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Arf6 anchors Cdr2 nodes at the cell cortex to control
cell size at division

Hannah E. Opalko'®, Kristi E. Miller'®, Hyun-Soo Kim?, Cesar Augusto Vargas-Garcia*®, Abhyudai Singh*®, Michael-Christopher Keogh?®, and
James B. Moseley'®

Fission yeast cells prevent mitotic entry until a threshold cell surface area is reached. The protein kinase Cdr2 contributes to
this size control system by forming multiprotein nodes that inhibit Weel at the medial cell cortex. Cdr2 node anchoring at the
cell cortex is not fully understood. Through a genomic screen, we identified the conserved GTPase Arf6 as a component of
Cdr2 signaling. Cells lacking Arf6 failed to divide at a threshold surface area and instead shifted to volume-based divisions at
increased overall size. Arf6 stably localized to Cdr2 nodes in its GTP-bound but not GDP-bound state, and its guanine nucleotide

exchange factor (GEF), Syt22, was required for both Arf6 node localization and proper size at division. In arf6A mutants, Cdr2
nodes detached from the membrane and exhibited increased dynamics. These defects were enhanced when arf64 was
combined with other node mutants. Our work identifies a regulated anchor for Cdr2 nodes that is required for cells to sense

surface area.

Introduction

Many cell types maintain constant size during recurring cycles
of growth and division. Such size control indicates the existence
of mechanisms that delay cell cycle transitions until cells reach a
critical size threshold (Amodeo and Skotheim, 2016; Rupes, 2002).
The fission yeast Schizosaccharomyces pombe is a strong model
system to study size-dependent control of entry into mitosis, also
called the G2/M transition. These rod-shaped cells grow by linear
extension and enter mitosis and divide at a reproducible size
(Wood and Nurse, 2015). Although cell length, volume, and sur-
face area scale together during linear extension growth, recent
studies show that S. pombe cells divide at a specific surface area, as
opposed to length or volume (Pan et al., 2014; Facchetti et al.,
2019). Thus, the underlying size control network likely operates
through mechanisms connected to the cell cortex.

The G2/M transition is controlled by regulated activation of
the cyclin-dependent kinase Cdkl (Harashima et al., 2013).
Multiple mechanisms contribute to cell size-dependent Cdkl
activation in S. pombe. The protein kinase Weel phosphorylates
and inhibits Cdkl in small cells (Russell and Nurse, 1987a; Gould
and Nurse, 1989), while a regulatory network progressively in-
hibits Weel as cell size increases (Lucena et al., 2017; Allard et al.,
2018; Opalko et al., 2019). The concentrations of mitotic inducers
including Cdc13 (mitotic cyclin) and Cdc25 (protein phosphatase

that counteracts Weel) increase as cells grow (Moreno et al.,
1990; Keifenheim et al., 2017; Patterson et al., 2019). The Weel
regulatory network draws particular interest because it func-
tions at the cell cortex through the conserved protein kinases
Cdrl and Cdr2. Mutations in cdrl and cdr2 cause cells to divide at a
larger size due to uninhibited Weel (Russell and Nurse, 1987b;
Young and Fantes, 1987; Breeding et al., 1998; Kanoh and Russell,
1998). In addition to increased cell size, cdr2A mutants fail to di-
vide according to surface area and instead shift toward volume-
based size control, meaning that Cdrl/2-Weel signaling links cell
surface area with the G2/M transition (Facchetti et al., 2019).
Cdrl and Cdr2, members of the conserved synapses of am-
phids defective (SAD) family of protein kinases, play distinct
roles in Weel inhibition. Cdrl directly phosphorylates the Weel
kinase domain to inhibit its catalytic activity (Coleman et al.,
1993; Parker et al., 1993; Wu and Russell, 1993; Opalko et al.,
2019). Cdr2 does not regulate Weel kinase activity directly and
instead provides spatial control to this pathway. Cdr2 forms
oligomeric “nodes,” which are stable structures tethered to the
plasma membrane and positioned in the cell middle (Morrell
et al., 2004). Cdr2 recruits both Cdrl and Weel to these sites,
and Cdr2 kinase activity correlates with the dwell time of Weel
at individual nodes (Moseley et al., 2009; Martin and Berthelot-
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Grosjean, 2009; Allard et al., 2018). Since Cdr2 is progressively
activated as cells grow, Weel spends more time at nodes as cells
grow larger, resulting in its cell size-dependent phosphorylation
and inhibition (Deng et al., 2014; Allard et al., 2018). Importantly,
this mechanism acts at the plasma membrane, consistent with its
role connecting cell surface area with the G2/M transition. Cdr2
nodes also function after mitotic entry by serving as spatial
landmarks for cytokinetic ring assembly (Almonacid et al., 2009).

Nodes are critical to Cdrl/2-Weel signaling, so it is important
to identify mechanisms of node formation and anchoring at the
cell cortex. Cdr2 contains a KA1 domain that is required for node
formation in cells and binds to lipids, in part through an RKRKR
motif (Rincon et al., 2014; Morrell et al., 2004). The Cdr2 KA1l
domain also displays some clustering activity, while Cdr2-
interacting factors, including anillin-like Midl, contribute to
Cdr2 clustering in a KAl-independent manner (Rincon et al.,
2014). These node-forming activities are countered by the
protein kinase Poml, which directly phosphorylates Cdr2 to
inhibit interactions with the membrane and Mid1 (Rincon et al.,
2014). Poml is concentrated at cell tips to restrict Cdr2 node
assembly to the medial cell cortex (Bihler and Pringle, 1998;
Moseley et al., 2009; Martin and Berthelot-Grosjean, 2009).
Understanding how Cdr2 oligomerizes into nodes and interacts
with the plasma membrane is crucial to explaining how Weel is
regulated by cell surface area.

