of-concept here presented, we propose two directions of

Figure 5. Automated screen on COPB1 cells in light and electron microscopy 48 h after liquid phase transfection knockdown. (a) Overview of 25
selected cells in a screen for COPB1 knockdown. Light microscopy images (green is GFP GalNAc-T2 Golgi apparatus and blue is DAPI for the nucleus, top) and
the corresponding electron microscopy images (bottom). (b) Top: Selected control cell (treated with XWNeg9 siRNA) in light microscopy (left), electron
microscopy (middle), and a reconstructed model from the FIB-SEM stack (right) showing the 3D model of the nucleus in blue, the model of the Golgi stacks in
green and a surface rendering of the cell surface in transparent green. Bottom: Selected COPB1 cell (treated with COPB1 siRNA) in light microscopy (left),
electron microscopy (middle), and a reconstructed model (right). (c) Detailed electron microscopy images of the Golgi apparatus region in a control cell (left)
and four different variations of a disturbed Golgi apparatus in different selected cells of the COPB1 knockdown. Scale bars: (a) LM—10 µm, EM—5 µm, (b) left
to right—10, 2, 5 µm, (c) 1 µm.
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improvement. First, by acquiring smaller enclosed volumes with
isotropic resolution, we could target area-delimited organelles,
like centrioles (Cosenza et al., 2017). In this case, the full cell
volume is neglected in favor of a small portion of it, but with
higher z resolution. At the software level, that would require
improving the targeting accuracy using smaller grids and ex-
tending the maps to 3D coordinates. 3D registration against a
light microscopy Z-stack would considerably help to constrain
the field of view during acquisition (Loginov et al., 2022), thus
reducing the imaging time and keeping the field-of-view posi-
tion during tracking. At the instrument level, this would require,
first, stabilizing the ion beam before the critical region is ac-
quired, to compensate for the change between high currents for
milling and fine currents for sectioning; second, to make sure
that the fine current beam hits exactly the front face of the
milled cross-section and then prevent milling artifacts; finally,
the second direction is to increase the number of samples ac-
quired per session. That would imply ion beams that automat-
ically reheat the Gallium source when it is exhausted (like
proposed in Xu et al. [2017]), with faster algorithms for auto-
focus and autostigmatism in SEM.

Capitalizing on the software’s ability to screen across the full
surface of the dish, we demonstrate that multiple siRNA treat-
ments can be performed in a single-integrated CLEM experi-
ment (by spotting siRNA onto the culture substrate). Provided
that other treatment reagents can be bound to the culture sub-
strate we anticipate that the same approach can be expanded to
screening the effects of various drugs on subcellular morphol-
ogies. While we focus on enhancing existing hardware with
targeting and automation abilities in this work, the next chal-
lenge is to efficiently analyze the resulting large amount of data
generated. So far, we are using the powerful tools brought by
stereology. We think that following the same principles, espe-
cially when designing the sampling strategies (Ferguson et al.,
2017; Lucocq, 2008), the manual assessment of subcellular
morphologies will be replaced by applying state-of-the-art
computer vision, such as deep-learning-based semantic seg-
mentation (Xu et al., 2021; Heinrich et al., 2021), followed by
morphometric analysis. Once these tools are readily available,
CLEMSite will be endowed with even more power to support
molecular cell biologists in morpho-functional studies.

Materials and methods
Cell culture
HeLa cells stably expressing GalNAc-T2-GFP (Storrie et al., 1998)
were maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM; Sigma-Aldrich) culture medium containing 10% fetal
calf serum (Gibco Life Technologies), 100 units/ml penicillin
(Gibco Life Technologies), and 100 µg/ml streptomycin (Gibco
Life Technologies) and 2 mM L-Glutamine (Sigma-Aldrich),
incubated at 37°C and 5% CO2. Cell selection was applied using
500 µg/ml Geneticin (G-418 sulfate; Gibco Life Technologies)
for every passage of the cells. Cells were incubated on gridded
MatTek dishes (P35G-2-14-C-GRID, MatTek corporation) with
siRNA spots and incubated for 72 h in DMEM medium without
phenol red.

siRNAs
siRNAs targeting Golgi apparatus (Simpson et al., 2012) mor-
phology in this study were obtained from Ambion/Thermo-
Fisher as Silencer Select reagents. Please see Table S2 for siRNA
IDs and sequences.

