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Depolarization induces nociceptor sensitization by
Cayl.2-mediated PKA-II activation

Jorg Isensee!®, Marianne van Cann'@®, Patrick Despang?®, Dioneia Araldi*®, Katharina Moeller'®, Jonas Petersen?, Achim Schmidtko*®,

Jan Matthes?®, Jon D. Levine3, and Tim Hucho'®

Depolarization drives neuronal plasticity. However, whether depolarization drives sensitization of peripheral nociceptive
neurons remains elusive. By high-content screening (HCS) microscopy, we revealed that depolarization of cultured sensory
neurons rapidly activates protein kinase A type Il (PKA-II) in nociceptors by calcium influx through Cay1.2 channels. This
effect was modulated by calpains but insensitive to inhibitors of cAMP formation, including opioids. In turn, PKA-II
phosphorylated Ser1928 in the distal C terminus of Cay1.2, thereby increasing channel gating, whereas dephosphorylation of
Ser1928 involved the phosphatase calcineurin. Patch-clamp and behavioral experiments confirmed that depolarization leads
to calcium- and PKA-dependent sensitization of calcium currents ex vivo and local peripheral hyperalgesia in the skin in vivo.
Our data suggest a local activity-driven feed-forward mechanism that selectively translates strong depolarization into further
activity and thereby facilitates hypersensitivity of nociceptor terminals by a mechanism inaccessible to opioids.

Introduction

Decades of research detailed a central role of cAMP-dependent
protein kinase A (PKA) for activity-driven pre- and postsynaptic
plasticity in neurons. Key events surrounding the activation of
PKA are depolarization-triggered calcium influx, Ca?*/calmod-
ulin (CaM)-dependent activation of adenylyl cyclases (ACs), and
production of intracellular cAMP (Kandel, 2001; Korte and
Schmitz, 2016). In concert with other kinases, PKA then in-
creases transmitter release as well as the gating and trafficking
of voltage-gated calcium channels (VGCCs), leading to increased
pre- and postsynaptic activity (Greengard, 2001; Kandel, 2001;
Korte and Schmitz, 2016). Similar plastic changes also occur at
synapses of primary afferent sensory neurons and their re-
spective secondary neurons in the dorsal horn of the spinal cord.
This phenomenon may lead to central sensitization (Latremoliere
and Woolf, 2009), a state in which the central nervous system
response to peripheral nociceptive sensory input is amplified
(Henrich et al., 2015; Sandkiihler, 2009).

In contrast to processes at spinal synapses, peripheral ter-
minals of nociceptive sensory neurons lack neuronal synaptic
input. Instead, depolarizing inputs are generated by sensors for
noxious thermal, mechanical, or chemical stimuli (Basbaum
et al.,, 2009; Hucho and Levine, 2007; Kuner and Flor, 2016),
accompanied by substantial calcium influx into nociceptors

(Chen et al., 2019). These nociceptive sensors in peripheral
nerve terminals of nociceptors are highly plastic (Basbaum et al.,
2009; Hucho and Levine, 2007). In particular, stimulation of
various metabotropic receptors activates PKA, resulting in no-
ciceptor sensitization (Aley and Levine, 1999; Bavencoffe et al.,
2016; Liao et al., 1999; Song et al., 2006; Villarreal et al., 2009).
However, whether electrical activity of nociceptors can drive
PKA activation and thereby PKA-dependent peripheral hyper-
sensitivity remains unexplored.

Recently, we identified a conformation-sensitive antibody
that selectively binds to domains of regulatory RII subunits that
become accessible after type II PKA (PKA-II) activation (Isensee
et al., 2014a; Isensee et al., 2018). This antibody allows quanti-
fying endogenous PKA-II activity in nociceptors. Previously, we
used this method in combination with high-content screening
(HCS) microscopy-based quantification to study G protein-
coupled receptor (GPCR)-mediated pro- and anti-nociceptive
signaling in nociceptors (Isensee et al., 2014a; Isensee and
Hucho, 2019; Isensee et al., 2018; Isensee et al., 2017a; Isensee
etal., 2017b; Isensee et al., 2014b). Using this approach, we found
that Cayl.2 mediates depolarization-induced PKA-II activity in
nociceptors and identified a feed-forward mechanism of cAMP-
independent regulation of Cayl.2 by PKA-IL Further molecular
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biological, genetic, electrophysiological, and behavioral experi-
ments support that depolarization drives PKA-mediated me-
chanical hypersensitivity by Cayl.2. This experimental series
may be of considerable interest, as a functional role of Cayl.2 in
nociceptors remains elusive and neuronal activity has not been
described so far as a mechanism to induce mechanical hyper-
algesia in primary afferent nociceptors (North et al., 2018). Of
note, this feed-forward phenomenon appears to be unresponsive
to classical analgesics such as opioids.

Results
Depolarization induces transient PKA-II signaling in
nociceptors
We took advantage of an antibody that binds to the phosphor-
ylated inhibitory sites of PKA-II regulatory subunits RIla and
RIIB (collectively referred to as pRIL; Zhang et al., 2015; Zhang
et al., 2012) only in dissociated, active PKA-II kinases. This al-
lows monitoring of the activity of endogenous PKA-II in primary
sensory neurons expressing the neuronal marker ubiquitin
C-terminal hydrolase L1 (UCHLI, formerly PGP9.5; Isensee et al.,
2018) using an automated HCS microscopy approach (Fig. 1 A;
Isensee et al., 2014a; Isensee and Hucho, 2019; Isensee et al., 2018;
Isensee et al., 2017a; Isensee et al., 2017b; Isensee et al., 2014b).
Rat dorsal root ganglion (DRG) neurons were depolarized by
KCI (Ataman et al., 2016; Greer and Greenberg, 2008; Kim et al.,
2010). KCl depolarization resulted in a transient increase in pRII
intensity, indicating induction of PKA-II activity (Fig. 1 B). KCl
dose-response curves were steep, with half-maximal effective
concentrations (ECsos) of 10 mM in neurons of rats or mice
(Figs. 1 C and S1 A), suggesting that PKA activation requires
substantial changes of the membrane potential. PKA-II activa-
tion was not restricted to depolarization by KCl and also ob-
served after depolarization with the selective voltage-gated
sodium channel (VGSC; Na,) toxin veratridine (Fig. 1 D). PKA-II
activity occurred predominantly in smaller neurons expressing
nociceptor markers such as the PKA regulatory subunit RIIf, the
VGSC Nayl.8, or the calcitonin gene-related peptide (CGRP), but
not in neurofilament 200 (NF200)-expressing mechano- and
proprioceptors (Fig. 1, E-I; and Fig. S1, B-D; Isensee et al., 2014a).
This suggests that neuronal depolarization activates PKA-II
predominantly in nociceptive DRG neurons.