In this study, we identify the conserved GTPase Arf6 as a
novel component and regulator of Cdrl/2-Weel nodes. Loss of
Arfé impairs signaling to Weel and leads to Cdr2 clusters that
are detached from the plasma membrane. Genetic experiments
indicate that Arfé anchors nodes at the cortex in parallel with
other mechanisms including the Cdr2 KAl domain and Cdr2-
Mid1 interactions. The role of Arf6 in assembling these multi-
component signaling platforms at the plasma membrane has
implications for kinase clusters in other systems.

Results and discussion
Arf6 regulates the cell cycle through the Cdr2 pathway
The Cdr2 pathway inhibits Weel, and cdrlA and cdr2A mutants
are synthetically lethal in combination with the temperature-
sensitive cdc25-22 mutation (Russell and Nurse, 1987b; Young
and Fantes, 1987; Breeding et al., 1998; Kanoh and Russell,
1998). To screen for new components of Cdr2 signaling (Fig. 1
A), we individually combined a library of 3,004 viable S. pombe
deletion mutants (~75% of the nonessential fission yeast ge-
nome) with cdc25-22 using synthetic genetic array (SGA) analysis
(as in Roguev et al., 2007; Fig. 1, B and C). As controls, we com-
bined each library deletion with either a cdr2A mutant or a cdc25+
wild-type allele. We reasoned that mutations in Cdr2 signaling
should exhibit synthetic sick/synthetic lethal (SS/SL) interactions
with cdc25-22, but should be nonadditive with cdr2A, while cdc25+
controlled for linkage effects. From the resulting double mutants,
66 were SS/SL with only cdc25-22, 31 were SS/SL with only cdr24,
and 28 were SS/SL with both cdc25-22 and cdr2A (Fig. 1 D and
Table S1).

Mutants in the Cdr2 pathway exhibit altered cell length at
division, and this phenotype is synthetic with mutations in cdc25
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(Breeding et al., 1998; Kanoh and Russell, 1998). We were in-
terested to find that arf6A was SS/SL with cdc25-22 and increased
cell length at division when combined with cdc25-22 (Fig. S1 A).
Arfb is a conserved GTPase linked in animal cells to formation of
multivalent protein assemblies at the plasma membrane (Cherfils,
2014), the site of Cdr2 nodes in fission yeast. In growth assays and
analysis of cell length at division, arféA was nonadditive with
cdr2A but showed synthetic defects with the hypomorphic allele
cdc25-dD (dD stands for degron-DAmP; Fig. 1 E and Fig. S1, B-D).
GTPase signaling is activated by guanine nucleotide exchange
factors (GEFs) and inhibited by GTPase-activating proteins
(GAPs). Deletion of the Arfé GEF (syt224) phenocopied arf6A
genetic interactions with cdr2A and cdc25-dD (Fig. S1, B-D).
Previous studies identified a role for fission yeast Arf6 and its
regulatory GEF (Syt22) and GAP (Ucp3) in bipolar cell growth
(Fujita, 2008; Fujita and Misumi, 2009, 2011), but a role in cell
cycle progression has not been reported. Our data suggest a
novel function for active Arf6 in the Cdr2 cell cycle pathway.

The cell length at division phenotype for arféA was minor,
but these cells were wider than wild type (Fig. S1 E). With the
increased width, the enlarged cell size phenotype of arfeA was
nearly as severe as that of cdr2A when comparing cell surface
area (Fig. 1 F). Recent work using cell width mutants showed
that fission yeast cells divide at a specific surface area, as op-
posed to length or volume (Facchetti et al., 2019; Pan et al., 2014).
In addition, cdr2A mutants shift to dividing at a set volume that
is larger than dividing wild-type cells (Facchetti et al., 2019). By
comparing wild type and rga2A, which has reduced cell width
(Villar-Tajadura et al., 2008), we confirmed that fission yeast
cells divide at a specific surface area, not volume (Fig. 1, Fand G).
Perhaps more importantly, arféA cells and arf6A rga2A cells di-
vided at the same volume but at distinct surface areas, similar to
cdr2A and cdr2A rga2A (Fig. 1, F and G). Thus, arf6A cells (like
cdr2A) divide at a larger size and shift from surface area-based to
volume-based divisions.

The molecular output of the Cdr2 pathway is inhibitory
phosphorylation of Weel, which can be monitored by SDS-PAGE
mobility shifts (Allard et al., 2018, 2019; Opalko et al., 2019). The
slower-migrating, hyperphosphorylated form of Weel was lost
in arféA and syt224, similar to cdr2A (Fig. 1 H). We conclude that
activated Arfé6 functions in the Cdr2 pathway to control cell size
at division through inhibition of Weel.

Arf6 localizes to nodes

We tested if Arf6 functions at nodes by examining its localiza-
tion. Arf6-mNeonGreen (mNG) localized to the plasma mem-
brane as previously shown (Fujita, 2008), but was strongly
enriched at cortical nodes in the cell middle (Fig. 2 A). Arf6 and
Cdr2 colocalized at nodes (Figs. 2 B and S2 A), identifying Arf6 as
a new node component. The Arf6-mNG signal at individual
nodes was stable by time-lapse microscopy (Fig. 2 C), similar to
Cdr2 and Cdrl but distinct from Weel (Pan et al., 2014; Allard
et al., 2018). To test the timing of Arf6 node localization, we
tracked mitosis with the spindle pole body marker Sadl (Hagan
and Yanagida, 1995) and tracked cytokinesis with the myosin-II
regulatory light chain Rlel (Naqvi et al., 2000; Le Goff et al.,
2000). Arf6 localized to nodes throughout interphase but left
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Figure 1. Arf6 regulates cell size through the Cdr2-Weel pathway. (A) Schematic of the Cdr2-Weel pathway. (B) SGA workflow. (C) Example of SGA
growth screening. Strains were spotted in quadruplicate. Yellow box shows slow growth; red box shows no growth. (D) Venn diagram of SGA hits. (E) Serial
dilution assay. (F and G) Surface area (F) and volume (G) of dividing cells from the indicated strains. n > 70 cells per strain; ns, P > 0.05; ***, P < 0.001 by one-
way ANOVA followed by Tukey’s multiple comparison test. Graphs show mean + SD. (H) Western blot of whole-cell extracts for endogenous Weel. Asterisks
indicate background bands; Cdc2 is loading control. Source data are available for this figure: SourceData F1.

