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Deep neural network automated segmentation of
cellular structures in volume electron microscopy

Benjamin Gallusser*?*®, Giorgio Maltese™®, Giuseppe Di Caprio®**®, Tegy John Vadakkan?, Anwesha Sanyal**@®, Elliott Somerville?,
Mihir Sahasrabudhe*@®, Justin O’Connor®®, Martin Weigert’®, and Tom Kirchhausen'**@®

Volume electron microscopy is an important imaging modality in contemporary cell biology. Identification of intracellular
structures is a laborious process limiting the effective use of this potentially powerful tool. We resolved this bottleneck with
automated segmentation of intracellular substructures in electron microscopy (ASEM), a new pipeline to train a
convolutional neural network to detect structures of a wide range in size and complexity. We obtained dedicated models for
each structure based on a small number of sparsely annotated ground truth images from only one or two cells. Model
generalization was improved with a rapid, computationally effective strategy to refine a trained model by including a few
additional annotations. We identified mitochondria, Golgi apparatus, endoplasmic reticulum, nuclear pore complexes,
caveolae, clathrin-coated pits, and vesicles imaged by focused ion beam scanning electron microscopy. We uncovered a wide
range of membrane-nuclear pore diameters within a single cell and derived morphological metrics from clathrin-coated pits
and vesicles, consistent with the classical constant-growth assembly model.

Introduction
Three-dimensional, high-resolution imaging provides a snap-
shot of the internal organization of a cell at a defined time point
and in a defined physiological state. Focused ion beam scanning
electron microscopy (FIB-SEM) yields nearly isotropic,
nanometer-level resolution, and three-dimensional images by
sequential imaging of the surface layer of a sample, which is
then etched away with an ion beam to reveal the layer beneath
(Knott et al., 2008; Xu et al., 2017). FIB-SEM technology con-
tinues to develop, and it can be a particularly valuable con-
temporary tool for imaging the complete volume of a cell, but
segmentation of the three-dimensional datasets and subsequent
analysis of the results are substantial hurdles as the images are
far too large to interpret by inspection (Heinrich et al., 2021).
The widespread success of machine learning in bioimage
analysis has recently inspired the application of deep learning
approaches to automated segmentation. Examples using deep
convolutional networks for data with anisotropic resolution
include DeepEM3D (Zeng et al., 2017) and CDeep3M (Haberl
et al., 2018), for segmentation of mitochondria and Golgi appa-
ratus with extensive post-processing (Zerovnik Meku¢ et al.,
2020; Zerovnik Meku¢ et al., 2022), as well as cell organelle

segmentation in quasi-isotropic FIB-SEM data of beta cells
(Miiller et al., 2021). CDeep3M was the first project using cloud
computing and achieves good results on mostly large-size or-
ganelles or clusters of smaller-size vesicles. However, it was
conceived for anisotropic data and therefore has conceptual
limitations when applied to 3D isotropic FIBSEM data. A pipeline
created by the COSEM project (Heinrich et al., 2021) enables
automated whole-cell simultaneous segmentation of up to 35
organelles from relatively sparse but very precise 3D ground
truth annotations from FIB-SEM data of cells prepared by high-
pressure freezing and freeze substitution (HPFS), obtained at
3-5 nm voxel size with approximately isotropic resolution. The
most common strategy used by the COSEM project involved
training with ground truth annotations from multiple classes of
objects at the same time, typically at a high computational cost
(500,000 or more training iterations; Heinrich et al., 2021).
The current approaches all suffer from a demand for sub-
stantial computational resources, and they generally require a
large set of precise manual annotations. Both requirements limit
their practical applicability. We describe here the development
and use of a new deep-learning pipeline called automated
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segmentation of intracellular substructures in electron micros-
copy (ASEM), which can detect structures of a wide range in size
and complexity using deep neural networks trained on a limited
number of loosely marked, i.e., not necessarily pixel-precise,
ground truth annotations whose object boundaries could be off
by 1-2 voxels. ASEM includes a semiautomated graph-cut pro-
cedure we developed to assist in the tedious task of ground truth
preparation and a computationally efficient transfer-learning
approach with a fine-tuning protocol that can be used without
the need for high-end specialized CPU/GPU workstations.

We illustrate here the utility of ASEM by describing the re-
sults of its application to data from several types of cells, in-
cluding FIB-SEM datasets made publicly available by the COSEM
Project (Heinrich et al., 2021). We note that while cellular
samples have traditionally been processed by chemical fixation
(CF) and staining at room temperature, HPFS at cryogenic
temperatures (as was the case for the COSEM Project data)
yields a substantial increase in the preservation of many com-
plex cellular features. We applied ASEM to three-dimensional
FIB-SEM images of cells prepared by either CF or HPFS. We
validated our approach by segmenting mitochondria, ER, and
Golgi apparatus, as these organelles had been studied previously
in similar efforts (2erovnik Mekué et al., 2020; Zerovnik Mekué
et al., 2022; Heinrich et al., 2021; Liu et al., 2020), and then used
ASEM to recognize much smaller structures, nuclear pores, and
clathrin-coated pits and vesicles. For nuclear pores in inter-
phase, we can segment nearly all the pores in the nuclear
membrane. We can therefore directly analyze the range of
membrane-pore diameters, even for a single cell in a particular
physiological state. For clathrin-coated pits, we show that a
relatively restricted training set leads to an accurate segmenta-
tion of coated pits at all stages of their maturation as well as
coated vesicles, the final step after fission from the originating
membrane, and we can derive morphological metrics consistent
with the classical constant-growth assembly model (Ehrlich
et al., 2004; Kirchhausen, 1993; Kirchhausen, 2009; Willy
et al., 2021).

All datasets (https://open.quiltdata.com/b/asem-project),
models, and code (https://github.com/kirchhausenlab/incasem)
are open-source so that other users working with images ac-
quired with the same or somewhat different imaging conditions
can generate their own predictive models and benefit from our
pretrained models, either directly or by adapting them by fine-
tuning, without the need for specialized CPU/GPU workstations.

Results

FIB-SEM imaging of cells

We obtained three-dimensional focused ion beam scanning
electron microscopy (FIB-SEM) datasets for different types of
adherent mammalian cells grown in culture (Table S1). The
samples we imaged were prepared either by conventional
chemical fixation and staining with osmium and uranyl acetate
at room temperature (CF) or by fixation and similar staining at
very low temperatures using high-pressure freezing and freeze
substitution (HPFS), a protocol that substantially increases
sample preservation (Hoffman et al., 2020; Studer et al., 2008;
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Xu et al., 2021). To image the volume of a cell, we used a block-
face crossbeam FIB-SEM with a nominal isotropic resolution of 5
or 10 nm per voxel; each image stack, obtained during 1-2 d of
continuous FIB-SEM operation, was about 15-20 GB in size,
contained ~2,000 registered sequential TIFF files, and spanned a
volume of roughly 2,0003 voxels corresponding to large parts of
each cell. These volume datasets were used to train the deep
learning pipeline for automated segmentation of intracellular
structures and to explore the effects of different fixation and
staining procedures on the outcome of the segmentation tasks.

We also tested the performance of our deep learning models
with a small number of FIB-SEM images from HPFS prepara-
tions of complete cells (Xu et al., 2021), obtained from the
publicly available OpenOrganelle initiative (Heinrich et al., 2021;
Xu et al.,, 2021; Table S1). They were acquired by the COSEM
team at the Janelia Research Campus at a nominal resolution of
4 x 4 x 3-5 nm per voxel with a custom-modified FIB-SEM as
part of their concurrent efforts to develop a methodology for
automated organelle segmentation aided by deep learning.

As described below, using the specific models generated with
our deep learning pipeline (Fig. 1), we could reliably identify
intracellular structures ranging in size and complexity from
mitochondria, ER, and Golgi apparatus to nuclear pores, clathrin-
coated pits, clathrin-coated vesicles, and caveolae.

Ground truth annotation

The first step in most common machine learning segmentation
procedures is to create pixelwise “ground truth” annotations—
to be used for training a specific segmentation model. In the
present work, we used a modest number of manually annotated
segmentations of the intracellular structure of interest (see
Materials and methods for details). These segmentations came
from arbitrarily chosen, diverse regions from one or more cells
(Table S2; Shorten and Khoshgoftaar, 2019).

We obtained ground truth annotations for mitochondria and
Golgi apparatus, portions of the ER, 19 endocytic clathrin-coated
pits at the plasma membrane, and 10 nuclear pores on the nu-
clear envelope (Table S4).

The choice of annotation tool for a given organelle was em-
pirically determined to minimize the total time (semiautomated
analysis/editing) required. We found that available tools like
Tastik (Berg et al., 2019) and Volume Annotation and Segmen-
tation Tool (VAST; Berger et al., 2018) were sufficient for simpler
structures like mitochondria, nuclear pores, and clathrin-coated
structures. For more complicated structures like Golgi and ER,
they, however, were less suitable, necessitating the development
of a dedicated annotation tool (see below). We annotated mito-
chondria using the carving module in Ilastik (Berg et al., 2019),
and if required, edited the annotation manually using VAST
(Berger et al., 2018), a volume annotation and segmentation tool
for manual and semiautomatic labeling of large 3D image stacks
(see example in Fig. Sl and Video 1). We annotated the more
complex Golgi apparatus and ER with a custom graph-cut-as-
sisted, semiautomated annotation tool, which we developed and
have described in the Materials and methods, that accelerated
the annotation time by 5- to 10-fold; when needed, we corrected
the annotation locally with VAST (see example in Fig. S2).
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Figure 1.

Pipelines used for training and deep-learning neural network prediction. Schematic representation of the deep-learning approach for rec-

ognizing intracellular structures in FIB-SEM volume images using a 3D U-net encoder-decoder neural network. (A) For training, three-dimensional stacks
containing FIB-SEM data, augmented as described in Materials and methods, are provided as input images to the 3D U-Net; in this example, the stack includes a
limited number of three-dimensional ground truth annotations for the ER in the form of binary masks (yellow). The ER predicted by the 3D U-net model is a 3D
probability map, whose error is calculated by comparing the ground truth annotation with the cross-entropy loss. The model parameters are iteratively
updated during training until convergence of the cross-entropy loss is achieved. (B) For prediction, small 3D stacks with data not used for training covering the
complete FIB-SEM volume image of a naive cell (or from the remaining regions of the cell used for training) are provided as input to the 3D U-net model trained
in A. In this example, the predicted ER is a thresholded 3D probability map for the entire cell volume.

We generated manually, also with VAST, the ground truth an-
notations for nuclear pores (Fig. 6 A) and clathrin-coated
structures (Fig. 7 A).

To increase the number of ground truth annotations, we
applied randomized voxel-wise as well as geometric trans-
formations to each of the manual segmentations (see Materials
and methods and Table S3). Such data augmentation is common
for training deep neural networks (Shorten and Khoshgoftaar,
2019) and was crucial for our raw FIB-SEM images since the
contrast and textural appearance can vary substantially based on
sample preparation and imaging conditions.