siRNA pre-screen and solid-phase reverse transfection
From an initial genome-wide screen for proteins affecting the
secretory pathway (Simpson et al., 2012), 143 siRNAs affected
the morphology of the Golgi apparatus. From them, 79 of the
strongest phenotypes were selected. These were used in a pre-
screen to find the most promising candidates for further CLEM
experiments. 96-well plates (glass-bottom) were coated with
siRNA transfection mixtures (Erfle et al., 2008). In brief, a 0.2%
gelatine solution in H2O, as well as a sucrose/Opti-MEM solution
(1.37 g in 10 ml) is prepared and one transfection mix per siRNA
composed of the sucrose/OptiMEM solution (3 µl), Lipofectamin
2000 (1.75 µl) and H2O (1.75 µl) is made. Silencer select siRNA (5
µl) of a 3 µM stock solution is mixed with the transfection mix,
incubated for 20 min at room temperature and the gelatine so-
lution is added (7.25 µl). The mixture is spotted onto the MatTek
dishes and dried in a vacuum centrifuge at 37°C. Afterwards,
HeLa Kyoto cells stably expressing GalNAc-T2-GFP (3,400 cells/
well) were seeded using an automated cell seeding device
(Multidrop/Thermo Fisher Scientific). Cells were imaged on a
ScanR microscope (Olympus, UPlanSApo 20 × 0.7 Ph2, DAPI,
GFP, and transmitted light). The plates contained control siRNAs
for which the phenotype is well characterized on a light mi-
croscopy level: siRNA targeting COPB1, AURKB, KIF11, and non-
silencing negative control siRNA (XWNEG9). The 14 siRNAs
showing the most prominent phenotypes were chosen for fur-
ther CLEM experiments. Candidate selection was based on the
morphology of the Golgi apparatus, as visible from the fluores-
cent signal given by the GalNAc-T2-GFP. From collected images,
morphological features were computed as explained below
(Light Microscopy prescan and CellProfiler feature extraction).
Selected siRNAs were spotted onto a gridded MatTek dish
(P35G-2-14-C-GRID) using a contact spotter (ChipWriter Pro-
Bio-Rad Laboratories) resulting in a layout of 4 × 8 spots. The
mixture either contained Oregon-green 488 gelatine (Thermo
Fisher Scientific) or Alexa-494 gelatine (labeled with molecular
probes protein labeling kit, Thermo Fisher Scientific) to make
the spot boundaries visible. The array contained a total of six
controls, as follows: three spots of negative control siRNA
(XWNEG9), two spots of siRNA against AURKB and KIF11
(transfection control), and one spot of siRNA against COPB1.
The other spots contained siRNA that target genes showing a
Golgi phenotype after RNAi knockdown. 70,000 cells per ml
were seeded onto the spotted MatTek dishes and fixed with a
light fixation (0.5% glutaraldehyde, 4% formaldehyde in 0.1 M
PHEM) after 72 h of siRNA treatment. The observed transfec-
tion efficiency for a successful experiment was not uniform and
oscillated between 40 and 70% within the spots.

Liquid-phase transfection for COPB1 knockdown
Liquid transfection with the siRNA (S3371) that is associated
with the gene COPB1 was used in gridded MatTek dishes (P35G-
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2-14-C-GRID) containing numbers and letters where cells were
seeded at 70,000 cells/ml per dish. A standard protocol for
transfection was used combining 3.3 µl of 30 µM siRNA with 1.5
µl of Lipofectamine 2000 (Invitrogen). Cells were examined by
light microscopy 48 h after transfection.

Fixation before light microscopy
Cells were fixed with a mixture of 4% formaldehyde and 0.5%
glutaraldehyde (EM grade EMS) in 0.1 M PHEM Buffer (pH 6.9:
240 mM PIPES [Sigma-Aldrich], 100 mMHepes [Biomol], 8 mM
MgCl2 [Merck], and 40 mM EGTA [Sigma-Aldrich]). A Ted Pella
BioWave microwave with a temperature control unit (Pelco
Biowave microwave with ColdSpot [Ted Pella, Inc.]) was used to
accelerate the fixation process to 14 min at 250W. DAPI (1 µg/ml
in 0.1 M PHEM; Thermo Fisher Scientific) was applied to cells to
stain the nucleus for a total of 10 min. To quench glutaraldehyde
auto-fluorescence, cells were rinsed with 150 mM glycine
(Merck) in PHEM buffer. Cells were left in the PHEM buffer for
imaging.

Light microscopy
Light microscopy prescan and feature extraction
After the MatTek dish was mounted on the light microscopy
(LM) stage (Leica SP5 MSA), the four corner spots of the siRNA
array (Fig. 4 a) were located based on their green/red fluores-
cence using a 10× objective (NA = 0.4, Leica HC PL APO 10×). At
each corner, we used a python script to save the stage position
from the microscope. After storing the positions of the four
corners, the script generated a list of stage positions (2 × 2 sub-
positions within each siRNA spot) that were loaded as positions
onto the Leica Matrix Screener software. For the prescan im-
ages, the following specifications were used: 10× objective, 680 ×
680 pixels, zoom 6, FOV 258 × 258 µm, 4x averaging, sequential
scan for excitations 405 nm (DAPI-labeled nuclei, emission 457
nm), 488 nm (GalNAc-T2-GFP, emission 510 nm), and 594 nm
(A594-labeled gelatine, emission 610 nm). Prior to each acqui-
sition, autofocus was performed on the DAPI signal. A CellPro-
filer image analysis pipeline (http://cellprofiler.org/releases/,
version 2.2) was configured to segment nuclei based on the DAPI
signal and then delimit cytoplasmic cell ROIs by radial dilation of
each nuclear ROI. Within each cell ROI, the GalNAc-T2-GFP
signal was used to compute four intensity-independent features
characterizing different typical alterations of Golgi morphology:

Diffuseness. Diffuseness was designed to characterize the
fraction of the GFP signal dispersed in the cytoplasm. Given the
image with the GFP signal, with the cytoplasm already seg-
mented for each cell, the diffuseness of a cell is computed as the
sum of all pixel values of the cell cytoplasm after amorphological
grayscale opening, divided by the sum of all the pixel values of
the cell cytoplasm. This value is highwhen the signal intensity of
the Golgi is homogeneously distributed over the cell body.

Fragmentation. This feature was designed to characterize the
number of unconnected Golgi structures. In some phenotypes,
the Golgi apparatus is split into many pieces of variable size,
with the biggest pieces being much smaller than a typical Golgi
shape that would be observed in the negative control. Frag-
mentation is calculated by counting the number of separate

connected components after a top hat morphological filter and
Otsu thresholding (Otsu, 1979) of the GFP signal for each cell.

Tubularity. Some phenotypes showed high tubularity, also
described as “enlarged” (Simpson et al., 2012), where the Golgi
apparatus had elongated cisternae running through the cyto-
plasm. Morphological grayscale openings of the GFP signal are
computed using structural elements in the form of a line at
different angle orientations (0–180°). The difference between
orientations that yields the maximum and minimum results of
the filter are saved for each pixel. After this, the total value of
elongation is computed as the sum of all values divided by the
sum of the GFP intensity gray value for each cell.