nodes after cells entered mitosis (Fig. 2 D), similar to Cdr2
(Morrell et al., 2004). Arf6 returned to the cell middle during
cytokinesis but did not constrict with the ring. Following cell
separation, Arfé reappeared at nodes. Arfé node localization
required Cdr2 but not other node proteins (Figs. 2 E and S2 B).
These data show that Arfé is a component of Cdr2 nodes in
addition to functioning in the Cdr2 pathway.

We next asked how GTP binding and hydrolysis regulate Arfé
localization to nodes. A GDP-locked mutant arf6(T52N)-mNG
lost node localization, but the GTP-locked allele arf6(Q75L)-mNG
remained at nodes (Fig. 2 F). Further, Arf6 localization to nodes
was lost upon deletion of its GEF Syt22 (Fig. 2 G). The Arf6 GAP
Ucp3 is essential (Fujita and Misumi, 2011), so we could not test
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its role in Arfé localization. If the Arf6 localization defect in
syt22A is due to loss of the GTP-bound state, then it should be
suppressed by arf6(Q75L). Indeed, arf6(Q75L)-mNG localized to
nodes even in syt22A cells (Fig. 2 G). These data show that GTP
binding is required for Arfé localization to nodes and suggest
that Arfé localizes to nodes in its GTP-bound state. Loss of Arf6
from Cdr2 nodes explains syt22A defects in cell size and Weel
phosphorylation.

Next, we tested if Arf6 localized to nodes with its GEF (Syt22)
or GAP (Ucp3). Syt22-mNG localized to cortical puncta as pre-
viously shown (Fig. S2 C; Fujita and Misumi, 2009). Syt22
puncta were spread throughout the cell periphery and did not
colocalize with Cdr2 (Fig. S2, C and D). Ucp3-mNG localized to
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Figure 2. Arf6 is a novel node component. (A and B) Maximum-intensity projection of Airyscan images. Insets show zoom of boxed area. (C) Maximum-
intensity projections of deconvolved z series from images taken every 5 min. Scale bar, 3 um. (D) Localization of Arf6 at different cell cycle stages. Sad1 and
Rlc1 mark mitosis and cytokinesis, respectively. (E) Localization of Arf6-mNG in the indicated mutants. Images are sum intensity projections of deconvolved z
series. (F and G) Sum intensity projections of deconvolved z series. Scale bars in A, B, and D-G are 5 um; inset in B is 1 pm.

spots at the cell tips, which likely represent endocytic actin
patches due to colocalization with actin patch component Panl
(Fig. S2, E and F). We conclude that Syt22 and Ucp3 do not lo-
calize to nodes with Arfé, but they regulate Arf6 node localiza-
tion through its nucleotide-bound state.

Arfé GTPases have a conserved myristoylated glycine and an
a helix that work together to promote membrane binding
(Gillingham and Munro, 2007; Fig. S2 G). To test if membrane
binding contributes to Arf6 node localization, we made a non-
myristoylated arfé6 mutant (G2A) and two stepwise helix dele-
tions (N3-S10A and K11-F17A), because complete helix deletion
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abrogated expression. The resulting arf6 alleles reduced node
localization and instead enriched at the cytoplasm (Fig. S2, H
and I). Therefore, reducing Arf6 membrane binding also reduces
Arfé6 node localization. Together, these results show that Arfé
localizes stably to Cdr2 nodes during interphase in a manner
that depends on nucleotide binding, membrane binding, and
Cdr2 itself.

Arf6 promotes cortical tethering of Cdr2 nodes
How does Arf6 promote Cdr2 node function? We imaged Cdr2-
mEGFP in arf6A cells and observed several node defects. First,
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arf6A cells had cytoplasmic Cdr2 clusters that were absent in
wild-type cells (Figs. 3 A and S2 J), indicating defects in cortical
anchoring. Second, Cdr2 was present at cell tips in addition to
nodes in arf6A cells (Fig. S2, K and L). Third, Cdr2 node intensity
was reduced in arf6A cells (Fig. S2 M). The brightest nodes,
which are lacking in arf6A cells, are likely diffraction-limited
clusters of smaller/unitary nodes (Akamatsu et al., 2017). Fourth,
time-lapse imaging revealed reduced stability of Cdr2 signal at
some but not all nodes in arfé6A cells (Figs. 3 B and S3 A). In
addition, FRAP experiments showed increased Cdr2 dynamics at
nodes of arféA cells consistent with loss of anchoring (Figs. 3 C
and S3 B), but slower Cdr2 dynamics at nodes in the GTP-locked
mutant arf6(Q75L) consistent with hyperstable anchoring (Fig. S3
C). These defects indicate that Arf6 anchors Cdr2 stably at nodes,
meaning that Arf6 and Cdr2 reciprocally promote each other’s
node localization.

