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The time and cost of annotating ground-truth images and network training are major challenges to utilizing machine learning
to automate the mining of volume electron microscopy data. In this issue, Gallusser et al. (2023. J. Cell Biol. https://doi.org/10.
1083/jcb.202208005) present a less computationally intense pipeline to detect a single type of organelle using a limited

number of loosely annotated images.

Ever since Robert Hooke peered into his mi-
croscope and identified the first cell over 350
yr ago, scientists have been trying to see the
cell's contents with better resolution in the
hope that if every protein and every inter-
action can be ascertained, then the mysteries
of cell biology will be revealed. After having
spent centuries improving resolution and
cataloging the newly uncovered cellular con-
tents, microscopy is now at the point where
focused ion-beam scanning electron micros-
copy (FIB-SEM) can reveal the entire cell with
a 3D isotropic resolution better than 5 nm,
approaching protein resolution (1). However,
the density of FIB-SEM data is so great that
manual cataloging is intractable—it could
take up to 60 person-yr to identify and an-
notate the boundaries of all the organelles
within a cell (2). Hence, the need to develop
machine-learning (ML) based organelle
segmentation tools to identify organelles
automatically.

ML approaches rely on manually anno-
tating organelle boundaries of only a small
subset of the data. These “ground truth” data
are then used to train deep convoluted net-
works to automatically recognize the struc-
tures in the remaining unannotated data. A
recent pipeline created by the COSEM pro-
ject automates the segmentation of up to 35
organelles/intracellular features from rela-
tively few, but precisely annotated data sets
(2). To achieve this level of detail, annotat-
ing and labeling every voxel in a 1 um? area

block took one person 2 wk. Large multi-
channel 3D-U-Nets were then trained to
predict many (14) or few (4) of the anno-
tated entities, with the time for inference
of the 14 organelle network >500,000
iterations (2).

Gallusser et al. (3) present an alternative
approach for identifying a single type of
organelle within a data set, called automated
segmentation of intracellular substructures
in electron microscopy (ASEM). ASEM al-
lows for looser annotation by relaxing the
requirement of voxel accuracy. The authors
found that simple structures like mito-
chondria, nuclear pores, and clathrin-coated
structures could be annotated with estab-
lished tools, such as Ilastic (4) and Volume
Annotation and Segmentation Tool (5). For
annotating more complicated structures,
such as Golgi, the authors developed a new
graph-cut method for annotating (available at
https://github.com/kirchhausenlab/incasem).
The graph-cut tool operates on the whole 3D
volume (rather than 2D slices), using several
sparse 2D brush strokes (seeds) in a few 2D
arbitrarily spaced planes to annotate the vol-
ume. The choice of tool for annotation of each
type of organelle was made empirically,
driven by the intent to decrease pipeline cost
by annotating as accurately as possible with
the least amount of time. On average, the
ASEM project produced data annotated for
one type of organelle at roughly 0.8 h per
1 um (3).

ML learning on the annotated images
was done with 3D U-Nets based on the ar-
chitecture used in Funke et al. (6) with three
down-sampling layers with a factor of two
and two convolutional layers on each down-
sampling level. Although ASEM and COSEM
used similarly defined and implemented
U-Nets, there is a significant difference.
COSEM was implemented to identify a
minimum of four organelles or intracellular
features simultaneously, while ASEM uses a
separate U-Net to identify each organelle.
Obtaining network predictions of three or-
ganelles (mitochondria, ER, and Golgi ap-
paratus) on the same FIB-SEM volume
required training three networks and
superimposing the findings (Fig. 1).
While this can be significantly faster
(100,000-150,000 iterations/organelle),
the predictions for each organelle are
independent. Users may need to use
some corrections to ensure that the same
voxel is not assigned to multiple organ-
elles in the same data set.

It is important to note that ASEM per-
formed well with specimens obtained by
both chemical fixation (CF) and high-
pressure freezing with freeze substitution
(HPFS). While HPFS produces FIB-SEM
specimens with better ultrastructural pres-
ervation, CF is more likely to be employed
clinically (biopsy specimens). Moreover,
since models trained on mitochondria or
ER annotations prepared by CF performed
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mitochondria, ER, Golgi apparatus
nuclear pores,

Figure 1. Predictions of organelles on naive interphase HPFS cell 15 SVG-A at 5 nm resolution. The
image is modified from a single frame from Video 3 (3). Organelles are color coded to match labels. The
model was trained on interphase HPFS cell 19 Hela and cell 20 Hela at 5 nm resolution.

poorly on cells prepared by HPFS and vice
versa, the authors showed that combining
training data from both protocols allowed
them to create generalist models that per-
formed nearly as well on naive data as
models trained on data from the matched
fixation method.

Gallusser et al. (3) also demonstrate the
use of fine-tuning for improving segmenta-
tion. They retrain a model trained on one
cell using a simplified transfer learning ap-
proach with ground truth annotations from
a naive cell. Examples indicate that only
5,000-10,000 iterations are needed to in-
crease the prediction accuracy throughout
the rest of the naive cell. Fine-tuning
worked well except when the pre-trained
model already produced good segmentation
(high F1 score) on naive cells, where F1= TP/
(TP+[FP+FN]/2), TP is a true positive, FP is a
false positive, and FN is a false negative.

The authors used ASEM to provide two
biological demonstrations of new findings
(Fig. 1). In the first, 10 nuclear pores were
annotated to provide the ground truth to
train a model that performed well after
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100,000 training iterations to document a
non-normal baseline distribution. In the
second test of ASEM with relatively small
structures, the model was trained with 15
endocytic plasma-membrane-coated pits
representing different stages of clathrin coat
assembly. After 80,000-100,000 training
iterations, the model accurately recognized
all endocytic coated pits in the trans-Golgi
network, including caveolae. Rather than
retrain, the caveolae were filtered out by
size and appearance. Analysis of the resul-
tant large, segmented data yielded eccen-
tricities of the assembly pit consistent with a
budding mechanism in which the growth of
a clathrin coat drives membrane invagina-
tion, ultimately creating constriction and
closure.

The ASEM pipeline was implemented on
an NVIDIA DGX Station A100, a hardware
system built for artificial intelligence and
analytics. Despite using this beefy worksta-
tion, Gallusser et al. (3) posit that a standard
workstation with a 12 GB GPU and 500 GB
CPU would work and presume 64 GB CPU
memory would also suffice since training
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processes out-of-memory datasets. The lat-
ter processing power is within reach of
many labs.

The spectacularly detailed online data
made available by the COSEM project in the
dedicated web resource OpenOrganelle
(https://openorganelle.janelia.org/) allowed
a direct comparison of F1 segmentation
performance using the same data. Although
ASEM is constructed to segment only a
single organelle simultaneously, it yields F1
scores similar to or better than COSEM by
segmenting the same data with fewer an-
notations and iterations.

This pipeline demonstrates that while
the ultimate goal of cell biology may be to
map the entire cell's contents, resource
limitations will continue to demand that
scientists restrict mining these incredibly
rich data sets by concentrating on their or-
ganelles of interest. New tools such as the
graph segmentation tool and the ASEM
pipeline make these goals more attainable.
Moreover, the ability to apply them to many
different types of organelles holds the
promise of improving workflows for a wide
range of questions.
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