Condensation. In other siRNA treatments, the Golgi was
condensed in a smaller area, looking almost circular at the
fluorescent microscope. Condensation was measured by the
shape factor, which is calculated using the formula (4 * PI * Area) /
(Perimeter2) on connected components of a binarized image.
The binarized image was obtained by performing a top-hat filter
and an Otsu thresholding of the GFP intensity for each cell cy-
toplasm. If the length of the outline from the binarized object
delineates a perfect circle, it will match with the area of the
enclosing circumference, providing the maximum value of 1.

Cell selection using a Jupyter notebook
Images from the previous step were stored in separate folders
(one for each position where images were taken), and the Cell-
Profiler pipeline was applied to them to compute the features
described in the previous step. The output values for the features
were stored in a comma-separated value file and read with py-
thon into a Jupyter notebook (Kluyver et al., 2016; https://github.
com/josemiserra/CLEMSite_notebooks). The first step, known
as quality control (QC), was to remove possible artifacts or un-
desired effects like dividing cells or cells too dim to be properly
classified. This step was also useful to explore the results by
analyzing the values of the controls with respect to treatments
and carrying on an exploratory analysis of our features. Pandas
(McKinney, 2010) was used to read the files from the CellProfiler
pipeline and organize the information associated with each cell
in tables. Bokeh (https://bokeh.org/) and Holoviews (https://
holoviews.org/) python packages enabled us to provide inter-
active plots inside the Jupyter Notebooks that increased usability
and speed up the process of manual cell selection.

Once the feature values calculated in CellProfiler were
loaded, cells expressing too little GalNAc-T2-GFP were rejected
based on their integrated signal. Next, mitotic cells were rejected
based on the coefficient of variation (CoV) of the DAPI signal,
using the observation that, due to chromosome condensation,
mitotic cells had a higher CoV than interphase cells within the
segmented DAPI region. Finally, the PowerLogLogSlope feature
(Bray and Carpenter, 2018) was used to remove potentially out-
of-focus cells. After this, images of positive controls (AURKB,
KIF11, and COPB1) were shown for qualitative assessment, and
the experiment was continued if the three positive controls
showed visible effects and the negative control was under
standard conditions.

After the QC, which filtered out around 20–30% of the cells,
the selection of cells for CLEM was displayed in a series of
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interactive plots. The plots include controls that allow cells to be
selected easily in groups. For each gene, the phenotype was
differentiated from controls by one of the main features (e.g.,
COPB1 by diffuseness, ACTR3 by condensation [Fig. S5 a]), and
cells were selected inside a jitter plot based on their feature
values. Some phenotypes could manifest synergy in the feature
space, for example, those that showed both fragmentation and
tubularity. For this reason, t-SNE (Van Der Maaten and Hinton,
2008) was also proposed to cluster and select small clusters of
populations naturally.

After the coarse selection of groups, small cropped preview
images of each cell in the subpopulations for each gene are
displayed. The user is prompted to individually confirm that the
automatically selected cells exhibit the expected phenotype. The
interface supports this through a yes/no button below each cell
picture. Aminimum of 42 cells were picked (three per treatment
in a total of 14 treatments, the transfection controls AURKB and
KIF11 were excluded) for CLEM (Fig. 4 and Fig. S5 a). The stage
coordinates of the selected cells were saved and used to auto-
matically guide the high-magnification imaging on the confocal
microscope. For the liquid phase transfection experiment
(Fig. 5), where only one phenotype was studied (COPB1), a total
of 25 cells were selected, using only the property of diffuseness
(Fig. 5 c) and selecting values higher than the average value of
the control.

High-magnification imaging light microscopy
For each of the cells selected by image analysis, the following
automated scan job pattern was triggered: (a) cell coordinates
were passed to themicroscope and the stage was positioned such
that the selected cell was centered on the optical axis, (b) soft-
ware autofocus on DAPI signal of the target cell using 40× objec-
tive (NA = 0.75, Leica HCX APO U-V-I), (c) high-magnification
z-stack acquisition (nine slices, 10.1 µm range) with 40× objec-
tive, 512 × 512 pixels, zoom 5, FOV 77.5 × 77.5 µm, channels 405
nm/488 nm, (d) imaging of the spatial context of the cell including
the etched coordinate system with the 10× objective, 1,024 × 1,024
pixel, zoom 1.2, FOV 1.29 × 1.29mm, channels 405 nm/488 nm/594
nm fluorescence, transmitted/reflected light. Communication
with the microscope software was implemented in python using a
library of functions that communicate with the Leica Matrix
Screener software through the Leica CAM protocol network
(Tischer et al., 2014; Tosi et al., 2021). Two functions were used,
one to move to the specific coordinate calculated in the previous
step and another to execute the acquisition of the described se-
quence of images, previously programmed using Leica LAS AF
software (version 1.0.4, 2013).

Correlation in light microscopy
CLEMSite is a set of software tools developed in python and C# to
support automated correlative light and electron microscopy
(CLEM; Fig. 1). The first of these tools, the CLEMSite-LM, was
used to process the light microscopy images and extract land-
marks from them (Fig. 2). The user provides a folder containing
at least one image with two channels, one fluorescent with the
GFP tagged organelle of interest and one showing the patterned
glass-bottom grid. Both images were acquired simultaneously at

low magnification with a FOV that included a full square and
patterned letter inside, usually 600 µm2. The grid pattern was
acquired using reflected light (RL), the modality of the confocal
microscope. Images had a pixel size of 1.7 µm/pixel with a di-
mension of 1,024 × 1,024 pixels.