Node defects in arféA correlate with loss of Weel phospho-
rylation and altered cell size. To explain this connection, we
examined the localization of Weel and Cdrl at cortical nodes in
arf6A mutants. Weel localized to nodes in arf6A, but Cdrl did not
(Fig. 3, D and E; and Fig. S3 D). Loss of Cdrl from Cdr2 nodes was
most obvious in line traces along the cortex of arf6A cdrl-3xGFP
cdr2-RFP cells (Fig. S3, E and F). Because the 3xGFP tag on Cdrl
reduces cell size, we also tested Cdrl localization in arf6A cells
elongated with the cdc25-dD mutation and observed similar de-
fects (Fig. 3 E). We conclude that loss of node integrity in arf6A
prevents recruitment of Cdrl, leading to loss of Weel inhibitory
phosphorylation and to cell size defects.

We next tested how Arfé connects with three other mecha-
nisms that contribute to Cdr2 node anchoring. First, Cdr2 has a
membrane-binding KAl domain required for cortical localiza-
tion. Mutation of an RKRKR motif in the KAl domain reduced
Cdr2 node localization (Rincon et al., 2014), and this defect was
enhanced by arf6A (Fig. S3 G). Second, the node protein Midl
interacts with Cdr2 to promote clustering into nodes (Rincon
et al., 2014). We combined arf6A with the midi(400-450A) mu-
tant that cannot bind Cdr2. In the resulting cells, Cdr2 was ab-
sent from the cell cortex and formed large cytoplasmic puncta
(Figs. 4 A and S2 J). Thus, Arfé and Midl are partially over-
lapping anchors for Cdr2 nodes. We note that the Cdr2 KAl
domain was still present in these cells but was not sufficient for
cortical localization. Third, we combined arféA with mild over-
expression of Poml, which phosphorylates Cdr2 to reduce its
membrane binding, catalytic activity, and clustering (Deng et al.,
2014; Bhatia et al., 2014; Rincon et al., 2014). P3nmtl-poml alone
causes mild defects in Cdr2 localization (Moseley et al., 2009),
but arf6A P3nmtl-poml largely eliminated Cdr2 from the cortex
and caused localization to cytoplasmic puncta (Figs. 4 Band S2]).
We conclude that Arf6 contributes to Cdr2 cortical anchoring
together with parallel mechanisms, most notably Midl and Pom].

By time-lapse microscopy, we observed motile cytoplasmic
Cdr2 puncta in 14 of 20 arf6A midl(400-4504) cells analyzed,
with most movement directed toward cell tips (Fig. 4 C). These
Cdr2 puncta colocalized with Sybl, the v-SNARE synaptobrevin
that marks exocytic vesicles, as puncta moved toward cell tips in
arf6A midi(400-4504) (Fig. 4 D). Cdr2 did not colocalize with
Sybl in wild-type cells (Fig. S3 H). These data suggest that Cdr2
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becomes enriched on exocytic vesicles when it cannot be an-
chored at cortical nodes by Arf6 and Midl.

Arf6 contributes to cytokinesis
Cdr2 contributes to cytokinesis by recruiting anillin-like protein
Mid1 to nodes during interphase (Almonacid et al., 2009). The
Mid1 N-terminus (Midi-Nter) is necessary and sufficient for its
cytokinesis function, and the localization and function of Mid1-
Nter requires Cdr2 (Celton-Morizur et al., 2006; Almonacid
et al., 2009). Unlike the midi(400-450A) mutant that cannot
interact with Cdr2, Midl-Nter interacts with Cdr2 and depends
on Cdr2 nodes for cytokinesis, meaning that Midl-Nter provides
a system to examine the function of Cdr2 nodes in cytokinesis.
Given the Cdr2 node anchoring defects in arféA, we tested the lo-
calization and function of Midl-Nter in arf6A. In arfé6+ cells, GFP-
Mid1-Nter localized to the cortex to support proper cell morphology
and division plane positioning (Fig. 5 A). In contrast, GFP-Midl-Nter
mislocalized in arf6A cells, which were multinucleated with grossly
aberrant septa (Fig. 5 A and Fig. S3, I and J). In addition, Cdr2-
mEGFP did not concentrate in medial nodes in arf6A midl-Nter
cells (Figs. 5 B and S3 K). These data indicate that Arf6 is re-
quired for the localization and function of Midl-Nter in cytokinesis.
We wondered if this result reflected a broad role for Arf6 in
promoting the robustness of cytokinesis. We did not observe
defects in the timing of cytokinetic ring formation, maturation,
or constriction in arféA cells (Fig. S3 L), so we tested genetic
interactions between arféA and several cytokinesis mutants. We
combined arf6A with cdc4-31, a temperature-sensitive mutant in
the myosin-II essential light chain (McCollum et al., 1995), with
rng2-D5, a temperature-sensitive mutant in IQGAP (Eng et al,,
1998; Chang et al.,, 1996), or with pomlA, which positions the
division plane asymmetrically (Bihler and Pringle, 1998). All
three double mutants exhibited synthetic defects in cell growth
and cytokinesis as judged by tilted and disorganized septa (Fig. 5,
C-E; and Fig. S3 M). We attempted to visualize cytokinesis in
arf6A pomlA cells using Rlc1-mNG and Sadl-mEGFP to mark the
actomyosin ring and spindle pole bodies, respectively (Fig. 5 F).
However, strong disorganization of Rlcl in these cells prevented
meaningful time-lapse microscopy experiments. We conclude that
Arfe, like other node proteins, contributes to robust cytokinesis.