Deep-learning segmentation pipeline

Our general training strategy (schematically represented in
Fig. 1 A) relied on a 3D convolutional neural network (CNN)
architecture based on a 3D U-Net (Cicek et al., 2016; Fig. S3 A);
this approach has been used previously for segmenting intra-
cellular structures in electron microscopy data (Guay et al., 2021;
Heinrich et al., 2021; Wei et al., 2020). For each organelle class,
we used a single, dedicated deep neural network, trained on
augmented ground truth annotations generated from a small
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number of annotations contained within subvolumes (~2-80
um?) of the FIB-SEM data (Table S4). During training, we used
binary cross entropy as a loss function. Overfitting was avoided
by validating the evolution of the model periodically during the
training session by monitoring the loss between the model
prediction and the subset of ground truth annotations in vali-
dation blocks of the FIB-SEM image not used for training. Each
model was trained until the validation loss converged to a stable
value (Fig. S3, B-D), which corresponds to roughly 100,000
iterations on a single GPU (~23 h). The final model yielded a
predicted map that assigned to each voxel a probability of be-
longing to the structure (Fig. 1 B), from which we derived a final
binary map by setting a threshold value of 0.5. These models,
unique for a given organelle or structure, were then used to find
the specific cellular structure of interest in the FIB-SEM images
of regions excluded from training or of “naive” cells that had not
been used for training at all.

As previously noted by others, we also observed that the image
contrast and texture of FIB-SEM data can vary substantially be-
tween different acquisitions, depending not only on cell type and
mode of sample preparation (CF, HPFS) but unexpectedly also
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between adjacent cells of the same type in the same Epon block
(Fig. S4). We found empirically that while the neural network
could be trained to segment organelles successfully from sam-
ples prepared by the same mode of preparation, a model trained
with ground truth annotations from HPFS cells failed when
applied to CF-treated cells and vice versa (cross-domain pre-
diction, Fig. 5 A). Although routinely implemented in our
pipeline, contrast normalization by contrast-limited adaptive
histogram equalization (CLAHE; Pizer et al., 1987; Zuiderveld,
1994) of FIB-SEM datasets from different cells failed to improve
the predictions (Table S5). The use of recently proposed local
shape descriptors as an auxiliary learning task (Sheridan et al.,
2022), calculated from the ground truth annotations and rep-
resenting high-level morphological notions such as object size
and distance to object boundary, also did not improve model
prediction. As described below in detail, we addressed the
problem of substantial differences in image contrast and tex-
ture between different cells by combining ground truth anno-
tations from multiple cells for training.

Automated segmentation of organelles
We first applied ASEM to perform automated segmentation of
FIB-SEM images from cells prepared by CF with a nominal 5 nm
isotropic resolution and relatively high contrast (Fig. 2 and
Video 2); the summary shown in Table Sé6 illustrates the pre-
dictive performance obtained for models specific for mito-
chondria, ER, and Golgi apparatus. For mitochondria, we
selected from Cell 1 a training block of about 462 x 10° voxels
(1,200 x 700 x 550 voxels) and used semiautomated annotations
as ground truth annotations for the mitochondria contained
within this volume, representing ~8% of all voxels (Table Sé6).
Model performance was assessed every 1,000 iterations during
the training phase by calculating the cross-entropy loss between
the current prediction and the mitochondria ground truth
within a validation block (not used during training). Additional
smaller validation blocks (Table S4) containing mitochondria
ground truth from naive Cells 2, 3, and 6 were used to avoid
overfitting during the training phase and to validate the model
performance by measuring the validation losses. Validation
losses rapidly converged within 20,000-40,000 training iter-
ations, resulting in a relatively high F1 score (0.91) for Cell 1 and
lower values for the data from naive Cells 2, 3, and 6 (0.47, 0.66,
0.81, cf. Table S6). Similar results were obtained when training
with ground truth annotations from Cell 2 instead of Cell 1 (Table
S6); the validation losses also converged within 20,000-40,000
training iterations with good F1 scores for Cell 2 (0.87) and naive
Cells 1 and 3 (0.89, 0.74), and a slightly lower score for Cell 6
(0.70), with no further improvement with additional training
iterations. To calculate adequate F1 scores even for slightly in-
accurate ground truth annotations, we followed previous work
(Haberl et al., 2018) and defined a thin metric exclusion zone at
the boundary of the ground truth annotations according to the
specific structure, ranging from a maximum of eight voxels for
mitochondria to a minimum of two voxels for ER (see Materials
and methods).

To find additional ways to enhance the generalization ability
of the model, we modified the training pipeline to combine the
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ground truth annotations from Cells 1 and 2. We first tested the
performance of the mitochondria model using the validation
blocks in naive Cells 3 and 6. In this case, the new model had a
significantly improved performance (Table S6), reflected by
even higher F1 scores for naive Cells 3 and 6 (0.75, 0.88), but
only after 95,000-115,000 iterations (Fig. S5). A similar im-
provement in model performance was observed for ER pre-
dictions when we first combined ground truth annotations of
Cells 1 and 2. The new ER model, which was used to predict ER in
Cells 1and 2 and naive Cells 3 and 6, led to generally improved F1
scores of 0.95, 0.90, 0.92, and 0.77, respectively (Table S6).
Consistent with F1 scores smaller than the optimal value of 1, we
observed by visual inspection a small number of false negative
(vellow arrows) or false positive (red arrows) assignments, as
highlighted in Fig. 2 A (see also Video 2). Combining ground
truth annotations from Cells 1 and 2 during training to predict
the more complex Golgi apparatus in naive Cells 3 or 6 mar-
ginally outperformed the models trained with either Cell 1 or
Cell 2 (Table S6), which was also illustrated with one example of
visual inspection of ground truth annotations and predictions
showing instances of false positive assignments (red arrows,
Fig. 2 B). Thus, the predictive performance of a model could
often be improved by using a model obtained by jointly training
with ground truth annotations from two cells instead of training
with data from one cell or the other.

We also tested the performance of ASEM using FIB-SEM
images and ground truth annotations acquired by the Open-
Organelle initiative (Xu et al., 2021; Table S1). These cells were
prepared by HPFS and imaged with higher isotropic resolution
(4 x 4 x 3-5 nm) but lower contrast. We examined the ability of
our training pipeline to segment these datasets and focused on
mitochondria and ER but not Golgi due to the lack of a sufficient
number of ground truth annotations for Golgi objects in the
available OpenOrganelle datasets (Table S7). We generated in-
dependent models for mitochondria and ER by training with
corresponding combined ground truth annotations from Hela
Cells 19 and 20, followed by model performance verification
using unseen ground truth annotations from the same Hela cells
or different types of naive cells not used for training (Cell
21 Jurkat-1 and Cell 22 Macrophage-2, Table S7). Our pipeline
performed well after ~100,000 training cycles and managed to
segment mitochondria in unseen data from each of the two Hela
cells used for training (F1 scores of 0.99, Table S7) and from
unseen data from each of the naive Cell 21 Jurkat-1 or Cell
22 Macrophage-2 (F1 scores of 0.94 and 0.93; Table S7). Auto-
mated segmentation of the ER was less efficient, requiring
~200,000 training cycles to reach the highest model perfor-
mance (F1 scores of 0.91, 0.80, 0.48, and 0.81, respectively; Table
S7). These first results indicate that our training strategy can
create predictive models for the successful identification of
mitochondria, ER, and Golgi apparatus in cells prepared by CF
and of mitochondria and ER in samples prepared by HPFS.

Next, we explored the tolerance of the training pipeline to
modest variations of image resolution in naive cells. The results
shown for the representative FIB-SEM images in Fig. 3 and Fig. 4
A, and Video 3 were obtained for a naive Cell 15 SVG-A prepared
by HPFS acquired at an isotropic 5 x 5 x 5 nm (Table S4); visual
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Figure 2. Performance of the deep-learning network to predict in naive cells. (A and B) Visual comparisons between predictions (crimson) by 3D U-net
models trained using combined data from two HEK293A cells to recognize (A) ER or (B) Golgi apparatus and corresponding ground truth annotations (blue) in
the naive BSC-1and SUM 159 cells not used for training (Table S1). The representative images of single plane views from FIB-SEM volume data are from cells
prepared by CF isotropically acquired at a 5 nm resolution; red and yellow arrows highlight small regions containing voxels of false positive and false negative

assignments. Scale bar, 500 nm (see Videos 1 and 2).

inspection of the images show successful predicted segmenta-
tions for mitochondria, ER, and Golgi apparatus using models
obtained by combined training with ground truth annotations
from Hela cells 19 and 20, also prepared by HPFS, and whose
FIB-SEM images were acquired with mixed resolutions of 4 x 4 x
5.2 and 4 x 4 x 3.2 nm, respectively.

Since models trained on mitochondria or ER ground truth
annotations from cells prepared by CF performed poorly on cells
prepared by HPFS and vice versa, as judged by a qualitative
visual assessment of the outcomes (cross-domain prediction,
Fig. 5 A), we explored the possibility of combining training data
from both sample preparation protocols to create generalist
models using the same training datasets from HEK293A Cells
1 and 2 prepared by CF, and from Cells 19 and 20 Hela prepared
by HPFS. On these cells, the generalist mitochondria and ER
models performed nearly as well as with models obtained using
samples prepared with either one of the protocols on almost all
validation datasets for either sample preparation protocol (Fig. 5
A and Table S8).

We also evaluated the performance of ASEM to predict mi-
tochondria, ER, and Golgi apparatus imaged with FIB-SEM data
at 5 nm isotropic resolution but processed at a lower resolution
of 10 nm. This test was done by using datasets from Cells 1 and
2 isotropically downsampled to 10 nm to train new models for
mitochondria, ER, and Golgi apparatus and then used to predict
the validation data from Cells 1, 2, 3, and 6 isotropically down-
sampled to 10 nm (Table S9). These results showed that while
the mitochondria and ER models performed similarly at both
resolutions, the performance for the Golgi apparatus model
notably decreased (Table S9), presumably explained by the
relatively larger spatial complexity of the Golgi apparatus.
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Fine-tuning

To improve the predictive performance with images from
naive cells, we explored the effect of fine-tuning a pre-
existing model, a simple implementation of transfer learn-
ing (Weiss et al., 2016). As described in the Materials and
methods, we started with an already trained model and re-
sumed model training for a low number of iterations (15,000)
using only the new ground truth annotations from the naive
cell; the new ground truth annotations, although resembling
those used for the first training, would typically have slightly
different characteristics.

The following examples illustrate the range of results ob-
tained upon implementation of fine-tuning using HPFS FIB-SEM
data. The ER model, first obtained after ~180,000 training cycles
using ground truth annotations from Hela Cells 19 and 20, was
then fine-tuned for additional 12,000 or 6,000 training cycles
with small amounts of ground truth data from either naive Cell
21 Jurkat-1 or Cell 22 Macrophage-2; both fine-tuning cases
showed a significant improvement in the F1 precision scores,
from 0.48 to 0.69 and from 0.81 to 0.90, without affecting recall
(Fig. S5 and Table S10). In other words, the model learned to
correctly classify ER while at the same time reduced the number
of false positives by rejecting structures that appeared similar
but did not belong to the same semantic class (Fig. 5 B). The next
two cases of fine-tuning illustrate little or no improvement in
predictive model performance for mitochondria in cells pre-
pared by HPFS or CF (Fig. 5 C, Fig. S5, and Table S10). The model
obtained after 95,000 training cycles using HPFS FIB-SEM data
from Hela Cells 19 and 20 showed similar F1 scores (0.93) for
naive Cell 21 Jurkat-1 or Cell 22 Macrophage-2 before or after
fine-tuning for 7,000 cycles.
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Figure 3. Network predictions of mitochondria, ER, and Golgi appara-
tus. Single plane view from a FIB-SEM volume image from naive cell 15 (SVG-
A) not used for training prepared by HPFS and visualized during interphase at
5 nm isotropic resolution. The small region contains representative model
predictions for mitochondria (cyan), ER (yellow), and Golgi apparatus (ma-
genta) obtained from three 3D U-net models, each trained with organelle-
specific ground truth annotations, without fine-tuning, from interphase cells
19 (Hela-2) and 20 (Hela-3) prepared by HPFS. Scale bar, 2 um.