A script was created to rename the folder images to a more
readable format and then, the set of folders was given to the
application CLEMSite-LM. This application reads the RL image
and applies our algorithm LOD (Line Orientation Detector; Fig.
S1). LOD applied a series of preprocessing steps in which gra-
dients are selected positively if they follow a line. Pixel ori-
entations wereweightedwith neighboring pixels by convolution
with line morphological operators for each possible angle ori-
entation. A projection of the image onto one axis from 0 to 180°,
at a resolution of 1°, generated a 2Dmapwhere the main trend of
a line inside the image could be detected by finding maxima
using non-maxima suppression. Once the most prominent lines
were found, iterative refinement steps were applied to logically
discard the lines which are not likely to belong to the grid, e.g.,
sets of lines not crossing orthogonally or not keeping approxi-
mately the expected measures given by the manufacturer of the
glass bottom dishes.

Points resulting from calculating line intersections on the
grid were associated with their corresponding alphanumeric
identifier and used as landmarks. The LOD parameters are de-
pendent only on resolution, where the number of neighbors was
set to (k = 12) and stroke size (stroke = 15) for 1,024 × 1,024
images. The parameters used for LM were between 0.06 and
0.075 for the Canny threshold, and a Laplacian filter was applied
before in the presence of regular interference patterns or local
contrast enhancement (CLAHE) when the brightness and con-
trast were unbalanced. The other provided parameters are the
dimensions of the grid. In our case, we used MatTek grids,
where the lattice is formed by a sequence of two lines spaced
40 µm followed by another space of 580 µm. We used as a
landmark the center position of the small square formed by the
intersection between two sets of perpendicular lines spaced
40 µm.

Each LM position in a map also requires a unique identifier.
For landmarks, we conveniently named them after the two-
character combination inside the nearest grid square (e.g.,
4N). By convention, given a grid square with the inner pattern
straightly oriented, the top left corner landmark is assigned
(Fig. 2 b). To automatically identify the characters on each grid
square we trained a U-net using a mixture of real (20%, 1,115
images) and synthetic (80%) binary images (128 × 128) of the
identifier patterns combined with augmentation. The CNN ar-
chitecture, implemented with Tensorflow (https://www.
tensorflow.org/), used 6 convolutions layers in a sequential
manner followed by two dense layers. The loss function used
was categorical cross-entropy that converged after 70 epochs.
The prediction of the network was additionally validated using
previously detected neighbors and the expected position of the
landmark (e.g., 1A can be a neighbor of 1B, but not of 8B).

Detected landmarks are saved by the application in image
coordinates. Since the stage coordinates of the optical micro-
scope (saved in the metadata of the image) refer to the center of
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the image, the translation from pixel coordinates to stage coor-
dinates can be obtained by simple addition after converting
pixels to distances using the known image pixel size. Similarly,
for each targeted cell, the difference in micrometers from the
center of the image to the centroid of the object of interest was
provided and converted to its respective stage coordinates.

Electron microscopy
Electron microscopy sample processing
The entire EM processing was performed using a Ted Pella Bi-
owave Pro microwave. After samples were lightly fixed and
imaged in the confocal microscope, they were heavily fixed with
2.5% glutaraldehyde (EMS), 4% formaldehyde (EMS) and 0.05%
malachite green (Sigma-Aldrich) in 0.1 M PHEM (pH 6.9:
240 mM PIPES [Sigma-Aldrich], 100mMHepes [Biomol], 8 mM
MgCl2 [Merck], 40 mM EGTA [Sigma-Aldrich]). The samples
were then postfixed with 0.8% K3Fe(CN)6 (Merck), 1% OsO4

(Serva) in 0.1 M PHEM. The samples were stained successively
with 1% tannic acid (EMS) and 1% uranyl acetate (Serva) to
enhance the contrast. Samples were dehydrated in a graded
ethanol series (30, 50, 75, 90%, 2 × 100%) and infiltrated in a
graded series of Durcupan (25, 50, 75, 90%, 2 × 100%, Sigma-
Aldrich) and polymerized in the oven at 60°C for 96 h.

Correlation in electron microscopy
The central disk of the MatTek dish was broken out using heat
shock. The resin disk, containing the cells along with the imprint
of the coordinate system on the surface, was mounted on SEM
stubs (Agar Scientific) with a conductive carbon sticker (Plano).
To reduce the amount of charging the samples were surrounded
by silver paint (Ted Pella, Inc.) and coated with gold for 180 s at
30 mA in a sputter coater (Q150RS; Quorum). The samples were
introduced into the Crossbeam 540 (Zeiss) and positioned at 54°.
CLEMSite is interfacing ZEISS Atlas 5 version 5.2.0.150 from
Fibics Incorporated to navigate to the correct positions and to
prepare the ROI for imaging. When scanning the surface of the
sample with a scanning electron microscope (SEM), after de-
taching the glass from the resin, the imprinted grid pattern from
the glass bottom dish and letter combination could be distinctly
observed.

To optimize the visualization of the gridded pattern, samples
are rotated using the FIB-SEM stage to orient the grid at a 45°
angle with respect to the SEM image (Fig. 2 c). This ensures that
both perpendicular orientations of the grid are efficiently de-
tected when recording the secondary electrons which are best
suited to visualize topological information. Cell contours could
be visualized at higher accelerating voltages (5–10 kV) allowing
signals to be detected from deeper regions inside the sample.
However, cell visibility was sample dependent, and individual
cells could only be differentiated one from another at lower cell
confluency.

Once all LM images were processed and the landmarks and
targets stored in their respective files, we proceeded with the
FIB-SEM acquisition. Our software connected to the microscope
control in a client-server architecture, where the client
streamed information and commands which were parsed, vali-
dated, and then executed by a server. The server software relied

on a dynamic library in NET provided by Fibics Incorporated to
control the microscope through ZEISS Atlas 5. When the mi-
croscope was ready, a first image of the surface was acquired (1.5
kV, 700 pA) using the secondary electron detector (SESI) and
sent to our client application. The reliability of the computational
process was increased by having the user move to a grid square
and indicate the combination of visible characters in that square.
After the first image was computed, landmark references were
calculated and mapped to an ideal coordinate system layout
based on manufacturer measures (MatTek dishes: 560 × 560 µm,
a linewidth of 40 µm for SEM), and initializing a linear system to
predict further positions within the grid. Afterward, the stage
was moved to the approximate position of each grid square close
to the regions of interest to be acquired.