Depolarization-induced PKA-II activity mediated by calcium
influx through L-type VGCCs

Depolarization-induced activation of PKA may involve several
classes of voltage- and ligand-gated channels. DRG neurons
express the VGCC isoforms Cayl.2 (L-type), Cay2.1 (P/Q-type),
Cay2.2 (N-type), and Cay3.2 (T-type; Dolphin, 1991; Fossat et al.,
2010; Gadotti et al., 2015; Zamponi, 2016; Zamponi et al., 2015),
which has been confirmed by RNA sequencing (RNA-seq) ex-
periments of our laboratory on mouse and rat DRG cultures
(Fig. 2 A; Isensee et al., 2014b) and public single-cell RNA-seq
data of mouse DRG neurons (Fig. 2 B; Zeisel et al., 2018). Fur-
thermore, VGSCs, ligand-gated transient receptor potential
(TRP) channels, or NMDA-type glutamate receptors can be in-
volved in depolarization (Bourinet et al., 2014).

Isensee et al.

Depolarization induces nociceptor sensitization

TR
(: k(J
IV

We explored the mechanism underlying depolarization-
induced PKA-II activation in sensory neurons. Treatment with
lidocaine, a potent broad-spectrum inhibitor of VGSCs, did not
affect KCl-induced activation of PKA-II (Fig. S2 A). Similarly, the
selective NMDA receptor antagonist D-AP5, the Ca,3.1-3 blocker
TTA-P2, and a combination of the Ca,2.1-2 blocker w-agatoxin
IVA, w-conotoxin MVIIC, and w-conotoxin GVIA did not inhibit
the pRII response to KCl depolarization (Fig. 2 C). The pRII re-
sponse remained also unchanged in mice lacking two of the
main TRP channels expressed in sensory neurons, TRPV1 and
TRPAI (Fig. S2 B).

By contrast, blocking Cayl VGCCs with the two structurally
unrelated blockers verapamil and diltiazem dose-dependently
inhibited the pRII response to KCl with half-maximal inhibi-
tory concentrations (ICsos) of 16 uM and 37 puM, respectively
(Fig. 2, D-G, red versus green line). (S)-(-)-Bay K 8644, a positive
modulator of Cayl VGCCs, substantially increased and prolonged
the pRII response to a low dose of 10 mM KCl (Fig. 2 H). This
effect of Bay K 8644 was dose dependent, with an ECs, value of
80 nM (Fig. 2 I), supporting involvement of Cayl.

Activation of PKA-II requires calcium influx into Cay1
nanodomains

To corroborate dependence on calcium channels, we tested
whether calcium is the PKA-II-activating factor, if this requires
Cayl channels, and if other calcium routes may effectively ac-
tivate PKA-II as well. Chelation of extracellular calcium with
EGTA completely abolished the pRII response (Fig. 2J). Using the
cell-permeable chelator BAPTA-AM, we explored the relevance
of intracellular calcium. In presence of BAPTA-AM, depolari-
zation still activated PKA-II at early time points, suggesting that
PKA-II activation depends on local calcium at the calcium
channel (Fig. 2 K). Therefore, calcium entry at a distant site by
pore-forming ionomycin should not activate PKA-II. Indeed,
stimulation with ionomycin led to substantial calcium influx, as
shown by CAS5 calcium imaging (Fig. S2 C), but had a minimal
effect on activation of PKA-II (Fig. S2 D). These findings sup-
port that induction of PKA-II by depolarization requires calci-
um changes in nanodomains near Cayl channels (Tadross et al.,
2013).

Knockout of Cay1.2 in NaV1.8* nociceptors reduces PKA-II
activity

There are four L-type VGCCs, Cayl.1-1.4. Our transcriptome data
indicate substantially higher expression levels of Cayl.2 com-
pared with other L-type channel isoforms in DRGs (Fig. 2 A).
Consistent with predominant depolarization-induced PKA-II
activation in nociceptive neurons (Fig. S1), published single-cell
RNA-seq data find Cay1.2 mostly in nociceptors but not in me-
chano- and proprioceptors (NF1-3) or tactile C-low-threshold
mechanoreceptors (NPL; Fig. 2 B; Zeisel et al., 2018). Cayl.2 is
also coexpressed with Nayl.8 (ScnlOa) in nociceptive neurons
(Fig. 3 A). Accordingly, we bred Nay1.8-Cre mice (Agarwal et al.,
2004) with floxed Cayl.2 mice (Seisenberger et al., 2000) to
knock out Cay1.2 in Nay1.8* nociceptors (Fig. 3 B). At 8 wk of age,
Nay1.8%*/*/Cacnalcf’?! mice (cKO) showed no obvious abnor-
malities. Expression of the neuronal marker UCHLI and the
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Figure 1. Depolarization activates PKA-II in nociceptive neurons. (A) HCS microscopy images of rat DRG neurons stimulated with solvent (Ctrl) or KCL (40
mM) for 1 min. Cultures were immunolabeled with UCHL1 to identify the neurons and pRII to quantify PKA-II signaling activity. Red frames mark enlarged image
sections; green or red encircled neurons in the left panel indicate the mask to selected or rejected objects, respectively (see Materials and methods). Scale bars,
100 pm. (B) Time course of pRIl intensity in DRG neurons stimulated with KCL (40 mM). (C) Dose-response curve of pRIl intensity in DRG neurons exposed to
KCL (0-80 mM, ECsq = 10 mM) for 3 min. (D) Time course of pRIl intensity in DRG neurons treated with veratridine (VT; 100 M) to open VGSCs in comparison
to the KCl (40 mM) response. (E) Size and RIIB intensity distributions of control and KCl-stimulated DRG neurons used to determine the gating thresholds for
the following subgroup analysis. PDE, phosphodiesterase. (F) Cell density plots showing single-cell data of pRIl intensities versus the neuronal areas of KCl (40
mM)-stimulated sensory neurons. Dashed lines indicate gating thresholds used to calculate the percentage of cells in the respective quadrant. Combined data
of n = 4 experiments with a total of >3,000 neurons per condition. (G) Quantification of responding smaller (<1,400 pm?) and larger (>1,400 pm2) neurons in
n = 4 replicate experiments with a total of >3,000 neurons per condition. (H) Cell density plots showing single-cell data of pRIl versus RIIB intensities in the
same neurons shown in F. (I) Quantification of responding RIIB~ and RIIB* neurons. HCS data in B-D are means + SEM; n = 3-4 independent experiments;
>2,000 neurons/condition; two-way ANOVA with Bonferroni’s test; **, P < 0.01; ***, P < 0.001 indicate significance levels between baseline and stimulated
conditions at the respective time point.