Similarly, a mitochondria model obtained after 95,000
training iterations using CF FIB-SEM data from Cells 1 and
2 and then fine-tuned for additional 6,000 fine-tuning training
steps using ground truth annotations from Cells 3 or 6 showed
either a significant increase (from 0.75 to 0.88) or no increase
at all (0.88) in F1 scores, respectively (Fig. 5 D and Table S10).
Fine-tuning had minimal or no effect for situations in which
the pretrained model produced a prediction of naive cells with a
high F1 score, such as in mitochondria with an F1 score of
around 0.9. We conclude that fine-tuning can be beneficial for
segmenting relatively large membrane-bound organelles, par-
ticularly in cases where the pretrained model behaved poorly in
naive cells, but it could not resolve situations in which the
staining characteristics of the samples were extremely differ-
ent, even though they had been prepared by the same staining
procedures.

Automated segmentation of nuclear pores

To test whether our pipeline can automatically identify and
segment small intracellular structures, we trained the neural
network with ground truth annotations from nuclear pores,
structures embedded in the double-membrane nuclear envelope
with membrane pore openings of ~100-120 nm in diameter. We
used FIB-SEM data with a nominal 5 nm isotropic resolution
from interphase SVG-A and Hela cells imaged using HPFS to
ensure minimal perturbations in the structural organization of
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the nuclear pores and their surrounding inner and outer nuclear
membranes.

We used VAST to generate ground truth annotations for ten
nuclear pores from Cell 13a-SVG-A (5 x 5 x 5 nm isotropic res-
olution; Table S4). The segmentations, representing the inner
and outer nuclear membrane envelope contours immediately
adjacent to nuclear pores, also included five additional pixels
(~25 nm) of inner and outer nuclear membrane extending away
from the nuclear pore opening (Fig. 6 A). The training was
performed with the augmented data generated from only eight
nuclear pores (with two additional objects for validation), re-
sulting in a nuclear pore model that performed well after
100,000 training iterations (F1 = 0.52, Precision = 0.35, Recall =
0.99, Table S8). In all cases, the high recall score was consistent
with a perfect correspondence to all the voxels that defined the
ground truth annotations. The relatively low F1 and precision
scores reflected “fatter” predictions due to voxels assigned to
positions immediately adjacent to the “single row” of voxels
overlapping the nuclear pores in the ground truth annotations.
Visual inspection confirmed accurate identification of all nu-
clear pores in naive SVG-A cells 15 (Video 4) and 17 (5 x 5 x 5 nm
isotropic resolution) and Cell 19 Hela (4 x 4 x 5.2 nm) not used
for training (Fig. 6 B). Because of the high predictive accuracy
attained with this simple nuclear pore model (Video 4), it was
not necessary to improve the model using our more extended
training pipelines, such as fine-tuning.

Based on ensemble cryo-EM data from thousands of nuclear
pores that provide a unique atomic model per dataset (Schuller
et al., 2021), combined with more selective images of single
nuclear pores obtained using cryo tomography of yeast cells in
different physiological states (Zimmerli et al., 2021), it is now
believed that the diameter of the nuclear pore varies in response
to the physiological state of the cell. It is not known, however, as
to what extent this size variability occurs within a single cell ina
unique physiological state. Taking advantage of our automated
segmentation pipeline that makes it practical to analyze hun-
dreds of single nuclear pores, we explored the extent to which
their membrane pore diameters varied within a single cell. In-
spection of the nuclear membrane surrounding the pores
viewed along the axis normal to the nuclear envelope confirmed
the radial symmetry of the pore (Fig. 6 B) with a relatively broad
and continuous variation in membrane pore diameter, ranging
from 60 to 130 nm (median 92 nm, with 75-108 nm 10-90
percentile range: n = 934; 305, 135, and 494 pores from SVG-A
Cells 15 and 17, and Hela Cell 19, respectively; Fig. 6 C); these
values were obtained by measuring the distances between the
peak signals at opposite ends of the nuclear membrane pore (see
Materials and methods and Fig. S6, A-D) in the raw images. The
membrane pore sizes did not follow a normal distribution but
instead had a slight asymmetry contributed by smaller species.
They were also distinct from the Gaussian fit (blue, Fig. 6 C)
corresponding to the expected size distribution if the data would
have originated from a single pore size centered on the most
abundant species (d = 100 nm). We found no evidence to suggest
the presence of spatial correlation between pore diameter and
different regions of the nuclear envelope within the cell, for
example, away from the coverslip or normal to this surface, nor
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Cell 15 HPFS SVG-A
‘ 4 HER

Figure 4. Predictive ER model resolves the structural complexity of the ER network during different stages of the cell cycle. (A) Representative
examples of ER predictions in naive cell 15 (SVG-A) processed during interphase as described in Fig. 3 showing the characteristic network of ER sheets
connected at branch points to ER tubules. ER tubules were more abundant toward the periphery of this cell and ER sheets were more abundant closer to the
nucleus. For clarity, manual VAST editing was used to eliminate pixels of false positive predictions associated with the nuclear envelope. Scale bar, 1 pm.
(B) Representative examples of ER predictions from a mitotic naive cell 8 (SUM 159) prepared by CF and imaged isotropically at 10 nm; the ER model was
trained with ER ground truth annotations from interphase cells 1 and 2 (HEK293A) prepared by CF visualized isotropically at 5 nm resolution and downsampled
to 10 nm. It shows successful recognition of an extensive network of fenestrated ER sheets (red arrow heads) connected to ER tubules, characteristic of mitotic
cells. Ground truth annotations used to train the interphase ER model did not contain ER fenestrations, as they are barely present during stage of the cell cycle.

Darker regions corresponding to chromosomes are outlined with yellow dotted lines. Scale bar, 3 um (see Video 3).

did we find evidence of local clustering of pores with a favored
size (Fig. 6 D and Fig. S7).

Automated segmentation of clathrin-coated pits, coated
vesicles, and caveolae

As a further test of ASEM with relatively small structures, we
chose clathrin-coated pits, 30-100 nm membrane invaginations
in the plasma membrane, and the trans-Golgi network (TGN)
involved in selective cargo traffic (Kirchhausen, 2000). We
trained the model with ground truth annotations from 15 en-
docytic plasma membrane-coated pits of different sizes and
shapes, thus representing different stages of clathrin coat
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assembly. While the resolution of the FIB-SEM was insufficient
to discern the familiar spikes or the hexagonal and pentagonal
facets of a clathrin coat as seen in samples imaged by TEM, the
presence of strong membrane staining, which we attribute to
clathrin and associated proteins (Fig. 7 A), made these in-
vaginations recognizably distinct from caveolae, which are
smaller (50-100 nm) flask-shaped invaginations that lack en-
hanced membrane staining (Fig. 7 B). None of the cells had
recognizable regions of strongly stained, flat membrane, often
found on the coverslip-attached surface of cells in culture and
other specialized locations (Akisaka et al., 2008; Grove et al.,
2014; Heuser, 1980; Maupin and Pollard, 1983; Saffarian et al.,
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Figure 5. Effects of extensive combination of datasets and fine-tuning during training. (A-D) Examples to highlight the effect on the predictive per-
formance of (A, C, and D) mitochondria and (A and B) ER and models trained with data from cells prepared by CF or HPFS, with substantial differences in
general appearance and contrast. The images show several comparisons between ground truth annotations and predictions from models trained as described
in the insets with data obtained from cells prepared by different sample preparation protocols. Details of the cell and training protocols are in Tables S1, S2, and
S8. Voxels corresponding to false positive (cyan arrows) and false negative (red arrows) predictions are indicated. Scale bar, 500 nm. (A) Predictions from
cross-domain models, for which the training data and predictions were done using cells prepared with different sample preparation protocols, were less
accurate than those obtained from the specialized models, for which training and predictions were done using cells prepared with the same sample preparation
protocol. Predictions from the generalist models, obtained by training using ground truth annotations from cells prepared by CF and HPFS, performed only
slightly worse than the predictions from the specialized models. (B-D) Effect on the predictive performance of the models by fine-tuning during training.
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Figure 6. Identification of nuclear pores and variations in their membrane pore diameter. A nuclear pore model was generated by training on ground
truth annotations of nuclear pores from cell 13a SVG-A prepared by HPFS and imaged at 5 nm isotropic resolution. (A) Orthogonal views of a representative
nuclear pore not used for training show ground truth annotations and model prediction. Scale bar, 50 nm. (B) Nuclear pore predictions for all the pores on the
nuclear envelope of naive cell 19 (Hela-2) prepared by HPFS and visualized during interphase at 4 x 4 x 5.3 nm isotropic resolution (left panel); the inset
highlights the characteristic doughnut shape of the nuclear pore. Scale bar, 2 um. Representative orthogonal views (right panels) of a nuclear pore and model
prediction. Scale bar, 50 nm. (C) Histogram of nuclear membrane pore diameters measured in naive cells 15, 17, and 19 (N = 934) identified by the nuclear pore
model. Each membrane pore diameter determined in the raw image represents the average value from 18 measurements spaced 10° apart (see inset and
Materials and methods). The Gaussian fit (blue) shows the expected size distribution if the data had come from membrane pores of a single diameter centered
on the experimentally determined median (d = 100 nm, most abundant species); a standard deviation of 6 nm corresponds to the expected error of the
measurements (see Materials and methods). (D) Three-dimensional distribution of nuclear pores on the nuclear envelope of cell 19, color-coded as a function of
membrane pore diameter.

2009; Signoret et al., 2005). We used VAST to generate the
clathrin-coated pit ground truth annotations, which were sim-
ply a collection of single traces loosely overlapping the endocytic
membrane invagination (Fig. 7 A, blue).

The coated pit model obtained after 80,000-100,000 train-
ing iterations used six ground truth annotations from Cell 12
Hela and nine from Cell 13 Hela. Visual inspection of the pre-
dictions generated by this relatively simple training in parts of
Hela cells 12 and 13, cells that had not been used for training,
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showed accurate recognition of all endocytic coated pits (rep-
resentative example in Fig. 7 B); we obtained similar results
from naive SVG-A cells 15 (Video 4) and 17 and Hela cell 19. The
model also identified all coated pits in the TGN (Fig. 7 B), in-
correctly identified caveolae as coated pits (Fig. 7 B), and we
could detect no other incorrect predictions anywhere in the cell
volume. Since caveolae were easy to filter out by a combination
of size and appearance, we chose not to train another model that
could have, for example, included a high and disproportionate
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Figure 7. Identification of clathrin-coated pits, coated vesicles and
caveolae. A coated pit model was generated by training with ground truth
annotations from Cell 12 (Hela-2) prepared by HPFS and imaged at ~5 nm
isotropic resolution. (A) Orthogonal views of a representative endocytic
clathrin-coated pit (CCP) not used for training showing ground truth anno-
tations and model prediction. Scale bar, 50 nm. (B) Orthogonal views of a
caveola, an endocytic clathrin-coated pit (CCP) and a clathrin-coated vesicle
(CCV) at the plasma membrane, and a coated pit (CCP) and vesicle (CCV)
associated with membranes from the secretory pathway. Each panel shows
the ground truth annotation and the model prediction. An example of a COPI
vesicle not predicted by the coated pit model is also shown. Views are from
naive cell 17 SVGA prepared by HPFS and imaged with ~5 nm isotropic
resolution.

amount of caveolae as the background (in these cells, caveolae
are significantly less abundant than coated pits captured at
different stages of assembly). A sharply invaginating curvature
of the stained membrane outline thus appears to be an impor-
tant component of the pattern the model learned to recognize.
We used our additional annotated ground truth annotations
from Hela Cells 12 and 13 that had not been included in the
training set to calculate F1, recall, and precision scores (Table
S8). In all cases, the high recall score (0.99) demonstrated the
almost perfect reconstruction of all voxels belonging to the
ground truth annotations. The relatively low F1 and precision
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scores (~0.65 and 0.51) were due to incorrect voxel predictions
immediately adjacent to the “single row” of true voxel assign-
ments overlapping the invaginated membrane in the ground
truth annotations (Fig. 7, A and B).