When applied to SEM images, the LOD algorithm (used
previously in LM) had a high failure rate (from 0.05 to 5%).

In SEM images, grid lines are very often blurry or erased.
Neural networks have proved to be very resilient to noise in
classification and object detection (Ravindran, 2022). Based on
those successes, we trained a U-Net network (Ronneberger et al.,
2015) to provide the probability mask where edges of a crossing
could be found (Fig. 2 c). Enough training data to optimize the
networkwas providedwith data from the LOD and usedwith the
errors curated manually. Manual segmentation was performed
using the corner shadows in around 100 difficult cases when
LOD failed. We extracted a total of 600 images and augmented
them to 3,000 images by variations in scaling, rotation, transla-
tion, and intensity values. As preprocessing steps after augmen-
tation, CLAHE (32 × 32 filter size), Gaussian blur (Sigma-Aldrich 1,
5 × 5 filter size), and normalization were applied. Processed
images were then used to train a convolutional autoencoder
based on U-Net, using binary cross-entropy as a loss function,
together with an Adam optimizer at a fixed learning rate of 1e-
4. The network computed a probability map of the regions in
the image that contained an edge belonging to a grid line. The
last part of the previous LOD algorithm was adapted to find the
peaks based on the maximum probability of lines and provided
results in the form of image coordinates. Using the detection
system based on a CNN the rate of failure in detection was
reduced, with an average RMSE of detection originally of 12.66 ±
18.8 µm to one of 6.23 ± 6 µm with respect to ground truth
(with n = 149), a considerable improvement. The implementation
of all the networks was carried out with Keras 2.0.8 and
Tensorflow 1.3.

The described detection step was performed for 30% of the
grid corners, with a minimum of 20 grid corners required. The
scanning of the surface sample (duration between 30–40 min)
provided enough positions to generate a global registration with
a targeting accuracy of 5–20 µm throughout a surface area of
1 cm2. Since not all positions acquired in LM could be present in
the current resin block (on several occasions the resin block
broke into two different pieces), another CNN was trained to
detect positions very close to the border or outside the sample,
with a binary output (image valid or not). After the scan was
finished, the positions of targeted cells were predicted using a
global affine transformation, which uses all available matched
points between LM and SEM. All the information from mapping

Serra Lleti et al. Journal of Cell Biology 15 of 19

CLEMSite automates correlative light and volume EM https://doi.org/10.1083/jcb.202209127

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/222/3/e202209127/1446290/jcb_202209127.pdf by guest on 09 February 2026

https://doi.org/10.1083/jcb.202209127


was stored in memory using a pandas dataframe for further
usage and queries. If cells were closer than 150 µm one of them
was removed because the trench and acquisition of the first cell
could interfere with the acquisition of the adjacent second cell.

The generated map between LM and SEM was used before
each acquisition of a targeted position. First, it was used to move
to the target cell and calculate the coincidence point there. After
this, any landmark in a radius of 1,200 µm close to the region of
interest was imaged (usually resulting in four to eight neigh-
boring landmarks) and stage coordinates were obtained again.
Subsequently, for each predicted position accuracy of 2–5 µm
was achieved. This was precise enough to hit the organelle of
interest.

In the current workflow, analyzing the images from light
microscopy to extract the positions of the cells and the glass
bottom grid took ∼2 h. This can be carried out on any computer
at any time between the LM and EM session. In this step, extra
verification steps were added that helped the researcher validate
the current cells selected in the light microscopy images. The
corresponding map of the grid in the FIB-SEM in the resin block
is acquired in ∼3 h. The initial setup for the first volume ac-
quisition takes around 30 min, with minimal user input
(brightness and contrast of detectors). After the first cell ac-
quisition starts successfully, the microscope can run autono-
mously until the FIB-Gallium source has reached its limits and
needs to be reheated.

Automation of the FIB-SEM acquisition
To align the electron beam and the ion beam, we used an au-
tomatic coincidence point procedure to match both (Fig. S3 a).
First, a square was burned onto the surface of the sample using
the FIB. The geometrical relation between the two beams was
used to move the stage to the coincidence point resulting in both
beams hitting the same spot on the sample surface (Fig. 3 a).
After this, a trenchwasmilled in front of the ROI at a FIB current
of 15 nA and a 20 µm depth. Polishing was performed at 3 nA. In
this way, a cross-section through the ROI was exposed and the
polygonal shape of the trench was detected (Fig. 3 b and Fig.
S3 b). The field of view was positioned on the cross-section,
and points with high variance were obtained to tune the auto-
matic focus/stigmatism functions (Fig. 3 c). In the last step, the
acquisition started with a crisp focus (Fig. S3 c) and the system
acquired section after section (slice and view). For 3D data ac-
quisition, the FIB was operated at 1.5 nA with the SEM and the
FIB operating simultaneously (Narayan et al., 2014). The images
were acquired in analytical mode (1.5 kV, 700 pA) using the
energy-selective back-scattered electron (EsB) detector at
1,100 V grid voltage. The dwell timewas set to 10 µs/pixel, with a
line average of 1 and an 8 nm pixel size. The FOV was set to 25 ×
15 µm (XY front face) and images were collected for a ROI of 25 ×
30 µm (XY, plane parallel to the surface) at 200-nm intervals for
COP phenotypes, resulting in 8 × 8 × 200–nm voxels [XYZ]).
Note that to gain time in the preparation process for a run, we
have not covered the ROI with a platinum protective layer and
alternatively we increased the thickness of the gold coating of
the full sample. In such cases, only low z-resolution acquisition

is possible, as acquiring at a higher resolution would require
sputtering of the sample surface.