nociceptor marker RIIB was unchanged (Fig. 3, C and D), as was
the total number of viable neurons after overnight culture (Fig. 3
E). Quantifying Cayl.2-specific immunofluorescence intensity
averaged over all nociceptive and nonnociceptive neurons, we
observed a significant reduction in Cayl.2 intensity (Fig. 3 F).
Compensatory up-regulation of other Cays such as Cayl.3 has
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been reported (Xu et al., 2003). Indeed, the signal reduction was
less pronounced in neurons from cKO mice when we used a pan-
Cayl antibody, which also detects Cay1.3 (Fig. S3 A).

To test for a role of Cayl.2 in PKA-II activation, we measured
the effect of conditional Cayl.2-deficiency on PKA-II activity
(pRII) in nociceptive (RIIB*) and nonnociceptive (RIIB~) neurons.
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Figure 2. Calcium influx through Cay1.2 induces PKA-Il activity during depolarization. (A) Expression pattern of VGCC a subunits in overnight cultures of
rat and mouse DRG determined by RNA-seq (Isensee et al,, 2014b). TPM, transcripts per kilobase million. (B) Expression pattern of VGCC a subunits in mouse
DRG neuron subgroups determined by single-cell RNA-seq (Zeisel et al., 2018). (C) Time course of pRll intensity in KCl-depolarized rat sensory neurons after
pretreatment (10 min) with the NMDA receptor antagonist D-AP5 (10 uM), the Cav3.1-3.3 blocker TTA-P2 (1 uM), and a combination of the Cav2.1/2.2 blocker
w-agatoxin IVA (100 nM), w-conotoxin MVIIC (200 nM), and w-conotoxin GVIA (1 uM). (D) Inhibitory effect of verapamil (20 or 200 pM, 10-min pretreatment)
on the pRllincrease induced by KCl depolarization. (E) Dose-response curve showing the effect of verapamil (0-200 pM; ICso = 16 pM) on pRIl signals induced
by KCl depolarization (3 min). (F) Inhibitory effect of diltiazem (100 pM, 10 min) on the KCl-induced pRII increase. (G) Dose-response curve showing the
inhibition of KCl-induced pRll signals by diltiazem (0-200 uM; ICsq = 37 uM). (H) Reinforcing effect of the Cay1 agonist (S)-(-)-Bay K 8644 (2 uM, 10 min) on pRIl
signals induced by a low dose of KCl (10 mM). (I) Dose-response curve showing the reinforcing effect of Bay K 8644 (0-5 uM; ECso = 80 nM) on pRIl signals
induced by KCl (10 mM, 3 min). (J) Chelation of extracellular calcium with EGTA (2.5 mM, 30-min prestimulation) abolished the pRIl response to KCl-
depolarization. (K) Effect of the cell-permeable calcium chelator BAPTA-AM (100 uM, 60 min) on pRIl signals induced by KCl depolarization (compound
effect: F 56 = 10.9, P < 0.003). Values in C-K represent means + SEM; n = 3-4 experiments; >2,000 neurons/condition; two-way ANOVA with Bonferroni’s test;
8 P < 0.05; %, P < 0.01; %, P < 0.001 indicate significance levels between KCl-induced pRII signals in the absence or presence of an agonist/antagonist.

Indeed, only in nociceptive neurons did we observed a signifi-
cant reduction of the baseline (Fig. 3 G) and KCl-induced pRII
(Fig. 3 H). In line with a role of Cayl1.2 for PKA-II activation, also
pretreating the neurons with increasing doses of (S)-(-)-Bay K
8644 before stimulation with a low dose of KCl (10 mM) had a
reduced effect in neurons of cKO mice (Fig. 3I). At doses up to 200
nM, the induction of PKA-II activity was lost in cKO mice (Fig. 3 J).

Adenoviral knockdown of Cay1.2 reduces PKA-II activity

While supporting a role of Cayl.2 for PKA-II activity, the changes
in the conditional knockout animals were of limited size. This
may be due to developmental compensation by up-regulation of
Cayl.3 (Xu et al., 2003) and/or only partial Cre recombination
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(Harno et al., 2013). Therefore, in a separate approach, we
transduced cultured DRG neurons of adult mice with capsid-
modified adeno-associated viruses (AAVs; AAV-PHP.S; Chan
et al., 2017) to express a validated Cayl.2-specific knockdown
shRNA (Michels et al., 2018) along with a GFP reporter. Indeed,
1 wk (8 days in vitro [div]) and 2 wk (15 div) after transduction,
>60% of DRG neurons expressed GFP (Fig. 4, A-C). Cayl.2-spe-
cific (Fig. 4, D and E) and pan-Cay! (Fig. S3, B and C) immuno-
fluorescence intensities were both significantly reduced in GFP*,
but not GFP-, neurons, indicating down-regulation of Cayl.2.
Corroborating the observations in c¢KO mice, Cayl.2 down-
regulation led to reduced basal and depolarization-induced
PKA-II activity at 1 wk (Fig. 4 F) that was more pronounced
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Figure 3. Deletion of Cay1.2 in NaV1.8* nociceptors reduces PKA-Il activity. (A) Expression pattern of Nay1.8 (Scnl0a), Cay1.2 (Cacnalc), and RIIB
(Prkar2b) in subgroups of DRG neuron determined by single-cell RNA-seq (Zeisel et al,, 2018). (B) Conditional mouse model to delete Cay1.2 in Nayl.8-ex-
pressing DRG neurons. (C and D) Distribution of UCHL1 and RIIB expression levels in DRG neurons of cKO mice and respective controls lacking Cre recombinase
(Ctrl). (E) Total numbers of viable DRG neurons after overnight culture determined by HCS microscopy (n = 3 females and 2 males per genotype). (F) Single-cell
data and mean intensities obtained using a Cay1.2-specific antibody (clone N263/31) indicating down-regulation of Cay1.2 (n = 10 cultures from three mice per
genotype, >6,000 neurons per genotype, Student’s t test). The primary antibody was omitted in respective controls (w/o AB). (G) Basal genotype difference of
pRIl intensity in all solvent stimulated RIIB* control neurons (n = 3 females and 2 males per genotype, >15,000 neurons/condition, Student’s t test). (H) Dose-
dependent induction of pRIl intensity by KCl (0-80 mM) in cKO and Ctrl mice (n = 3 females and 2 males per genotype; genotype effect: F4, = 5.6, extra-sum-
of-squares F test). (I) Dose-dependent induction of pRIl intensity by 10 mM KCl after 10 min preincubation with (S)-(-)-Bay K 8644 (0-5 pM) in cKO and Ctrl
mice. (n = 3 females and 2 males per genotype; genotype effect: F, ¢, = 13.9, extra-sum-of-squares F test). (J) Single-cell data of selected condition shown in I.