The model also recognized vesicles near the plasma mem-
brane and the TGN that an expert human observer would have
interpreted from their staining to be clathrin-coated vesicles,
even though training of the model did not include ground truth
annotations representing them (Fig. 7 B). We confirmed that the
model recognized all the presumptive coated vesicles in a cell by
visual inspection across the full volumes of Hela cells 12 and 13,
as well as of three cells that did not contribute at all to the
training set, SVG-A cells 15 and 17 and Hela cell 19. Training on
endocytic-coated pits thus also allowed recognition of endocytic-
coated vesicles and TGN-coated pits. In contrast, the model did
not recognize vesicles associated with the Golgi apparatus or the
ER that had been interpreted by their staining as COPI or COPII.

We took advantage of the large, combined set of three-
dimensional image data from coated pits and vesicles to ana-
lyze assembly stages using the metrics depicted in Fig. S8. We
determined the depths and widths at half a depth for each of the
membrane invaginations in SVG-A cell 17 (Fig. 8 A). Caveolae,
recognized by the absence of an enhanced membrane signal,
were relatively small, with narrow distributions of depths and
widths centered on 61 and 81 nm (Fig. 8 A), respectively.
Endocytic-coated pits, identified by their enhanced membrane
signals, were generally larger than caveolae and had wider dis-
tributions of depths and widths, which clustered into two
groups. Coated pits with open necks (>40 nm) had shallow, ~50-
nm invaginations; those with narrower necks (~10-40 nm) had
deep, ~100-130 nm invaginations (Fig. 8 B, left and central
panel, and Fig. 8 C, right panel). Endocytic-coated pits and
vesicles were also larger than the corresponding secretory
structures emanating from internal membranes associated with
the TGN (Fig. 8 B, left panel).

The eccentricity of the assembling pit, defined as the ratio of
major and minor axes of the ellipsoid that fit best to a given
membrane profile, showed a relatively narrow and overlapping
distribution (Fig. 8 B, right panel), ranging from 1 (symmetric) to
1.6 (less symmetric) for endocytic pits and vesicles, respectively.
Most of the pits and vesicles associated with internal mem-
branes in SVG-A Cell 17 (Fig. 8 B, right panel) had eccentricities
close to 1; in those cases, the major axis of most pits was or-
thogonal to the plane from which the pits invaginated. Similar
results were obtained for SVG-A cell 15 and Hela cells 12 and 13
(Fig. S9, A-C). These results are consistent with a budding
mechanism in which the stepwise growth of the clathrin coat
drives invagination of the membrane, ultimately creating a
constriction, as the curved clathrin lattice approaches closure
that is narrow enough for dynamin to pinch off the nascent
vesicle (Kirchhausen et al., 2014).

Discussion

The automated 3D image segmentation pipeline embodied in
ASEM overcomes three critical hurdles for making FIB-SEM
more practical and more broadly useful than currently available
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Figure 8. Dimensions of clathrin-coated pits, coated vesicles, and caveolae. (A) Violin plots of width and height for caveolae (CAV) and endocytic clathrin-
coated pits (CCP) in the raw images of the structures identified by the coated pit model in cell 17 (see also Fig. S9, and Clathrin-coated pits and vesicles,
Materials and methods). (B) Violin plots of the major and minor axis and eccentricity of the fitted ellipse of all pits and vesicles in the raw images of the
structures identified by the coated pit model in cell 17 (see also Fig. S9, and Clathrin-coated pits and vesicles, Materials and methods). (C) The left-hand panel
shows the distribution of height versus neck width for endocytic clathrin-coated pits in cell 17, identified by the coated pit model. The plot shows two clusters,
which correspond to early and late coated pits, respectively, as illustrated by the schematics (see also Fig. S9, and Clathrin-coated pits and vesicles in Materials
and methods). The right-hand panel shows histograms for height and major axis of the fitted ellipse for late endocytic coated pits and coated vesicles,

respectively.

procedures. (1) Our graph-cut-based annotation approach facil-
itates and simplifies the manual stages of ground truth anno-
tation for convoluted structures like the Golgi apparatus by
minimizing the number of hand-curated annotations. Between 8
and 15 annotated structures encompassing the complete volumes
of smaller objects (nuclear pores, clathrin-coated pits) or partial
volumes of larger ones (mitochondria, ER, Golgi apparatus) were
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generally enough when augmented as described. We used
rough annotations that could be off by one to two voxels rather
than voxel-precise labeling to delineate the outline of the in-
tracellular structures for which we were training. While this
strategy was effective for our training pipeline, it was much
less time-consuming than the precise delineation efforts used
by COSEM (see Materials and methods). We could then readily
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correct any erroneous voxel detections, either by manual in-
tervention or by automatic postprocessing. (2) For the appli-
cations described here, ASEM requires far less computational
effort than COSEM or other approaches, largely because we
restrict the training to a single type of structure and thus create
a separate model for each type. Consequently, we found that
about ~100,000-150,000 training iterations were sufficient for
accurate prediction, whereas COSEM required five times as
many. (3) We can substantially improve the success rate in a
completely naive cell by using a model trained on ground truth
annotations from another cell and retraining by a simplified
transfer learning approach with a very small number of ground
truth annotations from the new cell, thereby adapting the
model to a cell with slightly different imaging characteristics at
the cost of modest additional segmentation and computational
effort. In the examples here, just 5,000-10,000 training iter-
ations were enough to increase prediction accuracy throughout
the rest of that cell.

To test the robustness and flexibility of ASEM, we used the
model trained with ER ground truth annotations from cells in
interphase for identifying and segmenting ER in an early ana-
phase mitotic cell. The model, which had correctly identified and
segmented the complete ER in a naive interphase cell imaged at
~5-nm isotropic resolution, also accurately identified and seg-
mented the ER in the mitotic cell imaged at ~10 nm isotropic
resolution with a model trained with ground truths from the
same cells in interphase but computationally downsampled to 10
nm (Fig. 4 B and Video 4). The result is nontrivial because rel-
atively extended, fenestrated, and double-membrane sheets
with small interconnecting tubules dominate the morphology of
the mitotic ER, while tubules of varying lengths, connecting
much smaller sheets, are the principal structures in the inter-
phase ER. Segmenting the mitotic ER within the imaged cell
volume (~2° voxels, voxel size 10 x 10 x 10 nm) required less
than an hour; it would have taken a human annotator several
months. Previous analyses were limited to small cell volumes
precisely because of this constraint. We further showed that
automatic segmentation of the Golgi apparatus with ASEM
confirmed the results described by the COSEM Project team
(Heinrich et al., 2021). The Golgi is not a stack of closely packed,
uniform cisternae, as often diagrammed in textbooks. Rather,
each member of the stack is a complex, perforated structure
with variable shapes surrounded by many small vesicles.

We used automatic segmentation of mitochondria, ER, and
Golgi apparatus primarily for comparison with published results
from other methods to validate the features of ASEM designed to
accelerate and simplify the entire pipeline. We turned to smaller
intracellular structures as tests of new and potentially more
challenging applications. Nuclear pores are more homogenous
than larger organelles, and thus in principle, easier to recognize,
and while any single pore has a much less distinct substructure
than does a Golgi stack or a mitochondrion, we have found that
the diameter of the membrane pore varies even across the nu-
cleus of single cells at a fixed time point, despite the likely in-
variance of much of the nuclear pore complex protein assembly.
Clathrin-coated pits are both small (on the scale of the ER and
Golgi apparatus) and variable in size and as well as in the
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assembly stage. In both cases, by training ASEM with a large set
of ground truth annotations generated by data augmentation
from a very small number of hand-annotated objects, we could
automatically identify essentially all the objects in the cell, de-
spite the variable diameter of the nuclear membrane pore and
the variable size and stage of completion of a clathrin-coated pit.
Moreover, a model trained on plasma-membrane-coated pits
identified coated pits in the Golgi and free clathrin-coated
vesicles in the cytosol.

The osmium-uranyl staining in current FIB-SEM sample
preparation, for both CF and HPFS, preferentially marks lipid
headgroups, proteins, and nucleic acids. Although with the
training set used here, the model did not distinguish between
clathrin-coated pits and caveolae, the eye clearly picks up the
much heavier staining of the former (Fig. 7). The model correctly
retrieved clathrin-coated vesicles, as well as coated pits in the
TGN, and distinguished them from COPI and COPII vesicles that
carry cargo between the Golgi apparatus and the ER, perhaps
because they are smaller structures, of substantially sharper
curvature than the clathrin-coated structures the model had
learned to recognize. How well the model will find protein-
dominated structures—e.g., virus assembly intermediates—
remains to be determined.

Imaging the entire volume of a single cell at ~5 nm resolution
can answer questions that are much harder to tackle by methods
such as cryo-tomography that access at somewhat higher reso-
lution only a small slice of a cell. One example is our finding that
nuclear pores vary in size across the nuclear membrane and
hence that the variability identified by cryo-tomography is
present at an arbitrary time point in a single cell. The deep
learning protocols we have developed and the readily im-
plemented and freely accessible analysis tools we provide form
an experimental pipeline that will run entirely on commercially
available workstations. We suggest that EM volume imaging will
prove to be a powerful complement to fluorescence volume
imaging afforded by lattice light-sheet microscopy (Chen et al.,
2014; Gao et al., 2019; Liu et al., 2018).

Material and methods

Chemical fixation, dehydration, and embedding

Cells plated on glass coverslips were processed for chemical
fixation (CF) by incubation for 30 min at room temperature with
0.2% glutaraldehyde (Cat.16220; Electron Microscopy Science)
and 2.5% paraformaldehyde (PFA, Cat. 15700; Electron Micros-
copy Science) dissolved in 0.1 M PIPES buffer (pH 7.4, Cat.
P6757; Sigma-Aldrich), followed by a rinse with 0.1 M PIPES
buffer. A 2% OsO, aqueous solution (Electron Microscopy Sci-
ences) dissolved in 0.1 M PIPES, pH 7.4 was used to stain the cells
for 1 h at RT, followed by incubation for another 1h at RT in a
solution containing 2.5% potassium ferrocyanide (Sigma-Al-
drich) in 0.1 M PIPES, pH 7.4. The cells were rinsed three times
at 5-min intervals with deionized ultrapure water followed by a
30-min incubation at RT with a filtered (Whatman, 0.2 pm)
freshly prepared solution of 1% thiocarbohydrazide (Electron
Microscopy Sciences) made by dissolving it at 60°C for 15 min.
The cells were again rinsed three times at 5-min intervals,
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followed by another incubation with 2% OsO, aqueous solution
for 1h at RT. The cells were again rinsed three times at 5-min
intervals with ultrapure water, followed by two rinses with
0.05 M maleate buffer, pH 5.15 (Sigma-Aldrich), and finally
incubated with 1% uranyl acetate (Electron Microscopy Sci-
ences) dissolved in 0.05 M maleate buffer pH 5.15 for 12 h at 4°C.