During the acquisition, an additional process was launched to
monitor the status of the imaging (Fig. S3 b). This monitoring
was in charge of automatically placing the region where the
autofocus and autostigmatism (AFAS) routines had to be exe-
cuted. The AFAS routines happened at periodic 45 min intervals
and were executed in a region of the cell where high contrast
could be found. This was achieved using a Harris corner detector
(Harris and Stephens, 1988) combined with clustering: the
clustering with a higher number of corners is the candidate
point for AFAS.

In addition, the imaged x-y region of interest was tracked in
the y-direction to prevent undesirable drifting. Cross-correlation
was employed to find the relative difference between con-
secutive sections. The upper layer of the resin covered with
gold was detected using changes in entropy and a drift >25%
of the total y size, which was corrected at 0.5 µm increments,
maintaining the region of interest in the desired field of
view. After the acquisition of one position was completed,
the stage of the FIB-SEM was moved to the next ROI and
started a new acquisition.

Stereology
All stereological measurements were performed using IMOD
(Kremer et al., 1996). From every siRNA treatment, a minimum
of two cells typical for the individual treatment and very dif-
ferent from the negative control were selected by the image
analysis pipeline. The FIB-SEM images were acquired through-
out the cell of interest with a spacing of 200 nm and a random
starting point producing 10–20 evenly spaced sections per cell.
Golgi cisternae were defined as membranous structures devoid
of ribosomes with a threefold length to breadth ratio. Golgi stack
profiles were defined as any assembly of cisternal membranes
and the total area enclosed by them (Lucocq et al., 1989). The
volume of the Golgi stack, (V [Golgi stack]; Fig. S4 c) was esti-
mated using a point counting-based Cavalieri estimator by ap-
plying a regular point lattice that yielded 100–200 point hits
over Golgi stack profiles per typical section stack (Lucocq et al.,
1989).

Our FIB-SEM sections were prepared orthogonal to the
monolayer substratum in a haphazard (random) orientation
relative to the analyzed cell, and therefore comprise vertical
sections on which the surface density of the Golgi cisternae in
stack volume can be estimated by counting intersections (I)
arrays of cycloid line probes (Ferguson et al., 2017). As cisternal
membrane morphology was often indistinct, Golgi cisternae
profiles were defined as a single line bisecting the cisternal
membrane profile. The mean number of cisterna was estimated
using the ratio of (intersections with Golgi cisterna; I[cist]) to
(intersections with the Golgi stack profile face; I [stack face]).

Software availability
CLEMSite software can be downloaded at https://github.
com/josemiserra/CLEMSite. Supplementary instructions and
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explanations can be found at https://github.com/josemiserra/
CLEMSite_notebooks.

Online supplemental material
Fig. S1 shows a diagram explaining the algorithm for line de-
tection and landmark recognition in LM and SEM. Fig. S2 shows
examples of successful and failed landmark detection on SEM
images (SE detector) from surfaces of different samples. Fig. S3
shows diagrams depicting the algorithm steps for (a) automatic
coincidence point detection, (b) milling and trench detection and
(c) automated AFAS steps for the autonomous workflow. Fig. S4
shows in (a) the python CLEMSite-EM user interface and in (b) a
diagram depicting the Run Checker steps during the acquisition.
Fig. S5 shows the phenotype description and stereological
quantification of chosen cells for the entire workflow. Video 1 is
related to Fig. 5 and shows the automatically acquired FIB-SEM
cell volumes for the COPB1 experiment (Fig. 5). Video 2 is related
to Fig. 5 and shows the second part of automatically acquired
FIB-SEM datasets (Fig. 5). Table S1 showing the RMSE error for
global and local targeting position in four experiments. Table S2
shows the description of the 32 siRNA spots added to one dish in
Case Study 1 (Fig. 4). Table S3 shows the number of failures in
targeting cells for the different experiments. Table S4 shows the
different types of failures detailed per experiment.

Data availability
The datasets from Fig. 5 a (COPB1 knockdown), also shown in
the supplementary video are available in the EMPIAR repository
(Iudin et al., 2016; accession number EMPIAR-11314).
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Bexiga, V.R. Singan, J.K. Hériché, B. Neumann, et al. 2012. Genome-
wide RNAi screening identifies human proteins with a regulatory
function in the early secretory pathway. Nat. Cell Biol. 14:764–774.
https://doi.org/10.1038/ncb2510

Spiegelhalter, C., V. Tosch, D. Hentsch, M. Koch, P. Kessler, Y. Schwab, and J.
Laporte. 2010. From dynamic live cell imaging to 3D ultrastructure:
Novel integrated methods for high pressure freezing and correlative
light-electron microscopy. PLoS One. 5:e9014. https://doi.org/10.1371/
journal.pone.0009014