Values in G-I are means + SEM; *, P < 0.05; ***, P < 0.001.

2 wk after transduction (Fig. 4, G and H). In conclusion, the
pharmacological, genetic, and molecular biological data support
that Cay1.2 mediates depolarization-induced activation of PKA-IL

Depolarization-induced activation of PKA-Il is cAMP
independent

Our data indicate that local calcium influx through Cayl.2 acti-
vates PKA-II. Next, we explored the activating mechanism.
Calcium can activate the Ca**/CaM-stimulated AC isoforms ACl,
AC3, and ACS8, resulting in cAMP formation and PKA activation
(Alexander et al., 2013). This signaling pathway essentially
contributes to neuroplastic changes in various pain processing brain
areas after nerve injury (Sharif-Naeini and Basbaum, 2011; Wang
et al,, 2011; Wei et al., 2002; Wei et al., 2006). Accordingly, selective
AC1 inhibitors such as NBOOI and ST034307 showed analgesic ef-
fects in pain models in vivo (Brust et al., 2017; Wang et al., 2011).

Isensee et al.

Depolarization induces nociceptor sensitization

The calcium-dependent ACs AC1, AC3, and AC8 are expressed
in DRG, according to our transcriptome data (Fig. S4 A). How-
ever, HCS microscopy analyses revealed that preincubation with
high doses of the inhibitors NBOO1 or ST034307 did not inhibit
the increase of pRII after depolarization (Fig. S4, B and D). These
inhibitors did not inhibit the response to 5-HT, which is medi-
ated by Gs-coupled 5-HT, receptors rather than calcium in
sensory neurons (Fig. S4, C and E; Isensee et al., 2017a). AC5, an
AC inhibited by calcium signaling (Alexander et al., 2013), has
been reported to be essential for pain relief by opioids and rel-
evant for nociception in acute and chronic pain models (Kim
et al., 2007; Kim et al, 2006). Inhibition of AC5/6 with
SQ22536 or NKY80 (Brand et al., 2013), however, also failed to
block the pRII response to KCl (Fig. S4, F and H). Of note,
SQ22536 inhibited the Gas-mediated PKA-II activation by 5-HT
(Fig. S4 G).
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Figure 4. Adenoviral knockdown of Cay1.2 reduces PKA-II activity. (A) Representative HCS microscopy images of mouse DRG neurons transduced with
AAV-PHP.S-U6-shRNA:Scramble-CAG-GFP (Scr) or AAV-PHP.S-U6-shRNA:Cacnalc-CAG-GFP (Cac) to knock down Cayl1.2. Neurons were transduced after
overnight culture (1 div) and fixed 1 wk (8 div) or 2 wk (15 div) later. Cultures were immunolabeled for the neuronal marker UCHL1 and pRIl to quantify PKA-II
signaling activity. The expression of GFP indicated efficient transduction. Nuclei were stained with Hoechst 34580. Scale bar, 100 um. (B and C) GFP ex-
pression levels in individual neurons (left) and mean numbers of GFP* neurons after 8 div (n = 6, >6,000 neurons per condition, Student’s t test) as well as after
15 div (n = 6, total of >1,000 neurons per condition, Student’s t test). (D and E) Single-cell data of all analyzed neurons (left) and mean intensities in GFP~ and
GFP* neurons (right) obtained using a Cay1.2-specific antibody (clone N263/31) at 8 div (D; n = 4, 4,000 neurons) and 15 div (E, n = 3, 1200 neurons)
indicating down-regulation of Cay1.2 in GFP+ neurons. The primary antibody was omitted in respective controls (w/o AB). (F and G) Effect of AAV-mediated
Cay1.2 knockdown on pRIl intensity levels induced by 3-min stimulation with KCl at 8 div (F; n = 6, >6,000 neurons, two-way ANOVA with Bonferroni'’s test)
and 15 div (G, n = 6, >1,000 neurons per condition). (H) Cell density plots showing single-cell data of pRIl intensities versus GFP expression after 15 div as shown
in G. Values in B-G are means + SEM; *, P < 0.05; ***, P < 0.001.

Inability of AC inhibitors to block depolarization-induced
PKA-II activity may be due to ineffective entry into neu-
rons. To circumvent this, we applied opioids to activate en-
dogenous inhibitory G;-coupled opioid receptors. Opioids
efficiently decrease PKA-II activity induced by 5-HT or
forskolin in sensory neurons (Isensee et al., 2017a). Never-
theless, coapplication of fentanyl, oxycodone, or [Leu®]-
enkephalin did not decrease depolarization-induced PKA-II
activity (Fig. 5 A).