A resin mixture containing methylhexahydrophthalic anhy-
dride (J&K Scientific) and cycloaliphatic epoxide (ERL 4221;
Electron Microscopy Sciences) at a weight ratio of 1.27:1, mixed
with the catalyzing agent (Hishicolin PX-4ET; Nippon Chemical
Industrial) at a 1:100 ratio by volume, was prepared in a water
bath sonicator at RT for 15 min.

During the same period, the glass coverslips with the at-
tached CF samples were placed face up on wet ice and then
rinsed twice for 5 min with ultrapure water, followed by de-
hydration using a graded series of ethanol solutions (30, 50, 70,
90%) each step lasting 3 min, then three washes in 100% abso-
lute ethanol for 10 min, ending with three washes with anhy-
drous acetone (Sigma-Aldrich) for 10 min at RT.

The glass coverslips with the attached, dehydrated CF sam-
ples immersed in anhydrous acetone were placed in a wide-
mouth glass jar, mixed with the resin at a 1:1 volumetric ratio,
and gently rocked on a plate rocker for 12 h at room tempera-
ture. The resin mixture was then removed by aspiration and
replaced with 10 ml of freshly prepared resin mixture and fur-
ther incubated with gentle rocking for another 2 h; this step was
repeated thrice, each time with freshly prepared resin. Finally,
the glass coverslips with the attached cells were placed on top of
cut-off caps from 1.5 ml Eppendorf tubes containing a freshly
prepared resin that was oriented with the cells toward the cap,
and the resin was allowed to polymerize for 12 h at 100°C. Upon
resin hardening, the caps were immersed in boiling water for
5 min and then quickly transferred into liquid nitrogen leading
to the separation of the glass coverslip from the resin and the
retention of the cells in the polymerized resin.

High-pressure freezing, freeze-substitution, and embedding

Cells were plated on 6 x 0.1 mm sapphire disks in MEM (Corning
10009CV) supplemented with 10% fetal bovine serum (S11150;
Atlanta Biologicals). Two sapphire discs (616-100; Technotrade
international), one or both containing attached cells facing
inward, were separated by a 100-pm stainless steel spacer
(1,257-100; Technotrade international) and processed for high-
pressure freezing on a Leica EM ICE high-pressure freezer (Leica
Microsystems). Following high-pressure freezing, the sapphire
discs were placed under liquid nitrogen and transferred into the
top of cryotubes placed in liquid nitrogen and containing frozen
2% 0504, 0.1% uranyl acetate, and 3% water in acetone; freeze-
substitution (FS) was carried using an EM AFS2 automatic
freeze substitution device (Leica Microsystems) according to a
preprogrammed FS schedule (-140 to -90°C for 2 h, -90 to
-90°C for 24 h, -90-0°C for 12 h and 0-22°C for 1 h). Samples
were then removed from the AFS2 device; rinsed three times in
anhydrous acetone, three times in propylene oxide (Electron
Microscopy Sciences), and three times in 50% resin (24 g Embed
812,9 g DDSA, 15 g NMA, 1.2 g BDMA; 14121; Electron Microscopy
Sciences); dissolved in propylene oxide; and finally transferred

Gallusser et al.

Computer-aided detection of cellular structures

TR
(J’ k(J
IV

into embedding molds (EMS 70900) containing 100% resin; the
resin was then allowed to polymerize for 48 h at 65°C. The
sapphire disc was then separated from the resin block by se-
quential immersion in liquid nitrogen and boiling water.

FIB-SEM imaging

The polymerized resin blocks were cut from the molds and
glued, with the free face facing away, onto the top of aluminum
pin mount stubs (Ted Pella) using conductive silver epoxy ad-
hesive (EPO-TEK H20S; Electron Microscopy Sciences). The free
face was then coated with carbon (20 nm thickness) generated
from a high-purity carbon cord source (Electron Microscopy
Sciences) using a Quorum QI50R ES sputter coater (Quorum
Technologies), and the resin block was loaded on the microscope
specimen stage of a Zeiss crossbeam 540 microscope for FIB-
SEM imaging. After eucentric correction, the stage was tilted to
54° with a working distance of 5 mm for the coincidence of the
ion and electron beams. A cell of interest was located on the free
face of the resin block by SEM, after which a thin layer of
platinum was deposited using the gas injection system. A coarse
trench was then milled adjacent to the cell using the 30 kV/30
nA gallium ion beam. This block face was polished with a 30 kV/
7 nA gallium beam before starting the interlaced sequence of FIB
milling with a 30 kV/3 nA gallium beam and SEM imaging with
a 1.5 kV/400 pA electron beam advanced in 5-nm steps. The X/Y
pixel size was 5 nm to create isotropic voxels. For samples
prepared by HPFS, we added registration marks on top of the
platinum layer generated with a 1.5 kV/50 pA gallium beam,
followed by contrast enhancement of the marks by irradiation
with a 1.5 kV/5 nA electron beam, and a final deposition of a
second platinum layer. FIB-SEM images were collected using the
Inlens detector with a pixel dwell time of 10-15 us. The FIB-SEM
images were aligned after acquisition with the Fiji plugin Reg-
ister Virtual Stack Slices https://imagej.net/plugins/register-
virtual-stack-slices using the translation (Feature extraction
model and Registration model) and shrinkage constraint options
(Schroeder et al., 2021).

FIB-SEM data at 10 nm were acquired using a backscatter
electron detector (EsB) with a grid voltage set to 808 V to filter
out scattered secondary electrons, with a dwell time of 3 ps, line
averaging of 8, and a pixel size of 10 x 10 nm (X/Y). FIB milling
was performed with the 30 kV/30 nA gallium ion beam in 10-nm
steps to create isotropic 10 x 10 x 10 nm (XYZ) voxels. The se-
quential FIB-SEM images were registered using the Fiji plugin
StackReg with Rigid Body transformation.

Ground truth annotation

All our ground truth annotations were binary masks located at
least 47 voxels away from the boundaries of the 3D FIB-SEM
image. This ensured that training of the neural network was
done with a sufficient semantic context within the image, re-
sulting in improved model predictions.

Ground truth annotations for mitochondria, Golgi apparatus,
and ER were generated by using the carving module of Ilastik
(Berg et al., 2019) or our graph-cuts-based semiautomated an-
notation tool, and when needed, by further manual editing using
VAST (Berger et al., 2018) to remove voxels that did not belong

Journal of Cell Biology
https://doi.org/10.1083/jcb.202208005

920z Arenuged 60 U0 3senb Aq 4pd'500802202 ARl/E8 LYY L/S008022029/2/22Z/4Ppd-8loe/qol/B10"sseidnu//:dny woy papeojumog

13 of 20


https://imagej.net/plugins/register-virtual-stack-slices
https://imagej.net/plugins/register-virtual-stack-slices
https://doi.org/10.1083/jcb.202208005

to the structure of interest or to add voxels for regions that had
not been included in the original binary mask.

Ground truth annotations for the relatively complex three-
dimensional substructure of the Golgi apparatus included
membrane boundaries and the lumen for the characteristic
three to six closely stacked fully enclosed membrane lamellae,
the fenestrated and somewhat swollen trans-Golgi network
stack, and a variable number of small vesicles clustered next to
the Golgi apparatus. They were created with our semiautomated
graph-cut annotation tool.

Ground truth annotations for endocytic clathrin-coated pits
and for caveolae were manually generated in consecutive planes
using VAST by drawing along the contours following the plasma
membrane invaginations characteristic of these structures.

Ground truth annotations for nuclear pores were manually
generated plane by plane using VAST by drawing along the
contours of the nuclear outer and inner membrane adjacent to
the nuclear pore.

Graph-cut annotation tool

We developed a new semiautomated tool to aid an expert an-
notator in marking sparse and coarse labels in a subvolume, one
plane at a time so that the annotator can define high-level seeds
required to generate ground truth annotations for a chosen or-
ganelle and separate it from the background (see Fig. S2). Once
the seeds are marked, the tool, at the push of a button, uses
mathematical techniques (detailed below) to combine them with
the grayscale values in the volume to infer the structure of the
organelle, thus resulting in a semiautomated segmentation.

Our tool operates on the full 3D volume (rather than 2D sli-
ces). We observed that manual annotation with only a few
sparse 2D brush strokes (seeds) in only a few 2D arbitrarily
spaced planes still results in satisfying volumetric annotations.
Furthermore, this tool allows the annotator to visualize the
volume plane-by-plane and define seed voxels in a plane as ei-
ther part of the organelle or the background. Scrolling through,
the annotator can seed a few planes at arbitrary intervals
over the entire stack. It also allows views along all three axes
so that the annotator can look down the z-axis to mark the xy-
plane, and similarly for the y- and x-axes.

The technique of graph-cuts-based segmentation was adopted
to generate segmentations from these seeds. The seeds were
defined on manually extracted volumes from cells. Even though
the seeds were coarse, the annotator took care not to mislabel
any voxel. The maxflow algorithm (Boykov et al., 2001) was
then employed to segment organelles based on these annota-
tions. This tool was written in Python and adapted to suit
the annotation needs associated with 3D FIB-SEM data. It is
publicly available at https://github.com/kirchhausenlab/gc_
segment, accompanied by detailed usage instructions and
best practices.

The next step of the semiautomated segmentation is a re-
duction of problem complexity. To get a segmentation based on
the seeding, each voxel must be assigned either an organelle
label or a background label. At this point, we note that the vol-
umes with which we work are characteristically large—a vol-
ume of 1 cubic micrometer contains 8 million voxels at a
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resolution of 5 x 5 x 5 nm. We also observe that as organelles are
contiguous objects in the volume, a group of nearby voxels has a
high chance of belonging to the same organelle. We hence merge
nearby voxels to form supervoxels using the SLIC algorithm
(Achanta et al., 2012), so that we can work with ~103 super-
voxels instead of ~10° voxels—a reduction of three orders of
magnitude. Under this strategy, supervoxels were formed by
grouping adjacent voxels together based on a similarity crite-
rion, which for our problem setting was chosen as the agree-
ment in grayscale values.

A postprocessing step has been included in this tool that can
modify the resulting segmented foreground voxels by fitting to
the foreground voxels a univariate Gaussian mixture model
based on its grayscale values. This optional postprocessing can
help remove outlier voxels with the minimal additional over-
head of computation time.

The aim of the graph-cuts-based strategy is therefore to de-
fine and optimize an objective energy function over the space of
labels #" = {0, 1}V, where the labels 0 and 1 represent organelle
and background respectively and V is the number of supervoxels
in the volume. Each point in this space determines whether a
supervoxel is considered an organelle or a background and
hence represents a segmentation of the volume. The objective
energy function for our problem was formulated based on early
work on graph-cut segmentation in computer vision (Boykov
and Kolmogorov, 2004).

To describe our energy function, we introduce the following
notation. The subscripts u and v denote supervoxels; the subscripts
p and g denote voxels. Let G = (Gi, Gy, ..., Gp, ...Gs),Gp € 7, S < N
be the labels for S seeded voxels for a volume consisting of N
voxels, and let A = (A}, Ay, ..., Ay, ...,Av), A, €7 be the vector
corresponding to the unknown segmentation of the V super-
voxels in the volume. The vector A represents the deduced
labeling (or segmentation) for the volume. The final segmen-
tation is the vector that results in the least value of the objective
energy function. The energy function is

E(A) = R(A) + AB(A),

where
R(A) = > fDy(A,) + YPu(A,)  and
B(A)= ) B.5(ALA).
(

u,v) €./

Here, 8(A,, A,) is set equal to 1if A, # A, and 0 otherwise. ./’
denotes the set of supervoxels adjacent to each other and hence
deemed neighbors. Adjacency implies a shared boundary be-
tween the two supervozxels. §, y, and A are weights given to the
individual terms. P, and D, represent unary terms of the energy
function, as they depend only on one supervoxel, while B,,
represents pair-wise terms.