Stierhof, Y.D., T. Ilg, D.G. Russell, H. Hohenberg, and P. Overath. 1994.
Characterization of polymer release from the flagellar pocket of Leish-
mania mexicana promastigotes. J. Cell Biol. 125:321–331. https://doi.org/
10.1083/jcb.125.2.321
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Figure S1. Line detection and landmark recognition in LM and SEM. (a) Schematic of the line detection algorithm. Each step is illustrated with the
corresponding output image: (1) Reflected light image (LM) of the coordinate system is smoothed and the brightness and contrast are automatically balanced
with adaptive histogram equalization. (2) Automatic edge detection is performed using Canny edge detection and non-maxima suppression (NMS). (3) Image
edges are enhanced with stroke width transform, which analyzes all gradients to keep only the ones belonging to the imprinted grid. Thus, the image is cleaned
to facilitate the recognition of the alphanumerical pattern. (4) Pixel gradient orientations (from Sobel operators) are extracted and homogenized in superpixels
(SLIC algorithm), where similar orientations get clustered to the same superpixel. (5) The image resulting from 4 is convolved by every angle from 0 to 180°, and
all the rows of the image are added to form a vector projection. Vectors are arranged in a matrix from 0 to 180. (6) From 5, peaks are found using non-maxima
suppression and the repetition and spacing pattern are tested to find the best fit to the grid dimensions according to the manufacturer. Each peak is the result
of a line detected in the image and in this way it can be plotted back in the original image. With the line detected, by calculating all the intersections between
lines, the grid bar crossings can be found. (7) For each bar crossing, a refinement is applied. First, the area surrounding the crossing area is cropped, and the
patch is analyzed again (same line detection algorithm) to validate the previous detection of the lines. When the distance between intersections is not fitting
the expected separations of the grid pattern (i.e., 20 μm thickness for the border and 580 μm for the square with the alphanumeric pattern, with some
additional tolerance), the landmark is not accepted. (8) This might happen when dirt or scratches make the detection algorithm fail. The final result of this
process is, first the list of references based on the detected central positions of the grid bar crossings (landmarks), and the cropped character (as shown in
Fig. 2 b). The cropped character is passed to a convolutional neural network, and the alphanumeric character is automatically identified (for details about this,
see supplementary materials notebooks 1 and 2: https://github.com/josemiserra/CLEMSite_notebooks). Each landmark is then renamed based on the cor-
responding detected character. (b) Schematic of the algorithm used by the Navigatormodule to find landmarks in the SEM, to build a map based on the grid. (1)
In the first step, the SEM is positioned at a random square in the MatTek grid. The software detects the corners (black dots) by detecting the line intersections
of the square edges (yellow points). The process is the same as the one explained in (a). (2) Each corner is refined by applying the line detection (red lines) in a
higher magnification view. To optimize the process and reduce the amount of SEM images of the sample surface, the detection procedure is applied to only a
group of randomly selected landmarks in the MatTek grid. (3) By getting a 40% of total landmarks, and sampling them with a uniform random distribution, it
can be achieved with similar accuracy as when scanning the full dish. If the line detection fails, autofocus is applied once. If after a second round, the detection
fails, the landmark position is flagged as blocked. In this way, landmark positions that fall outside the sample or are too damaged, are discarded from the final
landmark map. Once a new position is saved in the map, if it is considered a valid position (not blocked), then local and global transformations are recomputed
and updated. Scale bars: (a; 1–4) 200 µm; (7, 8) 25 µm; (b; 1) 100 µm, (2) 50 µm.
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Figure S2. Examples of landmark detection on SEM images (SE detector) from surfaces of different samples. Cracks, scratches, and dirt on the surface
make landmark detection difficult and more error-prone. For each square, the left image shows the final detection, with the yellow dot representing the
detected center position of the crossing and the red points the corners of the crossing. The right image is the same with inverted brightness and contrast, with
red pixels representing the probability of being a grid edge as detected by the neural network. The probability map from the neural network is the result of the
network inference, with the set of images used during training different from the images used as input during the experiment, which is shown here. We observe
that the neural network can generalize very well the detection of the grid patterns in the resin surface. Here we exemplify the common cases that can lead to
an error in the detection of a landmark. (a) The sample is in a perfect state. (b) A crack present in the upper part might affect the predicted accuracy of the
overall map, even if the detection is identified as good (or close to it). (c) Scratches can be the cause of false positives for the grid detection, in this case,
scratches parallel to the grid bar. Even if this specific error was later corrected by taking also into account the length of the line stroke, we presume that longer
scratches than the ones shown in the exemplary image could cause the same problem again. (d) In other cases, dirt and other material residues, e.g., from silver
painting (used around the sample border to derive charges), might mislead the detection algorithm and increase the final error. The detection problems might
change on a sample basis. A detailed analysis of the error detection is shown in the supplementary material in notebook 2 (https://github.com/josemiserra/
CLEMSite_notebooks). Scale bars: all 100 µm.
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Figure S3. Automatic workflow setup for data acquisition in the FIB-SEM (Multisite). (a) Flow diagram of the algorithm used before each target cell is
acquired. The boxed part (dotted line) indicates instructions belonging to the coincidence point (CP) calculation. “WD” refers to Working Distance (distance to
the focused object on the z-axis). “Grab” refers to commanding the microscope to acquire an image of the surface of the sample. (x, y) indicates that the action
takes place in respective stage coordinates in the x, y-axis. “dz” is the difference in z position, SEM x, SEM y—stage position coordinates x and y using the SEM
detector. FIB x, FIB y stage position coordinates x and y using the FIB detector. In both cases, pixel coordinates from the image are translated to stage position
coordinates given by the center position of the image. Upon completion, when a storedmap of landmarks is present (there are surrounding grid bar crossings to
the cell target), the closest 8 landmarks are used to compute a local transformation that will re-estimate the cell position with higher accuracy. (b) Flow
diagram of the algorithm used for Milling & Trench Detection. Numbers (1), (2), and (3) correspond with images (1), (2), and (3) in Fig. 3 b. After the trench is