Conclusions

Our study identifies the conserved GTPase Arf6 as a new func-
tional component of Cdr2 nodes. Human ARF6 functions in
several membrane-localized processes such as endocytosis, lipid
homeostasis, and cytokinesis (Schweitzer et al., 2011; Gillingham
and Munro, 2007) and has been linked to the proliferation, in-
vasion, and metastasis of multiple cancers (Hashimoto et al.,
2004; Li et al,, 2017). A general theme of Arf GTPases is the
assembly and stabilization of multivalent membrane-bound
platforms (Cherfils, 2014). We demonstrated a clear role for
Arf6 in organizing nodes for cell size control. We found that
Cdr2 nodes lose stability in arf6A cells, and unstable nodes fail to
recruit Cdrl, leading to reduced Weel phosphorylation and cell
size defects. These findings suggest that Arfé promotes stable
node coalescence by promoting multivalent protein-protein and
protein-lipid interactions. In the absence of this clustered node
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Figure 3. Cdr2 nodes are disrupted in arf6A. (A) Maximum-intensity projections (Max Project) of z series (top) or single middle focal planes (bottom). Red
arrows indicate cytoplasmic Cdr2 puncta. (B) Time-lapse imaging of Cdr2-mEGFP from middle focal plane. Montages show 5-min time points from boxed
regions. (C) FRAP analysis of Cdr2-mEGFP in wild-type and arféA cells. n = 10 cells each. Points are mean + SD; *, P < 0.05 by Welch’s unpaired t test.
(D) Middle focal plane images of Weel-mNG. Insets are zooms of yellow boxes. (E) Middle focal plane images. Scale bars for A, B, D, and E are 5 um; for B inset,
2 pum; and for D inset, 1 pm.

anchoring, cells lose surface area sensing and shift to volume- and/or Ucp3 as part of a mechanism to link cell cycle pro-
based divisions. Arf6 localization to nodes depends on the state of ~ gression with overall cell size.

its bound nucleotide under control of the GEF Syt22. It will be

interesting to learn how cell growth and expansion control the

balanced activities of both Syt22 and the Arfé GAP Ucp3. Because  Materials and methods

arf6éA mutants fail to divide according to cell surface area and  Strain construction and media

instead shift to volume-based division, it seems likely that Standard S. pombe media and methods were used (Moreno et al.,
plasma membrane expansion regulates Arf6 through Syt22  1991). Strains and plasmids used in this study are listed in Table S1.
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Figure 4. Cdr2 node mutants exacerbate arf6A phenotypes. (A and
B) Cdr2-mEGFP localization in the indicated strains. Single focal planes and
maximum-intensity projection (Max Project) images of z series. (C) Montage
of no-delay time lapse for single focal plane. Arrow follows a moving Cdr2
punctum. (D) Mobile Cdr2 puncta colocalize with exocytic vesicle marker
Sybl. Circles mark colocalizing puncta, and arrows mark moving colocalized
punctum. Cells were imaged every 30 s. Scale bar in D is 2 um; all other scale
bars are 5 um.

The cdc25-dD mutant reduces Cdc25 levels by addition of a deg-
radation tag (degron) in combination with truncation of the 3’
UTR (Breslow et al., 2008; Deng et al., 2014). Homologous re-
combination was used for C-terminal tagging and gene deletions
as described previously (Bahler et al., 1998). To construct GTP
binding and helix mutants of Arf6, the sequence pArf6-Arf6-
mNG-Tadhl was PCR amplified from genomic DNA of strain
JMe6125. This PCR product was ligated into pDC99 vector using
Kpnl/Sacll sites. Each mutation was introduced using Quik-
Change II site-directed mutagenesis kit (StrataGene). All con-
structs were Sanger sequenced for verification. The pDC99 vector
was then linearized using Notl and transformed into arf6A::natR
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leul-32 ura4-DI8 (JM6565). Colonies were selected for growth on
EMM-Uri medium and no growth on EMM-Leu medium. For
serial dilution assays, cells were spotted in 10-fold dilutions
on YE4S medium and grown at the indicated temperature for
3-5d.

SGA screening

We used the PEM-2 approach to combine cdc25-22 (strain
JM942), cdr2A (strain JM945), and cdc25+ (strain JM943) with a
collection of 3,004 fission yeast gene deletions (~75% of the
nonessential S. pombe genome; note that this collection did not
include syt224; Kim et al., 2010). For cdc25-22 and cdc25+, the
natR cassette was integrated 507 bp downstream of the cdc25
stop codon. These strains contained cycloheximide-sensitive
cyhS at the h locus, along with a cycloheximide-resistance al-
lele (cyhR) inserted at the rpl42 locus, for antidiploid selection
and mating type selection following mating and sporulation
(Roguev et al., 2007, 2008). Mating and haploid selection were
performed on a Singer ROTOR pinning station. The resulting
double-mutant strains were grown in 1,536 array format on
YESS solid media plates. Colony size was used as a quantitative
readout to derive scores covering each genetic interaction (e.g.,
SS/SL; Kim et al., 2009). Colony size was scored between 0 (no
growth) and 3 (wild-type growth). For each deletion mutant,
synthetic growth defects with cdc25-22 were assessed by sub-
tracting the double-mutant colony size score when combined
with ¢dc25-22 from that with cdc25+. Similar analysis was done
for cdr2A. Mutants were considered SS/SL if the synthetic
growth defect was -2 or -3. All scores are provided in Table S1.

Microscopy for cell geometry measurements

Fission yeast cells were grown at 25°C in YE4S medium to log-
arithmic phase for imaging. Cells were collected at 4,000 rpm
for 15 s, placed on a coverglass-bottom dish (P35G-1.5-20C;
MatTek), and covered with a piece of YE4S agar prewarmed to
25°C. Images were collected using a spinning disk confocal mi-
croscope: Yokogawa CSU-WI (Nikon Software) equipped with a
60x 1.4-NA CFI60 Apochromat Lambda S objective lens (Nikon);
405-, 488-, and 561-nm laser lines; and a photometrics Prime BSI
camera on an inverted microscope (Eclipse Ti2; Nikon). Multiple
fields per cell type were imaged within 1 h at room temperature,
and images were acquired with 27 z-stacks and 0.2-pm steps.