The unary terms are defined as follows. The terms P, are
determined by the aggregate grayscale values of the supervoxels
and their agreement with the seeded foreground and back-
ground voxels (the vector G), as in earlier work (Boykov and
Kolmogorov, 2004; Boykov et al., 2001), and the terms D, are
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determined by the distance of the voxels from the nearest seeding
of organelle and background. The pair-wise terms are also defined
according to earlier work, based on the distance between the two
supervoxels, defined as the distance between the arithmetic cen-
ter of the two supervoxels. As the defined energy function is
submodular, it can be optimized using graph cuts (Kolmogorov
and Zabin, 2004). An efficient algorithm to optimize such func-
tions, maxflow (Boykov and Kolmogorov, 2004), was used to find
the optimum vector A. There are hyperparameters in our for-
mulation, namely f, y, and A. These were empirically defined as
B=1,y=1and A = 10. It should be noted that these values can be
tuned according to the user’s needs and observations.

Data preprocessing for deep learning

Cell image stacks underwent the following steps before they
were ready for training: (1) Conversion from TIFF format to the
block-wise storage format ZARR. The size of a FIB-SEM dataset
corresponding to a stack of registered TIFF files (~2,000 planes)
was about 20 GB. These TIFF stacks were converted into a ZARR
3-D compressed array (https://zenodo.org/record/7115955) to
increase the efficiency for further preprocessing steps and, most
importantly, for neural network training. (2) Cropping of the
dataset to exclude empty regions outside the cell and to speed up
all further preprocessing steps. (3) Block-wise adjustment of
brightness and contrast with 3D contrast-limited adaptive his-
togram equalization (CLAHE, [Zuiderveld, 1994]) using scikit-
image.exposure.equalize_adapthist with kernel size 128 and clip
limit 0.02 (see Fig. S4). (4) Application of morphological oper-
ations to automatically clean up ground truth annotations based
on biological assumptions was implemented with the python
libraries scikit-image.morphology (van der Walt et al., 2014) and
scipy.ndimage (Virtanen et al., 2020). For mitochondria and Golgi
apparatus, small objects were removed (<27 voxels); for ER,
holes were removed (<20,000 voxels, corresponding to 0.0025
um?); no clean-up was required for nuclear pores or clathrin-
coated pits. (5) Automatic creation of a coarse voxel-wise mask
to mark voxels outside of the cell using a combination of oper-
ations from the python libraries scikit-image.morphology and
scipy.ndimage. The parameters and combination of operations
were adapted visually to each dataset. Operations included in-
tensity thresholding, binary opening and closing, filling small
holes, and removing small objects. (6) Optional: Correction for
systematic biases in annotations. We observed that our semi-
automatic annotations carry biases that can be corrected auto-
matically. For mitochondria and Golgi apparatus, most of the
annotations did not include the membrane, which we wanted to
consider as part of the organelle. Note that this correction de-
pended on the characteristics of a specific dataset (e.g., the
contrast of membranes); mitochondria annotations were dilated
by three voxels (15 nm); Golgi apparatus annotations were di-
lated by one voxel (5 nm); and ER, nuclear pores, and clathrin-
coated pits annotations were not dilated. (7) Defining a metric
exclusion zone. Although step (6) allowed us to add most of the
organelles’ membranes to the annotation, the ground truth was
often not voxel accurate at the organelle boundaries. A neural
network model trained with such data cannot produce voxel-
accurate predictions at the organelle boundaries, leading to
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misleading evaluation scores (e.g., F1, see Fig. S3 E). Following
previous works (Haberl et al., 2018; Lucchi et al., 2012), we
avoided this issue by defining an exclusion zone around our
semiautomatic imprecise annotations created by dilating and
eroding the annotations and taking the logical difference be-
tween the two outcomes. The size of both dilation and erosion
depends on the specific structure, as follows: four voxels for
mitochondria, two voxels for Golgi apparatus, one voxel each for
ER, and three voxels for dilation plus one voxel for erosion
for clathrin-coated pits and nuclear pores.

All operations required only local context, meaning that they
could be applied block-wise, and the computation could be par-
allelized to multiple CPU cores. To avoid artefacts at the block
boundary, we provided sufficient spatial context to each block
with the python library DAISY (https://github.com/funkelab/
daisy), which was used for multiprocess computation on all
cores of a CPU. These computations were performed on Intel Xeon
workstation processors with 20-40 physical cores. Detailed in-
structions on the use of the preprocessing pipeline are provided at
https://github.com/kirchhausenlab/incasem#Prepare-your-own-
ground-truth-annotations-for-fine-tuning-or-training.

Deep learning

Model architecture

A 3D U-Net (Cicek et al., 2016) based on the architecture used in
Funke et al. (2019) was defined, with three downsampling layers
with a factor of two, and two convolutional layers on each
downsampling level. Refer to Fig. S3 A for details. In total, the
network had ~six million parameters. It was implemented in
PyTorch (Paszke et al., 2019).

Training: Overview of pipeline

The pipeline to feed blocks to the neural network was based on
Buhmann et al. (2021) and implemented using GUNPOWDER
(https://github.com/funkey/gunpowder), a library that facili-
tates machine learning on large multidimensional arrays.

We trained one model per organelle, i.e., for model training
data, foreground refers to voxels corresponding to only one type
of organelle. For each iteration during the training phase, a block
of 204 x 204 x 204 voxels was randomly sampled from the
electron microscopy dataset, together with the corresponding
block of ground truth. The blocks were augmented by voxel-wise
transformations, e.g., random intensity shifts, and geometric
transformations, e.g., random rotations and deformations. The
blocks were processed through the network, which returned as
an output block a 3D probability map of 110 x 110 x 110 voxels,
centered with respect to the larger input block. The input
blocks contained an additional 47 voxels per side to provide the
context required by our convolutional neural network archi-
tecture. The output probability map was compared with the
ground truth using cross-entropy loss, which was minimized
by iteratively updating the model parameters by using the
Adam optimizer (Kingma and Ba, 2014).

Training: Data sampling
Our dataset annotations were highly imbalanced. As our struc-
tures of interest were small, only a few voxels formed the
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so-called foreground (FG), with a large portion of the dataset
consisting of arbitrary background (BG = 1-FG; e.g., cytosol, nu-
cleus, other organelles). Imbalanced datasets are known to be
problematic for convergence of neural network training, and we
confirmed this empirically while working with our datasets. As a
rule of thumb, it is desirable to sample blocks having a foreground
to background ratio roughly equivalent to the global ratio of the
two. To make use of all available training data, while keeping the
number of unbalanced training blocks as low as possible, we im-
plemented the following scheme (using operations available in
GUNPOWDER): (1) Reject blocks that contain more than 25% out-
of-sample voxels. (2) Calculate the FG/BG ratio for each incoming
block. (3) Reject a block with probability 0.9 if fewer than 5% of

the voxels in it (ratio in step [2]) are labeled as foreground.

Training: Data augmentation

It was impractical to process and store tens of thousands of
augmented FIB-SEM blocks required to train the 3D neural
network model. Instead, during each training cycle, we
augmented the number of ground truth annotations by ran-
domly applying the transformations listed in Table S8 to the
training block.

Training: Pipeline details

After data augmentation, we shifted the scale of the data in the
input block (204 x 204 x 204 voxels) such that the input inten-
sities were in (-1, 1). Each block accepted by the neural network
was then propagated through the network leading to outputs of
spatial dimensions 110 x 110 x 110 voxels, centered with respect to
the larger input block. The neural network assigned comple-
mentary FG and BG probability to each voxel. The probability
map was then compared to the ground truth annotations with the
binary cross-entropy loss. We balanced the loss contribution of
foreground and background voxels inversely proportional to
their occurrence, clipped at a value of 1:100. The training loss was
backpropagated, and the network parameters were updated using
the Adam optimizer (Kingma and Ba, 2014) with 0.00003
learning rate and 0.00003 weight decay. The network parame-
ters were saved at the end of every 1,000 training iterations.

Training: Computational requirements

Eight CPU cores were used in parallel for data fetching and
augmentation, while a single GPU (A100; Nvidia on a DGX-A100
system) was used for training. Typically, a training iteration
lasted 1 s, and 100,000-150,000 iterations (28-42 h, including
periodic validation tests) were sufficient to train our 3D neural
network model. A training session could also be done with a
standard GPU workstation equipped with an Nvidia GPU with
12-GB GPU memory and 500-GB CPU memory. Presumably,
workstations with 64-GB CPU memory can also be used since
our training pipeline processes out-of-memory datasets.

Validation: Procedure

To avoid overfitting, we assessed the model’s performances
during the training phase on both the training dataset and val-
idation dataset, where the latter dataset was not used to update
the model parameters. We saved every 1,000 iterations of the
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training model, froze their weights, and calculated the loss on a
small set of ground truth blocks. These were hold-out blocks
from the cells that contained the training data or blocks origi-
nating from naive cells not represented in the training data. By
comparing training and validation losses (see plots in Fig. S3, B
and C), we usually identified three different regimes: under-fit,
fit, and over-fit. When the model was under-fit, both training
and validation loss decreased with the training iteration. In the
fit regime (Fig. S3, B and C, in gray), typically starting after more
than 20,000 training iterations, the validation loss was ap-
proximately constant, while the training loss was slightly re-
duced. In the over-fit regime, the training loss continued to
drop, but the validation loss started to rise. We considered the
model saved at the training iteration in the middle of the fit
regime to be the one that could best generalize, i.e., make op-
timal predictions on previously unseen data. This is a standard
procedure in Machine Learning, known as “early stopping.”

Validation: Performance metrics
The performance of the models obtained by the 3D U-net neural
networks was determined by comparing the predicted binary
segmentation with respect to ground-truth using the following
three metrics: (1) precision (percentage of voxels predicted as
intracellular structure that is the substructure), (2) recall (per-
centage of substructure voxels correctly predicted as substruc-
ture), and (3) F1 index score (harmonic mean of precision and
recall, see Fig. S3 E). These metrics were also used by other state-
of-the-art supervised learning methods, such as COSEM, al-
lowing for a quantitative comparison.

Using the true positives TP, false positives FP, and false
negatives FN, we define precision, recall and F1 as:

- TP
precision = m
recall = TP
TP + FN
Fle 2 x precision x recall TP

precision + recall TP + (FP+FN) /2

Prediction: Data preprocessing

As for training, the segmentation of new FIB-SEM datasets re-
quired certain preprocessing steps (refer to Data preprocessing
for deep learning for details): (1) Conversion from TIFF format to
block-wise storage format ZARR. (2) Crop the dataset to exclude
empty regions outside the cell. (3) Create an approximate voxel-
wise mask to mark voxels outside of the cell. (4) Image data
normalization with CLAHE (see Fig. S4).

Prediction: Pipeline

As the first step, the trained model at the iteration determined
by early stopping (see Validation: Procedure, above) was loaded
with frozen weights. The dataset to segment was scanned block
by block and fed into the model, without performing data aug-
mentation. Since the architecture of the 3D U-Net neural net-
work is fully convolutional and since each predicted voxel has
access to sufficient context, we could produce the predictions
block-wise independently and in parallel.
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The model performed a forward pass, producing as output a
3D voxel-wise probability map, saved to disk in ZARR format. A
threshold of 0.5 was applied to the predicted probability map to
extract a binary segmentation map (organelle/background).
Although our pipeline allowed the user to set this threshold to an
arbitrary value from zero to one, we set it to the default value of
0.5 in every experiment to avoid introducing any postprocessing
bias. The segmentation map was later visualized in neuroglancer
(https://github.com/google/neuroglancer) and superimposed on
the electron microscopy image. Finally, we converted the pre-
dicted segmentations back to TIFF format and reverted the ini-
tial dataset cropping to obtain a segmentation that was globally
aligned with the originally acquired image stack from the
microscope.