milled, a quick routine examines if the B&C (brightness and contrast) is good enough to differentiate the trench from the background. If not, the user is
prompted to adjust the B&C until the trench is visible. Since simple thresholding is usually not enough, the detection of the trench is repeated on the new
image using a three-level thresholding algorithm after a slight blur. This algorithm is fast and identifies and groups pixels as belonging to three categories. The
darkest category is usually the trench. The thresholded object is then identified if its geometry has a trapezoidal shape, to differentiate it from other con-
founding objects. If several trapezoids are present (from previous acquisitions), the closest to the center is taken as a reference. In the trapezoid, the top center
position can be used as a reference to focus the FOV (field of view). (c) Flowchart of the routine used for setting the conditions before the acquisition, after (b).
In the automation routine, the user must decide the brightness and contrast (B&C) of the sample only for the first cell acquired (n = 1). Values of B&C will be
stored for future acquisitions. After choosing an optimal B&C, the goal is to start with a crisp image with a good focus and stigmatism set of values. The core
AFAS routine is provided by ZEISS Atlas 5 software and is triggered in a reduced window from the full field of view (FOV) at different magnifications, from lower
to higher. At each magnification, high complexity regions are found to be the center of the windowwhere the AFAS is applied. If this routine fails to find a good
focus before starting to acquire, which could happen in exceptionally damaged samples, the user is prompted to focus manually and the values of focus are
taken as reference for the next acquisition.
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Figure S4. CLEMSite-EM interface and Run Checker details. (a) Screenshot of the CLEMSite-EM interface to outline the details of the software User In-
terface (UI). In the top left panel, a map depicts targets (green) and landmarks (blue if SEM stage coordinates are matched with light microscopy stage
coordinates, red if no match is present). Bottom left: A messaging console is used to display the communications with the server and which instructions are
sent to the microscope. The right panel displays the list of all the targets to be acquired. The list presents which targets are already acquired (purple) and which
ones are intact (green). Targets can be selected or deselected by ticking the “To Do” checkbox in the first column. For each target, it is possible to decide on a
rectangular field of view of the cross-section in x and y and assign it here to each phenotype according to its expected size (ROI, red outline). In the last
modifiable column, the ZEISS Atlas 5 recipes for the actual acquisition, which includes the size of the section imaged from the total 3D volume milled by the
FIB-SEM (Setup, blue outline). The last two columns show the individual folder where the acquisition is saved and the percentage of progression during the
acquisition. (b) Flowchart of the logic applied by the Run Checkermodule. This module becomes active once a run starts and triggers a script each time a newly
acquired image is stored in the folder. During the progression of the acquisition, the FOV carries a translational shift that has to be tracked and corrected
continuously. In this module, a routine calculates the translation between two consecutive frames, and given the incremental shift, it decides to move the
imaging ROI if the sample has drifted with respect to the image acquired at the beginning of the acquisition (1). The reference used to track is the upper coating,
which cannot be drifted more than a tolerance (one-fourth of the image height). If that happens, the FOV is moved up or down respectively. The same principle
is applied to the position of the autotune box (small windowwhere the AFAS is applied, magenta and blue squares) which is moved into a new position before a
new AFAS is executed (2). In this case, the image is analyzed to find optimal positions for the autotune box, first executing the same algorithm as used in Fig. 3 c,
but now with the hard constraint that the position must be in the upper part of the image (half of the image height) and below the upper coating. The image
coordinates are translated to FOV coordinates and the autotune box is repositioned.
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Figure S5. Phenotype description and stereological quantification of chosen cells for the entire workflow. (a) Illustrations of the different Golgi
phenotypes revealed by the GalNac-T2-GFP signal: control, diffuse (COPG1), fragmented (DNM1), condensed (ACTR3), and tubular (IPO8). Scale bars: control, 5
µm, rest, 10 µm. (b) Scatter plots of computed features measuring the strength for each phenotype. Each gray dot represents the feature value associated with
one cell normalized respect to the mean. The x-axis displays the corresponding siRNA treatment (ACTR3 n = 183, ARHGAP44 n = 282, C1S n = 179, COPB1 n =
26, COPB2 n = 34, COPG1 n = 88, DNM1 n = 137, FAM177B n = 252,GPT n = 260, IPO8 n = 194, NT5C n = 115, XWNeg9 n = 305, PTBP1 n = 357, SRSF1 n = 115).
Diffuseness, condensation, and tubularity values are normalized with respect to the control (Neg9). Fragmentation illustrates the number of fragments de-
tected in the Golgi apparatus. Red triangles highlight each one of the selected cells for the CLEM experiment (a total of 33). (c) Stereological quantification was
applied on FIB-SEM images of the corresponding cells to measure the number of cisternae (left) and the volume (right) of the Golgi apparatus. Each bar
represents the value measured for one cell, grouped by siRNA treatment. Since the sample size is very small (n = 2 or n = 3 per treatment), the screen was
oriented exclusively to find large effects. Knockdowns of the COP proteins (COPB1, COPB2, COPG1), revealed a disappearance of the Golgi stacks (thus, no
cisternal volume can be measured) replaced by a large accumulation of small vesicles. No obvious morphological differences were found in other siRNA
treatments with respect to the control cells.
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Video 1. Fig. 5 part 1. FIB-SEM datasets of the automatically acquired data for the 25 cells (GalNAc-T2-GFP) of the COPB1 knockdown (48 h after liquid phase
transfection knockdown) shown in Fig. 5. The data were acquired with a Crossbeam 540 (Zeiss) at a voxel size of 8 × 8 × 200 nm using CLEMSite. The images
were inverted and aligned using SIFT in Fiji (Schindelin et al., 2012).

Video 2. Fig. 5 part 2. FIB-SEM datasets (part 2) of the automatically acquired data for the 25 cells (GalNAc-T2-GFP) of the COPB1 knockdown (48 h after
liquid phase transfection knockdown) shown in Fig. 5. The data were acquired with a Crossbeam 540 (Zeiss) at a voxel size of 8 × 8 × 200 nm using CLEMSite.
The images were inverted and aligned using SIFT in Fiji (Schindelin et al., 2012).

Provided online are Table S1, Table S2, Table S3, and Table S4. Table S1 lists of each mesenchymal cell used in the study. Table S2
the 32 siRNA spots used in the study. Table S3 shows number of volumes targeted used in the study. Table S4 shows number of
failures and their cause used in the study.
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