Isensee et al.
Depolarization induces nociceptor sensitization

As neither pharmacological- nor receptor-mediated inhibi-
tion of AC reduced depolarization-induced PKA-II activity, we
tested whether cAMP is involved at all. We applied the un-
selective phosphodiesterase inhibitor 3-isobutyl-1-methyl-
xanthine (IBMX) to block cAMP degradation. If cAMP is
involved, then the presence of IBMX should result in accu-
mulation of cAMP and thereby amplification of the response.
As reported previously (Isensee et al., 2017b), pretreatment
with IBMX increased and prolonged the GPCR-mediated
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Figure 5. KCl-induced PKA-Il activity is cAMP independent but modulated by calpains. (A) The pRllincrease induced by KCl (40 mM) was not inhibited by
fentanyl (Fent; 10 pM), oxycodone (Oxy; 10 uM), or [Leu®]-enkephalin (Enk; 10 pM) in rat sensory neurons. (B and C) Effect of the phosphodiesterase inhibitor
IBMX (100 pM, 30-min pretreatment) on the pRIl increase induced by 5-HT (250 nM) or KCL (40 mM). Fig. S4, ] and K show not-normalized data indicating basal
elevation of pRIl intensity by IBMX. (D and E) The cAMP antagonist Rp-cAMPS-pAB (10 pM) has no effect on the induction of pRIl intensity by KCl (40 mM).
(F) Effect of the calpain inhibitor MDL28170 (100 pM, 30 min) on the pRIl increase by KCl (40 mM). (G) Time course of pERK1/2 intensity in DRG neurons
treated with veratridine (VT; 100 uM) to open VGSCs in comparison to the KCl (40 mM) response. (H) Inhibitory effect of verapamil (VP; 200 kM, 10 min
pretreatment) on ERK1/2 phosphorylation induced by depolarization (40 mM KCl). (1) The pERK1/2 response to a low dose of KCl (10 mM) is reinforced by (S)-
(-)-Bay K 8644 (2 uM, 10 min). (J) Chelation of extracellular calcium with EGTA (2.5 mM, 30 min) prevents the pERK1/2 increase. (K) The CaMKil inhibitor AIP
(1 uM, 30 min) does not inhibit the induction of pERK1/2 by depolarization. (L) Pretreatment with the PKA inhibitor H89 (25 uM, 30 min) reduces the pERK1/
2 response to KCL. Values represent means + SEM; n = 3-4 experiments; >2,000 neurons/condition; two-way ANOVA with Bonferroni’s test; §, P < 0.05; %, P <
0.01; %8, P < 0.001 indicate significance levels between KCl-induced pRII signals in the absence or presence of an inhibitor.

activation of PKA-II by 5-HT (Figs. 5 B and S4 J). However,
the response to depolarization by KCl was unchanged (Figs. 5
C and S4 K), suggesting that cAMP is not involved in
depolarization-mediated PKA activation. To further investi-
gate this hypothesis, we applied a novel highly cell-permeable
Rp-isomer of adenosine-3’, 5'-cyclic monophosphorothioate
(Rp-cAMPS-pAB; Chepurny et al., 2013; Isensee et al., 2018;
Schwede et al., 2015), which stabilizes the inactive state of
the PKA holoenzyme and acts as a competitive cAMP an-
tagonist (Bacskai et al., 1993; Badireddy et al., 2011; Gjertsen
et al., 1995; Prinz et al., 2006; Rothermel et al., 1983). No-
tably, Rp-cAMPS-pAB did not inhibit depolarization-induced
PKA-II activity (Fig. 5, D and E), supporting a cAMP-independent
mechanism.

Isensee et al.
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Induction of PKA-II activity is not sensitive to inhibitors of
CaMKIl or ERK1/2

As we found that depolarization-induced PKA-II activity is
apparently cAMP independent, we tested whether kinases
activated by calcium influx through Cayl.2 channels might
represent upstream signaling events. Although the spatiotem-
poral order of signaling events is not yet fully elucidated,
binding of Ca?* to CaM tethered to the C-terminal tail of Cayl1.2
channels has been implicated in the activation of Ca?*/CaM-
dependent protein kinase II (CaMKII) and ERK1/2 in neurons
(Dolmetsch et al., 2001; Wheeler et al., 2008; Wheeler et al.,
2012; Zithlke et al., 1999; Zithlke et al., 2000). Inhibition of
CaMKI], which is directly activated by Ca%*/CaM, decreases the
early phase of depolarization-induced CREB phosphorylation,
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whereas the inhibition of mitogen-activated protein kinase
kinases (MEK) affects the late phase compatible with the sug-
gestion that activation of a local pool of CaMKII is an initial
upstream signaling event (Ma et al., 2014; Malik et al., 2014;
Wheeler et al., 2008; Wu et al., 2001).

Blocking of CaMKII with KN93, but also with its inactive
control derivative, KN92, reduced the pRII response to KCI de-
polarization in DRG neurons, indicating an off-target effect (Fig.
S5, A and B). Indeed, both compounds are known to inhibit
L-type VGCCs (Gao et al., 2006). Also, the more specific CaMKII
inhibitor autocamtide-2-related inhibitory peptide (AIP) was
ineffective, making an involvement of CaMKII in the pRII re-
sponse unlikely (Fig. S5 C). In addition, the MEK inhibitor U0126
did not change the kinetic or dose dependency of PKA-II activity
after KCl depolarization (Fig. S5, D and E), although U0126 ef-
fectively blocked depolarization-induced ERK1/2 phosphoryla-
tion (Fig. S5 F). Thus, our pharmacological data suggest that
neither CaMKII nor MEK is involved in depolarization-induced
activation of PKA-IL

The calpain inhibitor MDL 28170 reduces PKA-II activity after
depolarization

Reports of cAMP-independent activation of PKA are rare
(Brennan et al., 2006; Burgoyne et al., 2015; Dulin et al., 2001;
Shell and Lawrence, 2012; Zhong et al., 1997). Interestingly, the
regulatory RII subunits of PKA-II are substrates of calcium-
activated cysteine proteases of the calpain family, which po-
tentially modulate PKA activity (Shell and Lawrence, 2012). In
neurons, calpains have been associated with memory formation
such as vesicle exocytosis and morphological changes of syn-
apses (Baudry et al., 2011). Calpains cleave the core and distal C
terminus of the pore-forming a subunit of activated Ca,1.2, a
process called mid-channel proteolysis, which is believed to
reduce channel activity (De Jongh et al., 1996; Hell et al., 1996;
Hulme et al., 2006b; Michailidis et al., 2014). In addition, a re-
cent transcriptome analysis of pain-associated brain regions
identified a role of calpains for neuropathic pain in mice
(Descalzi et al., 2017). We therefore preincubated sensory neu-
rons with the calpain inhibitor MDL 28170 followed by depo-
larization. MDL 28170 significantly reduced the induction of
PKA-II activity (Fig. 5 F), suggesting a potential role of pro-
teolytic activity in modulating the activation of PKA-II after
depolarization.