Cell segmentation

Bright-field images were processed for cell size analysis using a
partly automated pipeline. First using ImageJ, a smoothing filter
and Gaussian blur was applied to each optical section of an image
to reduce image noise. We performed global thresholding by
selecting a gray value cutoff to produce a binary image for each
z-section. An optical section outside of the focal plane with intact
boundary bands around cells was selected for further process-
ing. The flood fill tool was used (by hand) to generate a black
background so that image pixel values in the background were
set to O and cells in white were 1. Binary images were further
processed by morphological erosion and subsequent dilation
operators to remove white regions between cell clumps for
better single-cell segmentation. The paintbrush tool was used to
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Figure 5. Arf6 promotes robust cytokinesis. (A) Middle focal plane images of GFP-Nter-Mid1. Insets are zooms of black boxes. (B) Cdr2-mEGFP localization
in midl-Nter arféA cells stained with Blankophor. (C) Serial dilution growth assays. (D) Blankophor images of the indicated strains. (E) Quantification of
septation defects. Values are means + SD from three biological replicate experiments. n > 80 cells. (F) Localization of Rlc1 and Sad1 in representative arf6A
pomIA cells. Maximum-intensity projection of a z series. DIC, differential interference contrast. Inset scale bar for A is 2 pm; all other scale bars are 5 um.

further separate clumped cells by hand, and the flood fill tool
was used to delete any abnormal cells or unresolved clumps of
cells. Images were also processed to remove cells along the edge of
the image. The resulting binary image (“cell mask”) was compared
with the original bright-field image and confirmed to be an ac-
curate representation of cell size. Next, cell masks were compared
with corresponding fluorescent mtagBFP2-NLS images to identify
cells containing two nuclei, indicating active division. Cells con-
taining only a single nucleus were deleted using the flood fill tool,
thus generating a binary mask of only dividing cells.

Cell geometry measurements

For a given cell segmentation, the cell width was determined by
hand measurements in Image] using the straight-line tool. The
average cell width divided by 2 (cell radius) was determined for
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a population of cells (n > 100). We assumed that each cell in a
given strain had the same cell radius (average of population) for
calculation of cell surface area and volume (Table 1). In Matlab, the
cell length or cell symmetry axis of individual segmented cells (from
mask of dividing cells) was identified by principal component
analysis of the cloud points internal to the cell (Facchetti et al.,
2019). Cell surface area or volume of individual cells was calcu-
lated in Matlab using the equation for surface area and volume of a
cylinder with hemispherical ends, because of the rod-like shape of
fission yeast cells. ANOVA was performed to determine statistical
differences between sets of data for cell geometry analyses.

Western blot
For Western blots, 2 ODs of logarithmic phase S. pombe cells
were flash frozen in liquid nitrogen. Whole-cell extracts were
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Table 1. Calculation of cell surface area and volume
Cell radius® R
Cell length L

2mRL
TR%L - 2/3nR3

Cell surface area

Cell volume

2Average over cell population of radius of each single cell measured by hand,
with each strain considered separately.

made by lysing cells in 100 ul sample buffer (65 mM Tris, pH 6.8,
3% SDS, 10% glycerol, 10% 2-mercaptoethanol, 50 mM sodium
fluoride, 50 mM B-glycerophosphate, 1 mM sodium orthovana-
date, and complete EDTA-free protease inhibitor tablet [Pierce])
in a Mini-beadbeater-16 for 2 min at 4°C, and then incubated at
99°C for 5 min. Lysates were briefly centrifuged to pellet in-
soluble material, and the supernatant was isolated as whole-cell
extract. Samples were resolved by reducing SDS-PAGE (10%
acrylamide/bis-acrylamide for Cdc2 gels; 6% acrylamide/bis-
acrylamide for all others) run at constant 20 mAmps until the
75-kDa marker approached the bottom of the gel. Gels were
transferred to nitrocellulose using Trans-blot Turbo Transfer
System (Bio-Rad). Weel was probed using a rabbit polyclonal
antibody directed against S. pombe Weel (Allard et al., 2018).
Cdc2 was used as a loading control using a mouse monoclonal
antibody directed against S. pombe Cdc2 (SC-53217; Santa Cruz
Biotechnologies).

Wide-field microscopy

For Fig. 2, E-G and Figs. 5 D, S2 B, and S2 F, cells were imaged at
room temperature on a DeltaVision Imaging System (Applied
Precision), with an Olympus IX-71 inverted wide-field micro-
scope, a 100x UplanSApo 1.4-NA oil objective, a Photometrics
CoolSNAP HQ2 camera, and an Insight solid-state illumination
unit. For images with z-stacks, focal planes were imaged with
0.3-um step size and deconvolved using 10 iterations in Soft-
WoRx software (Applied Precision) Blankophor was used to
mark septating cells for cell length measurements and to high-
light septum irregularities (Fig. 5 D). Cell length measurements,
along with maximum and sum intensity projection images, were
created using Image].

Spinning disc confocal imaging

Two spinning disc confocal imaging systems were used, and cells
were imaged at room temperature. The first system was a Nikon
Eclipse Ti-E microscope with a Yokogawa, CSU-WI spinning disc
system, a Nikon LU-N4 laser launch, and two Photometrics
Prime BSI sCMOS cameras. The second system was a Yokogawa
CSU-WI with a 100x 1.45-NA CFI Plan Apochromat Lambda
objective on an Eclipse Ti2 Nikon base with a Photometrics
Prime BSI sCMOS camera (as described above). For Fig. 2 C, cells
were imaged every 5 min using 0.4-um z-stack step size. Images
in Fig. 2 C and Fig. S2, C-E, were deconvolved using 3D auto-
matic deconvolution in Nikon Elements software. For time-lapse
imaging in Fig. 3 B, cells were imaged on EMM4s agar pads, and
middle-focal plane images were acquired every 5 min. For Fig. 4 C,
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cells were mounted on glass slides, and single focal planes were
imaged every 200 ms using continuous acquisition. The delay
between frames was 657 ms.