Prediction: Computational requirements

A prediction was performed on a single GPU (A100; Nvidia on a
DGX-A100 system), backed by multiple CPU cores and employed
to parallelly load and preprocess the data. When using five CPU
cores, we achieve a prediction throughput of ~1.6 M voxels per
second, roughly corresponding to the size of 1153 voxels for one
block of actual prediction as depicted in our Unet architecture in
Fig. S3. Hence the prediction of one cell image stack, acquired at
5 nm isotropic resolution, typically took between 30 and 90 min,
depending on its volume. A similar prediction could also be done
with a standard GPU workstation equipped with a Nvidia GPU
with 12 GB GPU memory and 500 GB CPU memory. Presumably,
workstations with 32-GB CPU memory can also be used since
our training pipeline processes out-of-memory datasets.

Fine-tuning
To fine-tune a trained model on a naive cell, we performed the
following steps: (1) One block of ground-truth block (minimum
204 x 204 x 204 voxels) within the cell to fine-tune was anno-
tated. (2) A model previously trained on the same organelle,
whose weights were frozen at the first train iteration of the fit
region, was loaded for continued training. (3) A training of
15,000 iterations was launched, using as training data only the
newly prepared ground-truth block. All fine-tuning training
hyperparameters were set identical to the original training. (4)
The model was saved every 1,000 iterations. The best model
iteration was picked based on the original validation dataset
from the fine-tuning target cell.

Details to perform fine-tuning training using our pipeline are
provided at https://github.com/kirchhausenlab/incasem#Fine-
tuning.

Brief example of fine-tuning

We started by preparing a small ground-truth block of the cell to
fine-tune. As the volume of the additional ground truth was
much smaller than the volume of the ground truth fed to the
pretrained model (from ~1/69 to ~1/3, Table S10), the additional
annotation effort was not very demanding. In the case of CF
datasets, for the fine-tuning of mitochondria in Cell 3 BSC-1 and
Cell 6 SUM 159, we loaded the segmentation map performed
by the pretrained model (model 1847) and refined it by manual
editing with VAST. Conversely, to fine-tune HPFS OpenOrganelle
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datasets in the prediction of mitochondria and ER, we picked one
additional COSEM ground-truth crop, previously excluded from
the training and validation data. We loaded the pretrained model
at the first training iteration within the fit regime (i.e., the iter-
ation after which the validation loss was stable, Fig. S3, B and C);
for example, in Fig. S5 A, for the CF Mitochondria model, we
loaded the model at the training iteration 95,000 (Fig. S3 B). We
resumed training on the model by using only the additional
ground truth block and data augmentation. Typically, after a few
thousand training iterations (about ~1/15 of the training iterations
needed to produce the pretrained models), the fine-tuned model
learned to segment the fine-tune dataset more precisely, with an
increased overall F1 score (Table S10). We noticed that fine-tuning
was beneficial mainly when the initially trained model behaved
poorly, such as in the case of HPFS ER and Cell 21 Jurkat-1, for
which F1 increased by 0.21.

To understand how fine-tune training helped to improve
segmentation, we compared the segmentation performed by the
pretrained model versus the one produced by the fine-tuned
model (Fig. 5 D). In the case of CF, mitochondria, only a few
portions of mitochondria were occasionally missed by the pre-
trained model, but they were eventually retrieved by the fine-
tuned models. In HPFS ER, fine-tuning reduced the number of
false positives, resulting in a neater segmentation map, suitable
for further biological studies.

To quantify the impact of fine-tune training, we calculated
precision and recall in addition to F1 (Fig. S5). Typically, fine-
tuning enhanced precision without affecting recall: the fine-
tuned model learned to classify cell components that looked
like the organelle under study, but did not actually belong to the
same semantic class, reducing the number of false positives.

At the baseline, we compared the fine-tuned model with one
having randomly initialized weights and trained using the same
(small) ground truth volume. We found that for most datasets
and organelles (ER Cell 21 Jurkat-1, ER Cell 22 Macrophage-2,
mitochondria Cell 21 Jurkat-1, mitochondria Cell 3 BSC-1, and
mitochondria Cell 6 SUM 159), the models trained using ran-
domly initialized weight reached substantially lower F1 scores,
even when trained much longer, with up to 200,000 training
iterations. Only in one case (mitochondria Macrophage-2),the
model achieved approximately the same F1 score, but only after
training for 160,000 iterations, 20 times more than the number
required by the corresponding fine-tuned model.

We concluded that fine-tune training is a useful tool to apply
whenever the segmentation of a naive cell falls short. By taking
advantage of pretrained models and preparing a small ground
truth volume, one can train more accurate models at a small
fraction of the ground truth annotation and computational costs
usually required.

Estimate of time effort required to annotate ground truths

We evaluated our annotation times for all cells and organelle
type (Table S4). The total annotation time for the given volumes
was 120 h for 176 um? (mitochondria), 100 h for 166 um? (Golgi
apparatus), and 120 h for 92 pm? (ER). On average, this equates
to roughly 0.8 h per cubic micron per organelle for ASEM. In
contrast, the COSEM paper (Heinrich et al., 2021) states that
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annotating a block of 1 cubic micron with 35 organelle classes
took one annotator 2 wk (~100 h), which equates to 2.8 h per
cubic micron per organelle, thus being ~3.5 times slower
than ASEM.

Analysis of nuclear pores

Automated orientation of nuclear pores on the nuclear envelope
We determined the nuclear pore membrane diameters from top-
down FIB-SEM views toward the nuclear envelope of each of the
nuclear pores. This orientation process was automated with the
following steps. First, we generated a 3D binary mask corre-
sponding to the predicted probability with a threshold of 0.5 for
each one of the nuclear pores identified by the 3D U-net nuclear
pore model (Fig. S6 A). Second, we determined the volume,
principal axis, and centroid coordinates for each mask. A fil-
tering step was included to eliminate masks with a small volume
or short axis due to incompleteness of the predicted mask. Third,
we used median filtering of the 3D point cloud data to remove
outliers, thus creating a virtual “low resolution” 3D surface of
the nuclear envelope by alpha-shape triangulation of the cent-
roids (Akkiraju et al. 1995; Fig. S6 B, top). Fourth, we obtained a
vector normal to each triangle within the triangulation (Fig. S6
B, bottom). Finally, we used the angular information of this
vector to reorient the coordinates of the raw image of the nu-
clear pore closest to the triangulation to position the nuclear
membrane on a view normal to the observer (Fig. S6 C).

Determination of nuclear pore membrane diameter

The diameter of the membrane pore, defined by the contact
between the nuclear membrane and the pore opening, was de-
termined from the distance separating the two peak signals
measured in the FIB-SEM image along a line transecting the
middle of the nuclear envelope immediately surrounding the
nuclear pore (dl and d2 in Fig. S6 D). The nuclear pore mem-
brane diameter was expressed as the median of 18 radial
measurements 10° apart. This calculation increased the preci-
sion of the measurement by taking advantage of the known
radial symmetry of the nuclear pore and the surrounding nu-
clear envelope on the axis normal to the nuclear envelope; the
standard deviation for each pore diameter measurement
(i.e., experimentally determined uncertainty) was 6 nm.

Analysis of clathrin-coated pits and coated vesicles
The model trained on endocytic clathrin-coated pits in cell 12
and cell 13 was used to predict clathrin-coated structures in cells
12, 13, 15, and 17. The predictions were gated at a probability of
0.5 and the corresponding masks were then used to locate the
clathrin-coated structures. These structures were classified as
endocytic clathrin-coated pits and coated vesicles if they were
located at the plasma membrane or within 400 nm, respectively;
“secretory” coated pits and coated vesicles denote the remaining
similar structures located in the cell interior. Each prediction
was confirmed by the visual inspection of the corresponding
image along the three orthogonal directions.

Measurements of neck, height, and width from the pits (Fig.
S8 A), and major and minor axis of the ellipses best fitting the
pits and coated vesicles (Fig. S8, A and B) were determined by
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the following sequential steps: (1) select the view displaying the
largest outline by inspection of nine consecutive planes along
each of the three orthogonal views centered on the centroid of
the pit or vesicles; (2) manually measure the neck height and
widths of the pits; (3) establish the outline of the pit or vesicle in
the section chosen in the first step; the darker pixels where the
pit or vesicle was present were selected manually (Fig. S8 C,
white square in the left panel), segmented into a binary mask
with an Otsu intensity threshold (Otsu, 1979), and skeletonized
(Fig. S8 C, middle panel); (4) establish the ellipse best fitting the
skeletonized outline of the pit or vesicle (Fig. S8 C, right panel);
and (5) obtain major and minor axis of the ellipse.

Statistical analysis

The normality of the nuclear pore size distribution was exam-
ined using the Shapiro-Wilk test (Fig. 6 C). The comparison of
size distributions between nuclear-pore diameters from values
determined experimentally and from simulated values based on
the experimental median value with an uncertainty of 6 nm
using the nonparametric Kolmogorov-Smirnov test showed
they were statistically different (P < 0.0001).

Online supplemental material

Fig. S1 shows the ground truth annotation workflow for mito-
chondria. Fig. S2 shows the ground truth annotation workflow
for ER and Golgi apparatus. Fig. S3 shows the 3D-Unet archi-
tecture, examples of network behavior during training, and F1 as
a metric to compare ground truth annotations with model pre-
dictions. Fig. S4 shows the use of CLAHE to equalize the contrast
of FIB-SEM images. Fig. S5 shows the comparison of validation
metrics of neural models predicting mitochondria, ER, and Golgi
apparatus. Fig. S6 shows the steps to determine the diameter of
the nuclear pore membrane. Fig. S7 shows the three-dimensional
distribution of nuclear pores on the nuclear envelopes of Cells
15 and 17. Fig. S8 shows the definition of metrics used to
characterize clathrin-coated structures. Fig. S9 shows the
characterization of clathrin-coated pits and coated vesicles.
Table S1is the list of cells used in this study. Table S2 shows the
size of hold-out volumes containing ground truth annotations
and their use for model training, validation, or prediction.
Table S3 shows the types of data augmentation used in this
study. Table S4 lists the procedures used to generate ground
truth annotations. Table S5 shows the effect of CLAHE on
prediction performance. Table S6 compares examples of pre-
dictive performance by models trained with data from one or
two cells. Table S7 compares model performances using the
ASEM (this study) and COSEM pipelines. Table S8 compares
examples of predictive performance by models trained with
data from cells prepared with the same or different fixation
protocols. Table S9 shows the effect of resolution on the pre-
dictive performance. Table S10 is a summary of experiments to
test the effect of fine-tuning.

Data availability

The datasets of raw and normalized FIBSEM cells images,
ground truth annotations, probability maps predicted by the
models, and corresponding segmentation masks are publicly
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available at the AWS ASEM bucket (https://open.quiltdata.com/
b/asem-project).