Depolarization induces PKA-dependent phosphorylation of
ERK1/2

To verify that the increased pRII signal indeed reflects an in-
crease in PKA activity, we tested for the phosphorylation of
known PKA-dependent downstream signaling events. In other
neurons, calcium influx during depolarization induces activity
of the MAPK cascade (Dolmetsch et al., 2001; Impey et al., 1998;
Rosen et al., 1994; Rosen and Greenberg, 1996). We previously
showed that PKA-II activity induced by GPCR agonists results in
PKA-dependent ERK1/2 activity in sensory neurons (Isensee
et al., 2017b). To corroborate depolarization-induced activation
of PKA-II, we depolarized the cells and analyzed for PKA-
dependent phosphorylation of ERK1/2. Depolarization by KCl

Isensee et al.
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or veratridine led to approximately twofold higher levels of
PERK1/2 (Fig. 6 G). The induction of pERK1/2 was inhibited by
verapamil and increased in the presence of Bay K8644 (Fig. 6, H
and I). Chelation of extracellular calcium with EGTA abolished
the response, supporting that calcium entry through Cayl.2
channels is required (Fig. 5 J). In line with our previous reports,
the increase in pERK1/2 was absent after 1-min stimulation,
indicating a slower onset compared with PKA-II (Fig. 1 B versus
Fig. 5 F). To delineate the mechanism, we found that H89 and
UO0126, but not AIP, effectively inhibited the pERK1/2 response,
indicating that phosphorylation of ERK1/2 is downstream of PKA
and MEK in sensory neurons (Fig. 6, K and L; and Fig. S5 F).

Cayl.2 activity is regulated by PKA-dependent

phosphorylation of Ser1928

Previous studies revealed that PKA phosphorylates the intra-
cellular C terminus of Cayl.2 at Ser1928 and thereby increases
channel gating (De Jongh et al., 1996; Gao et al., 1997; Hall et al.,
2007; Hofmann et al., 2014; Hulme et al., 2006a; Kamp and Hell,
2000; Mitterdorfer et al.,, 1996; Weiss et al., 2013) and that
Ser1928 is dephosphorylated by Ca2*-activated calcineurin,
leading to channel inactivation (Dittmer et al., 2014; Xu et al.,
2016).

We therefore tested for a potential feed-forward mechanism
of depolarization-induced and Cayl.2-mediated activation of
PKA, which in turn may phosphorylate Cay1.2 itself and thereby
further increase depolarization-induced currents. After depo-
larization, we applied a phospho-specific antibody detecting
Ser1928 phosphorylation of Cayl.2 (pCayl.2; Fig. 6, A and B).
Supporting the specificity of the pCayl.2 antibody, we found a
significant correlation of pCayl.2 and Cayl.2 signals (Fig. 6 C).
Depolarization increased the pCayl.2 immunoreactivity in sen-
sory neurons (Fig. 6 D). This increase was sensitive to verapamil
(Fig. 6 D), whereas the overall Cay1.2 signal was not significantly
affected (Fig. 6 E). The C terminus of Cayl.2 potentially acts as
transcriptional regulator (Gomez-Ospina et al., 2006). Accord-
ingly, we detected pCayl.2 immunoreactivity also in the nuclei
of sensory neurons (Fig. 6 B). To study nuclear translocation, we
modified the image analysis to quantify signal intensities in
nuclear versus cytoplasmic regions of the neurons (Fig. 6 B).
Following depolarization, pCayl.2 signals increased in the
cytoplasm and with a slight delay also in the nucleus (Fig. 6, F
and G). The increase of pCaV1.2 signals was sensitive to H89
and prolonged by the calcineurin inhibitor FK506, corrobo-
rating that PKA drives phosphorylation of Cay1.2 (Fig. 6, H and
I). Accordingly, blocking the catalytic activity of PKA by the
ATP-site inhibitor H89 effectively inhibited the pRII response
to KCl at all analyzed time points and doses (Fig. 6, ] and K).
This indicates a feed-forward mechanism of Cayl.2-dependent
calcium influx, PKA activation, and PKA-mediated increase in
Cayl.2 activity.

Repetitive depolarization induces calcium and PKA-dependent
sensitization of calcium currents in DRG neurons

To corroborate that depolarization of sensory neurons results
in calcium and PKA-dependent sensitization of calcium channels
in sensory neurons, we performed whole-cell patch-clamp
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Figure 6. PKA-dependent phosphorylation of Ser1928 regulates Cay1.2 gating. (A) Representative images of rat DRG neurons stimulated with solvent
(Ctrl) or KCL (40 mM) for 1 min. Cultures were labeled for UCHLI to identify the neurons, phospho-Ser1928 of Cay1.2 (pCay1.2), and Cayl channels (Cayl, clone
L57/46). Green or red encircled objects indicate automatically selected or rejected objects, respectively. Scale bar, 100 um. (B) Enlarged section demonstrating
the modified image analysis to quantify in nuclear (orange) and cytoplasmic (blue) regions of neurons (green). (C) Cell density plots of single-cell data of
pCay1.2/Cay1-labeled neurons stimulated with solvent control (Ctrl) or KCl (40 mM) for 1 min. The Spearman’s rank correlation coefficient (p) and its P value
are shown. (D) Depolarization (40 mM KCl) induces Cay1.2 phosphorylation, which is inhibited by verapamil (VP; 200 uM, 10 min). (E) The Cay1 intensity is
unchanged after depolarization. (F and G) KCl-induced increase of pCay1.2 intensity in cytoplasmic versus nuclear regions. (H) Effect of the PKA inhibitor H89
on the pCay1.2 increase induced by depolarization. (I) Effect of the calcineurin inhibitor FK506 on the of pCay1.2 increase induced by depolarization. (J) In-
hibitory effect of the PKA inhibitor H89 (25 uM, 30 min) on the pRIl increase induced by depolarization. (K) Dose-response of KCl (0-80 mM) in the absence or
presence of H89 (25 uM, 30 min). Data in D-J represent means + SEM; n = 3-4 experiments; >2,000 neurons/condition; two-way ANOVA with Bonferroni’s
test; **, P < 0.03; ***, P < 0.001 indicate significance levels between baseline and stimulated conditions; &, P < 0.05; %, P < 0.01; %%, P < 0.001 indicate
significance levels between the absence and presence of an agonist/antagonist.

electrophysiology recordings before and after applying a train
of depolarization events (10 1-s-long test potentials to 0 mV). In
the presence of calcium, we found a left shift of the I-V curve
and significant reduction of the half-point for voltage depen-
dence of activation (VO0.5,.) 60 s after the depolarizing events,
indicating sensitization of calcium channels (Fig. 7 A). This
effect was calcium dependent since the left shift was absent
when calcium was replaced with barium (Fig. 7 B). Pre-
incubation of the neurons with H89 prevented the left shift
in the presence of calcium (Fig. 7 C). Our data therefore

Isensee et al.
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corroborate that repetitive depolarization leads to calcium-
and PKA-dependent sensitization of calcium currents.