Image analysis and quantification

To count cytoplasmic nodes, z-series at 0.2-ym intervals were
taken through the entire cell. Cytoplasmic clusters were counted
if present within the middle five focal planes to avoid any cor-
tical clusters. The number of clusters was compared with wild
type by one-way ANOVA with Tukey’s multiple comparison test
(Fig. S2 J, Mid1 graph) or Welch’s t test (Fig. S2 J, Poml graph).
Cytoplasmic fluorescence intensity was measured for Fig. S2 1 by
measuring the mean intensity in a set region of interest (ROI)
after background subtracting. Fluorescence intensity of each
strain was then compared with wild type by one-way ANOVA
with Tukey’s multiple comparison analysis. Timing of cytokinesis
in Fig. S3 L was monitored using Sadl-mEGFP and Rlcl-mNG as
respective markers of the spindle pole body and cytokinetic ring.
Cells were imaged at room temperature on a Mat Tek dish with
YE4S agar. 0.6-pm slices through the whole cell were imaged
every 3 min.

To quantify Cdr2 node intensity (Fig. S2 M), cells were grown
in EMM4S at 25°C and imaged under glass coverslips. 0.3-um
z-sections were taken through the whole cell, and sum projec-
tions for the top half of the cell were used for quantification. The
Image] plugin comdetv5.5 was used to identify spots. An ROI
was used, and spots were set to a pixel size of 4 with no intensity
threshold. Large particles were set to be included and seg-
mented. Integrated density per node was graphed for 25 cells. To
quantify spots on the sides and tips of the cell (Fig. S2 L), single-
focal-plane images were taken. As above, comdetv5.5 was used
to identify spots. Pixel size was set at 4, intensity was set to 10,
and 25 cells were analyzed. Welch’s unpaired t test was used to
analyze significance of both node intensity and node number for
these experiments.

For colocalization (Fig. S2 A), the comdetv5.5 was used as
above to identify spots from a maximum-intensity projection of
the top half of the cell (n = 25). The distance between spots was
set to 3 pixels, pixel size was set to 3, and intensity threshold was
3 for both channels. Large particles were set to be included and
segmented. To quantify Weel localization at nodes (Fig. S3 D),
middle-focal-plane images were taken of cells grown in EMM4S
at 25°C. Spots were counted as nodes when associated with the
membrane flanking the nucleus of interphase cells. n = 100 cells
for each strain were analyzed in biological triplicate experi-
ments. Welch’s unpaired t test was performed to compare wild-
type and arf6A cells.

For quantification of cytokinesis defects (Fig. 5 E), cells were
stained with Blankophor to highlight the division septum. Phe-
notypes were marked as normal, multiseptated, asymmetric,
and “other,” which included tilted septa, cell wall deposits, and
cells that failed to separate but initiated growth at the division
site. n > 80 cells for each strain were analyzed in biological
triplicate experiments. To quantify Mid1 localization (Fig. S3J),
cells were marked to have nodes if spots were localized to the
membrane flanking the nucleus in interphase cells; n > 50 cells
were analyzed in biological triplicate experiments. Cells were
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marked as abnormal (Fig. S3 I) if septa appeared mispositioned
or contained more than the normal number of nuclei. For Cdr2
localization (Fig. S3 K), medial Cdr2 nodes were counted if they
were found at the plasma membrane around the nucleus. n > 50
cells were analyzed in biological triplicate experiments. Un-
paired Welch’s t test was used for both analyses.

Cdr2 duration was quantified using a time course of single
middle-focal-plane images in wild-type or arf6A cells. Multi-
stackreg was used to correct for cell drift. An ROI was drawn
around the entire cell, and Pearson’s correlation coefficient
(PCC; Colocalization plugin, Fiji) was used to compare Cdr2 lo-
calization in each frame to time point 0. A decrease in PCC over
time indicates changes in the localization pattern of nodes. 10
cells were analyzed for each strain. Mean PCC and SD were
plotted, and Welch’s unpaired t test was used to compare wild
type and arféA within each individual time point. Similar data
were obtained with or without background subtraction.

Airyscan imaging and analysis

An LSM880 laser scanning confocal microscope (Zeiss) with a
100x Plan Apochromat 1.46-NA oil objective, an Airyscan su-
perresolution module, GaAsP detectors, and Zen Blue acquisition
software (Zeiss) was used to image Arf6 nodes (Fig. 2 A) and
colocalization of Cdr2 and Arf6 (Fig. 2 B). For best resolution,
0.17-pm stacks were taken through the entire cell in resolution
versus sensitivity mode. Airyscan images were then processed
using Zen Blue software.

FRAP

FRAP analysis was performed using the LSM880 laser scanning
confocal microscope described above and following previously
described methods (Miller et al., 2021). Cells were imaged on a
single focal plane in EMM4S (Figs. 3 C and S3 B) or YE4S (Fig. S3
C) at room temperature on lectin-coated p-slide 18-well cham-
bers (81811; Ibidi). Cells were bleached by drawing an ROI within
the node-containing region on one side of the cell as seen in a
single middle focal plane. Two prebleach images were taken, and
ROIs were bleached to <50% of the original fluorescence inten-
sity. Unbleached cells were used to correct for photobleaching,
and background was subtracted from each ROI. The intensity
data were fitted using the exponential equation y = ml + m2 x
exp(-m3 x X), where m3 is the off-rate, using Prism 8 (GraphPad
Software). The half-time of recovery was calculated using the
equation t;/, = (In2)/m3. For experiments in Fig. S3 C, both arf6+
and arf6(Q75L) were integrated into the leul+ locus of arf6A cells
and expressed by the endogenous promoter.