The software and step-by-step instructions to use it are
publicly available at https://github.com/kirchhausenlab/
gc_segment (Graph-cut annotation tool) and https://github.
com/kirchhausenlab/incasem (Deep-learning pipeline).
Trained neural network models are available at https://open.
quiltdata.com/b/asem-project with usage instructions at https://
github.com/kirchhausenlab/incasem.
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Figure S1. Ground truth annotation workflow for mitochondria. (A) Example to illustrate the sequential steps used with llastik Carving module to
generate the ground truth annotation for a mitochondrion in Cell 1 HEK293A prepared by chemical fixation and visualized with ~5 nm isotropic resolution.
Coarse annotations for background (yellow) and object (blue) drawn in broadly spaced consecutive planes of the stack were used to seed the Ilastik Carving
module from which a binary mask spaced along adjacent planes spaced 5 nm in the z-stack and corresponding to the mitochondria ground annotation was
generated (magenta). Manual corrections using VAST are used as needed, to remove incorrectly assigned pixels, in this example corresponding to an adjacent
ER (white arrow). Scale bar, 500 nm. (B) Volume rendering corresponding to the ground truth annotation of the mitochondrion shown in A.
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Figure S2. Ground truth annotation workflow for ER and Golgi apparatus. (A and B) Example of graph-cut assisted segmentation used to generate the
ground truth annotation for ER (A) or Golgi apparatus (B) in Cell 1 HEK293A prepared by chemical fixation and visualized with ~5 nm isotropic resolution.
Coarse annotations for background (lines, solid areas in pink) and object (dotted lines in yellow) drawn in the indicated broadly spaced planes of the stack were
used as seeds to generate the ground truth annotations with the graph-cut assisted segmentation program.
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Figure S3. 3D U-net architecture, examples of network behavior during training, and F1 as a metric to compare ground truth annotations with model
predictions. (A) Schematic representation of the steps used to train the 3D U-net encoder-decoder neural network. The input for the neural network mode are
3D blocks consisting of a stack of consecutive FIB-SEM images (size 204 x 204 x 204 voxels). The 3D block is subjected in the encoder to three cycles, each
consisting of consecutive 3 x 3 x 3 convolutions without padding (purple) and downsampling operators with 2 x 2 x 2 max-pooling (pink). The feature maps
from the encoder are then upsampled in the decoder by a factor of 2 (yellow), followed by concatenation with previous feature maps from the downsampling
branch that had been exposed to central cropping and finally subjected to consecutive 3 x 3 x 3 convolutions without padding (purple); these steps are
repeated three times. The output of the neural network model is a probability map (size 110 x 110 x 110 voxels) of two channels, representing the foreground
(FG) and background (BG = 1- FG) probability maps, respectively. Number of featured maps are denoted in red, spatial dimensions at the indicated steps in the
neural network in black. Figure designed based on PlotNeuralNet (https://github.com/Harislgbal88/PlotNeuralNet; adapted from Sheridan et al, 2022).
(B-D) Examples of plots showing validation cross entropy loss used to evaluate the predicting behavior of the indicated neural network models for (B)
mitochondria, (C) Golgi, or (D) ER periodically obtained during training using FIB-SEM volume data of cells prepared by chemical fixation obtained at ~5 nm
resolution. Cross entropy values were obtained using hold-out ground truth annotations from the training set not used during training or from naive cells,
respectively. The gray area shows the first appearance of relatively stable cross-entropy loss and absence of major spikes obtained by the models during
20,000 consecutive training iterations; these models were then used for prediction. (E) Ground truth annotations consist of true positive (TP) and false
negatives (FN) voxels and define the presence or absence of a perfect match with the subcellular structure of interest. The output of the model consists of true
(TP) and false positives (FP) voxels, depending on whether the predicted voxels are part or not of the ground truth. F1, as defined in the figure, is used as a
practical metric to evaluate the prediction accuracy of the neural network to identify the structure of interest. A perfect model prediction would yield F1 = 1 with
FP=0,FN=0.
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Figure S4. Use of CLAHE to equalize the contrast of FIB-SEM images. (A-D) Single plane views of FIB-SEM volume data after contrast equalization using
CLAHE with a clip limit of 0.02. The samples were prepared by CF (A and B) or HFFS (C and D) and imaged at ~5 nm isotropic resolution.
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Figure S5. Comparison of validation metrics used to evaluate the prediction accuracy of neural models predicting mitochondria, ER, and Golgi
apparatus. (A and B) Ground truth annotations from FIB-SEM volume data from the indicated cells at ~5 nm isotropic resolution prepared by CF (A) or HPFS
(B) were used for training to generate models for mitochondria, ER, and Golgi apparatus. The bar plots show F1, precision, and recall metrics obtained using
ground truth annotations not used for training. These values are shown as averages from 20 training iterations spaced at 1,000 intervals, with respective error
bars representing maximum and minimal values, calculated after ~100,000 training iterations. The results also show metrics obtained after fine-tuning with a
small number of additional training iterations using ground truth annotations from the naive cell. Details of datasets, ground truth annotations, and models are
summarized in Tables S4, S5, and S2.
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Figure S6. Steps to determine the diameter of the nuclear pore membrane. (A) Nuclear pore predictions for all the pores on the nuclear envelope of naive
interphase cell 19 (Hela-2) prepared by HPFS and visualized at 4 x 4 x 5.3 nm isotropic resolution. The nuclear pore predictions were obtained using a model

trained without fine tuning with ground truth annotations for Cell 13 (Hela) prepared by HPFS and imaged at ~5 nm isotropic resolution. (B) Volume location of

the centroid of each of the predicted nuclear pore, color coded according to their relative position along the Z-axis (top panel) and surface rendition of the
nuclear envelope (green) obtain by alpha-shape triangulation of the centroids (see Materials and methods). Orthonormal vectors associated with each triangle
are shown (red). (C) Example of realignment of a nuclear pore from its acquisition orientation in the FIB-SEM volume image to a new view with the nuclear
envelope orthogonal to the Z-axis; side views and volume rendition of the nuclear pore prediction are shown. (D) Single plane on the face and orthogonal views
of a nuclear pore centered on the middle of the nuclear envelope (left panels) and examples of the intensity plots used to estimate the membrane pore
diameters by determining the distance separating the two intensity minima along the indicated axis (right panels). The nuclear pore diameter is reported as the

average of 18 values obtained 10° apart (inset in left panel).
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Figure S7. Three-dimensional distribution of nuclear pores on the nuclear envelope. Three-dimensional distribution of nuclear pores on the nuclear

envelopes of Cells 15 and 17 color-coded by a heat map as a function of membrane pore diameter.
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Figure S8. Definition of metrics used to characterize clathrin-coated structures. (A) Schematic representation of the timeline to describe the formation
of a clathrin-coated pit mediated by the assembly of the clathrin coat (Kirchhausen et al, 2014). The last step mediated by fission of the membrane neck
connecting the mature coated pit from the originating membrane results in formation of the fully formed coated vesicle. Metrics of neck width, pit height, full
width at half maximum, and major and minor axis of the fitted ellipse used to morphologically describe the clathrin-coated pits are shown. (B) Metrics used to
characterize clathrin-coated vesicles. (C) Example of a single plane from a selected endocytic clathrin-coated pit in a cell prepared by HPFS and imaged by FIB-
SEM at ~5 nm isotropic resolution. The darker voxels corresponding to the deformed membrane and the coat surrounding the pit (left panel) were segmented
using an Otsu-based intensity threshold approach (Otsu, 1979) to generate a skeletonized binary mask (central panel) which was then used to fit the ellipse

(right panel).
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Figure S9. Characterization of clathrin-coated pits and coated vesicles. Data shown in this figure for Cells 12, 13, 15, and 17 were generated using the
coated pit model employed in Fig. 7 obtained by training with ground truth annotations from Cell 12 prepared by HPFS and imaged at ~5 nm isotropic
resolution. (A) Violin plots of the major and minor axis and eccentricity of the fitted ellipse of all pits and vesicles in the raw images of the structures identified
by the coated pit model. (B) Scatter plot of height versus neck width of endocytic clathrin-coated pits clustered in two groups associated with early and late
stages of pit formation (left panel). The histogram compares the height and major axis for the fitted ellipse of late endocytic coated pits and coated vesicles,
respectively. (C) Scatter plot of height versus neck width of “secretory” clathrin-coated pits associated with internal membranes.

Video 1. Ground truth annotations for mitochondria, ER, and Golgi apparatus. Passing through a FIB-SEM volume with contrast equalized using CLAHE.
Image is from Cell 1 HEK293A prepared by CF and imaged at ~5 nm isotropic resolution. The video shows ground truth annotations for mitochondria (cyan), ER
(red), and Golgi apparatus (green). The annotations were generated for all mitochondria and Golgi apparatus within the FIB-SEM volume, and all ER within the
highlighted 8 x 3 x 3 um block (orange box).
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Video 2. Predictions of mitochondria. Passing through the FIB-SEM volume with contrast was equalized using CLAHE. The video shows image and pre-
dictions from naive Cell 1 HEK293A (not used for training using the model trained with ground truth annotations for mitochondria from Cell 2 HEK293A. Both
cells were prepared by CF and imaged at ~5 nm isotropic resolution. The model identified all mitochondria; comparison of the ground truth annotations and
predictions shows correct voxel assignments (true positives, yellow), missed assignments (false negatives, cyan), incorrect assignments (false positives,
magenta). The small fraction of false positive assignments predicted by the model are associated with unidentified tubular and spherical structures of small
size (Chou et al,, 2021).

Video 3. Prediction of mitochondria, ER, Golgi apparatus, nuclear pores, and clathrin-coated pits and vesicles. Passing through the raw FIB-SEM
volume from naive Cell 15 SVG-A prepared by HPFS and imaged at ~5 nm isotropic resolution. The video shows predictions as surface renderings for mi-
tochondria (cyan), ER (yellow), Golgi apparatus (magenta). For simplicity, only predictions in a block of 3 x 3 x 3 um (block size: 664 x 586 x 572 voxels) are
shown. A small number of false positive pixels generated by the Golgi model and located within a 323 x 271 x 230 voxel block were removed using VAST. One
identified Golgi apparatus is highlighted (light pink). Predictions for all nuclear pores (yellow) and clathrin-coated pits and vesicles (red) within the imaged
volume are also shown. Visual inspection confirmed that the models trained with ground truth annotations from Cell 19 Hela and Cell 20 Hela prepared by
HPFS and imaged at ~5 nm isotropic resolution correctly predicted all the intracellular structures in Cell 15 SVG-A.

Video 4. Prediction of mitotic ER. Passing through the FIB-SEM volume with contrast equalized. Image is from naive prometaphase Cell 8 SUM 159 imaged
at ~10 nm isotropic resolution. The video shows ER predictions (yellow) generated with ground truth annotations from interphase Cell 1 HEK293A and Cell
2 HEK293A imaged at ~5 nm isotropic resolution. All cells were prepared by CF. Visual inspection confirmed that the model correctly predicted all the ER,
including the fenestrations characteristic of the mitotic ER sheets; fenestrations were not included in the ground truth annotations used for training, as they
are mostly absent in the ER of interphase cells (Chou et al.,, 2021).

Provided online are Table S1, Table S2, Table S3, Table S4, Table S5, Table S6, Table S7, Table S8, Table S9, and Table S10. Table S1
shows cells used in this study. Table S2 shows the size of hold-out volumes containing ground truth annotations and their use for
model training, validation, or prediction. Table S3 shows the types of data augmentation used in this study. Table S4 lists the
procedures used to generate ground truth annotations. Table S5 shows the effect of CLAHE on prediction performance. Table S6
shows comparative examples of predictive performance by models trained with data from one or two cells. Table S7 shows a
comparison of model performance using the ASEM (this study) and COSEM pipelines. Table S8 shows comparative examples of
predictive performance by models trained with data from cells prepared with the same or different fixation protocols. Table S9
shows the effect of resolution on the predictive performance. Table S10 is the summary of experiments to test the effect

of fine-tuning.
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