Depolarization induces mechanical hyperalgesia in vivo

To understand the role of depolarization-induced signal trans-
duction at a more physiological level, we performed intradermal
injections of KCl into the hindpaw of rats and analyzed the effect
on the mechanical nociceptive threshold (percentage reduction
from baseline, Fig. 8 A; nociceptive threshold, Fig. 8 C). In
line with our cellular data showing depolarization-induced
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Figure 7. Repetitive depolarization induces calcium and PKA-dependent sensitization of calcium currents in small diameter rat DRG neurons.
(A) Normalized I-V curves, V0.5, and representative traces for calcium currents (ICa) before and 60 s after applying a train of 10 1-s-long depolarizations to
0 mV. (B) Normalized I-V curves, V0.5, and representative traces for barium currents (IBa) before and 60 s after applying a train of 10 1-s-long depola-
rizations to 0 mV. (C) Normalized I-V curves, V0.5, and representative traces for calcium currents (ICa) before and 60 s after applying a train of 10 1-s-long
depolarizations to 0 mV. DRG neurons were preincubated with H89 (25 uM, 1 h). Numbers of analyzed neurons are given in parentheses. Data represent means
+ SEM of at least three animals. Currents underlying the I-V curves were elicited from -40 to +50 mV in 10-mV increments with 5 mM Ca?* or Ba?* as charge

carrier. The holding potential was -90 mV. Paired t test; *, P < 0.05.

activation of sensitizing PKA signaling, we observed induction
of a persistent (5 min to 6 h) robust mechanical hyperalgesia
apparent as a reduction in the nociceptive threshold of 30%
(Fig. 8, A and B). Consistent with our in vitro findings and
supporting the hypothesis that local calcium influx initiates
local sensitization signaling in the primary neuron, sensitiza-
tion was not apparent in the contralateral paw (Fig. 8 A and
Fig. 8 C). Further corroborating the local nature of the sensi-
tization and the dependence on Cayl.2, depolarization-induced
sensitization of the nociceptive threshold was blocked by local
intradermal injection of verapamil (percentage reduction from
baseline, Fig. 8 B; nociceptive threshold, Fig. 8 D).

Discussion
PKA is the longest known kinase, and electrical activity-driven
modulation of synaptic connectivity of neurons is one of the core

Isensee et al.
Depolarization induces nociceptor sensitization

topics of neuroscience. Nevertheless, it remained unaddressed
whether depolarization leads to PKA-dependent peripheral
sensitization in nociceptive neurons lacking synaptic input.
Quantification of thousands of sensory neurons by a single-
cell-based HCS microscopy and the development of the first
detection method of the activity state of endogenous PKA-II in
cells allowed us to address this important topic (Isensee et al.,
2014a; Isensee et al., 2018; Isensee et al., 2017a; Isensee et al.,
2017b). Using KCl depolarization as well-accepted model to study
depolarization-induced signal transduction (Ataman et al., 2016;
Greer and Greenberg, 2008; Kim et al., 2010), our findings re-
veal that Cayl.2 channels mediate depolarization-induced acti-
vation of PKA-II in nociceptors (Fig. 9). In particular, we
investigated how depolarization-induced calcium influx through
Cayl.2 channels (1) activates intracellular kinase signaling,
leading to (2) PKA-mediated regulation of electrophysiolog-
ical calcium channel activity and (3) depolarization-induced
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Figure 8. Depolarization induces hyperalgesia in vivo. (A and C) Evaluation of mechanical nociceptive thresholds (Randall-Selitto test) 5, 15, 45, 60, 120,
180, and 1,440 min after intradermal injection of KCL (5 ul of 80 mM KCl solution in dH,0) in the dorsum of the hindpaw of male rats. A biphasic mechanical
hyperalgesia was observed in the ipsilateral paw (A, percentage reduction from baseline: F1,10=186.0, **, P < 0.01, ***, P < 0.001, ****, P < 0.000; C,
nociceptive threshold: F(;,10)=47.75, **, P < 0.01, ***, P < 0.001, ****, P < 0.0001, when the ipsilateral and contralateral paws were compared in all time points;
two-way repeated-measures ANOVA followed by Sidak’s test). (B and D) Vehicle (5 ul, dH,0 + 1% ethanol) or verapamil (10 ug diluted in 5 ul dH,0 + 1%
ethanol) was injected intradermally in the dorsum of the hindpaw. 30 min later, KCL (5 pl of 80 mM KCl solution in dH,0) was injected at the same site and
mechanical nociceptive threshold evaluated 5, 15, 45, 60, 120, 180, 360, and 1,440 min later. In the group that received verapamil, hyperalgesia was inhibited
(B, percentage reduction in nociceptive baseline: Faao) = 222.0, ****, P < 0.0001; D, nociceptive threshold: F(110) = 22.38, *, P = 0.02, **, P < 0.01, ***, P <
0.001, ****, P < 0.0001, when the vehicle- and verapamil-treated groups are compared at all time points after the injection of KCl; two-way repeated-measures

ANOVA followed by Sidak’s test). Data represent means + SEM, n = 6 rats per group.

mechanical hyperalgesia in awake behaving animals. We will
discuss these aspects in the following sections.