Statistical analysis

One-way ANOVA followed by Tukey’s multiple comparison test
was used to assess differences for Fig. 1, F and G, and Figs. S1C,
S21, and S2J (left panel). This test was selected to compare each
mean within an experiment to each other. Unpaired t tests with
Welch’s correction were performed for Fig. S1 E; Fig. S2, L and
M; Fig. S3 D; and Fig. S3, I-K and for each time point in Fig. 3 C
and Fig. S3, A and C. This test was selected to compare two
datasets that are not assumed to have equal variance. Data dis-
tribution was assumed to be normal, but this was not formally
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tested. All statistics and graphs were made using Prism8
(GraphPad Software).

Online supplemental material

Fig. S1 relates to Fig. 1 and shows data for Arfé controlling cell
size through the Cdr2 pathway. Fig. S2 shows data for interde-
pendent node localization of Arfé and Cdr2. Fig. S3 contains
characterization and quantification of node defects in arféA cells.
Table S1 contains yeast strains used in our study and scores from
SGA screens.
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Figure S1. Arf6 regulates cell size at division through Cdr2-Weel. (A) Cell length at division measurements, reporting mean + SD for n > 50 cells each.
(B) Serial dilution growth assays. (C and D) Cell length at division for the indicated strains. n > 50 cells each. Graphs show mean + SD. Statistical analysis was
evaluated by one-way ANOVA with Tukey’s multiple comparison. (E) Cell width measurement for the indicated strains. ****, P < 0.0001 by Welch’s unpaired
t test (n > 100 cells for each strain).
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Figure S2. Localization, regulation, and function of Arf6 at cortical nodes. (A) Arf6 is a component of most Cdr2 nodes. Each point indicates the per-
centage of Cdr2 nodes with Arf6 present from a single cell. Bars represent mean + SD; n = 25 cells. (B) Localization of Arf6 in the indicated mutants. Images are
sum intensity projections of deconvolved z series. (C) Maximum-intensity projection of a deconvolved z series. (D) Maximum-intensity projection of a de-
convolved z series. Insets show zooms of boxed areas. (E) Maximum-intensity projection of a deconvolved z series. (F) Middle single focal plane images. Insets
show zooms of boxed areas. (G) Schematic showing relative conservation of the Arf6 Nter from fission yeast, budding yeast, and humans. (H) Single middle
focal plane and maximum-intensity projections (Max Project) from z series. (I) Cytoplasmic fluorescence intensity of the indicated strains. n > 50 cells each.
Graphs show mean + SD. Statistical analysis was evaluated by one-way ANOVA with Tukey’s multiple comparison. (J) Cdr2 cytoplasmic puncta counted from
five middle focal planes. n > 50 cells each. Statistical analysis was evaluated by one-way ANOVA with Tukey’s multiple comparison (left) or Welch'’s unpaired
t test (right). (K) Single focal plane images. Red arrows point to Cdr2 at cell tips. (L) Quantification of Cdr2 nodes/spots at cell sides and cell tips. Note the
increase in Cdr2 spots at cell tips in arf6A cells. Statistical analysis was evaluated by Welch’s unpaired t test, n = 25 cells. (M) Quantification of Cdr2-mEGFP
signal per node from the indicated strains. Each point represents a single node. Statistical analysis was evaluated by Welch’s unpaired t test. n = 25 cells. Bars
represent mean + SD; ****, P < 0.0001; *, P < 0.05. Scale bars of insets are 2 um; all other scale bars are 5 pm.
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Figure S3. Node defects in arf6A cells. (A) Quantification of Cdr2-mEGFP dynamics from time-lapse imaging. For single cells, the Pearson correlation
coefficient was measured for each time point compared with the initial image (time = 0); n = 10 cells for each strain. A faster rate of decay for the correlation
coefficient indicates loss of stability for Cdr2-mEGFP localization. **, P < 0.01; *, P < 0.05 by Welch’s unpaired t test performed for each time point.
(B) Examples of FRAP experiment where red boxed region was photobleached and analyzed for recovery. Scale bar is 2 um. (C) FRAP analysis of Cdr2-mEGFP
at nodes in the indicated strains. n = 10 cells each. Points are mean + SD; *, P < 0.05 by Welch’s unpaired t test performed for each time point. (D) Percentage
of cells with Weel localization at cortical nodes for wild-type versus arf6A strains. Bars indicate mean + SD; n = 100 cells each. NS, not significant by Welch'’s
unpaired t test. (E) Middle focal plane images. Insets are zooms of yellow boxes. (F) Fluorescence intensity of line scans along cortex of cells as in E (dashed
yellow lines). Asterisks mark node peaks for Cdr2 (red) and Cdr1 (blue). Note overlapping peaks in wild-type but not in arf6A cells (two cells each). (G) Middle
focal plane images. (H) Middle focal plane images; insets are zooms of yellow boxes. (I-K) Quantification of cell morphology (1), Mid1-Nter localization (), and
Cdr2 localization (K) for the indicated strains. Bars represent mean + SD from biological triplicate experiments with n > 50 cells each. **** P < 0.0001 and ***,
P < 0.001 by Welch’s unpaired t test. (L) Timing of cytokinesis measured with Sadl and Rlcl. n = 20 cells each, bars represent mean + SD. (M) Serial dilution
growth assay at 37°C (from Fig. 5 C). Main panel scale bars are 5 pm; inset scale bars are 2 um.
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Provided online is one table. Table S1 lists yeast strains and SGA scores from this study.
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