Cayl.2-dependent induction of intracellular signaling

At synapses, activity-driven changes depend on calcium entry
through NMDA/AMPA receptors (Kandel, 2001; Korte and Schmitz,
2016). In primary nociceptive neurons, depolarization-induced
calcium currents rely mostly on N-, P/Q-, and T-type channels,
while a role for L-type channels such as Cayl.2 is still considered
enigmatic (Bourinet et al., 2014). In the central nervous system,
Cayl channels were found to be important in a number of pain
conditions. Cayl.2, localized in spinal dorsal horn neurons,
contributes to neuropathy-associated mechanical hypersensitivity
(Favereaux et al., 2011; Fossat et al., 2010; Radwani et al., 2016),
whereas Cayl1.3 controls the onset of wind-up, a form of short-term
central sensitization induced by repetitive noxious stimulation
(Favereaux et al., 2011; Fossat et al., 2010; Radwani et al., 2016). In
addition, broad-spectrum dihydropyridine inhibitors of Cayl.2
liter- and Cay3.2 T-type calcium channels have, although reduced,
analgesic effects in Cay3.2 knockout mice (Gadotti et al., 2015).
Expanding this, we now describe a role for Cay1.2 in depolarization-
induced sensitization in the peripheral nociceptive neuron.
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Our findings indicate that activation of PKA-II by depolari-
zation requires calcium in Cayl.2 nanodomains (Tadross et al.,
2013), but not bulk cytoplasmic calcium e.g., entering through
ionomycin pores. As BAPTA-AM only reduces activation at later
time points, close proximity to the channel appears to be im-
portant for PKA activation. Indeed, PKA as well as the Ca2*/CaM-
activated phosphatase calcineurin (PP2B) are localized to Cayl.2
by the anchor protein AKAPS in neurons and myocytes (Dittmer
et al., 2014; Hall et al., 2007; Hulme et al., 2003; Murphy et al.,
2014; Oliveria et al., 2007; Oliveria et al., 2012; Zhang et al.,
2013). In sensory neurons, super-resolution imaging recently
revealed that Cayl.2 channels form multi-channel super-
complexes with AKAPS linking to GPCRs, ACs, and other sig-
naling proteins and thereby enabling local signal transduction in
nanodomains (Zhang et al., 2016). Interestingly, though, and in
contrast to the GPCR-mediated response to 5-HT, inhibition of
Ca?*/CaM-stimulated ACs such as AC1, AC3, and AC8 resulted in
local cAMP formation but failed to modulate the induction of
PKA-II activity by depolarization (Fig. S4). Also in sharp contrast
to 5-HT responses, stimulation of inhibitory GPCRs with opioids
or cAMP antagonists were ineffective to block depolarization-
induced PKA-II activity indicating distinct mechanisms for

Journal of Cell Biology
https://doi.org/10.1083/jcb.202002083

620z Jequiade( z0 uo 3senb Aq 4pd'£8020020Z a0l/0€.L181/£8020020Z8/01/0ZZ/3Pd-2o1e/qal/Bio ssaidnu//:dpy woly papeojumoq

110f19


https://doi.org/10.1083/jcb.202002083

KCI

v

Verapamil, Diltiazem

TR
(: k(J
IV

Figure 9. Model of Cay1.2 regulation in DRG
neurons. Depolarization of DRG neurons results
in Cayl.2 and calcium-dependent activation of

K,+Ca, Caz*—EGTA PKA-Il. The induction of PKA-Il activity is not
I sensitive to opioids or inhibitors of calcium-
AC5: SQ22536 . stimulated ACs, phosphodiesterases (PDEs),
AC1: NBOO1, ST034307 , ~ o © - and cAMP antagonists such as Rp-cAMPS, in-
ACEE Sl e Opioids dicating a cAMP-independent activation mech-
il Ca,1.2 1 anism (red shadow). In addition, inhibition of
CaMKIl or ERK1/2 is not affecting the induction
~ - I of PKA-II activity after depolarization, excluding
S1928 : MOR that PKA-Il is downstream of these kinases.
CaM & Depolarization sensitizes Cay1.2 by PKA-dependent
2@ Ca?* 30 phosphorylation of Ser1928. Dephosphorylation of
\ Se° caMPIESRPES Cayl2 by the phosphatase calcineurin (CaN) in-
@ IB-l\r/IX activates the channel. CsA, cyclosporine A; MOR, p
CTA BAPTA : opioid receptor.
s i
FIRe8% P \ MDL 28170
CaM b
TG H89 — @
F— Rp-cAMPS
-------- > ;

depolarization- and GPCR-mediated PKA-II activation (Fig. 5).
This is in line with many neuropathic pain conditions, which are
frequently unresponsive to opioids (Reinecke et al, 2015;
Voscopoulos and Lema, 2010).

We tested the hypothesis that calcium-activated calpains di-
gest PKA-RII subunits leading to PKA-II activation (Shell and
Lawrence, 2012). Of note, calpain 11 was the only gene up-
regulated in common in three pain-relevant brain regions af-
ter spared-nerve ligation (Descalzi et al., 2017). In the spinal
cord, inhibition of calpain has been shown to reduce sciatic
nerve ligation induced neuropathic pain (Zhou et al., 2012), ly-
sophosphatidic acid-induced neuropathic pain (Xie et al., 2010)
and inflammation-induced thermal hyperalgesia (Kunz et al.,
2004). Also in our experiments, the calpain inhibitor MDL
28170 inhibited PKA-II activation after KCl depolarization
(Fig. 5 F). This observation potentially links the in vivo effect of
MDL 28170 on neuropathic pain to a cellular mechanism, which
may be relevant in many neuronal cell types along the pain
pathway. MDL 28170, however, did not entirely inhibit PKA-II
activation, even at high doses, supporting a modulatory role.
The C-terminal domain of Cayl.2 is proteolytically processed
in vivo (De Jongh et al., 1996; Hell et al., 1996), resulting in a
cleaved distal C terminus, which inhibits channel activity un-
der basal conditions (Fuller et al., 2010; Hulme et al., 2006b;
Wei et al., 1994). Of note, in heterologous expression systems,
reconstitution of the PKA-dependent increase in Cayl.2 current
required the presence of both truncated o,1.2 and the separate
distal C terminus (Fuller et al., 2010). Therefore, inhibition of
proteolysis by MDL 28170 may reduce PKA-dependent channel
facilitation, which could also explain why we observed reduced
PKA-II activity in the presence of MDL 28170. In addition,
calpains cleave the pore-forming oy1.2 subunit of activated
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Ca,l.2, causing attenuation and biophysical alterations of
VGCC currents (Michailidis et al., 2014). This so-called
mid-channel proteolysis represents a negative-feedback
mechanism reducing calcium influx after longer depolari-
zations. This may be ruled out, as MDL 28170 should then
increase CaV1.2-dependent PKA-II activation, in contrast to
the observed decrease.

Our data are driven by pharmacological intervention. The
advantage of this is the possibility to corroborate specificity by
dose-response experiments as well as the use of structurally
unrelated compounds. Further, the fast application route di-
minishes secondary regulatory effects such as transcriptional/
translational changes. Genetic targeting addresses single compo-
nents and thus is considered to be highly selective. Nevertheless,
results are often masked by compensatory counter-regulation of
other transcripts, which may reduce the effect size. To corroborate
our pharmacological approach, we produced cKO mice lacking
Cayl.2 in Nayl.8* nociceptors (Fig. 3). Indeed, the role of Cayl.2
in regulation of PKA-II was confirmed. However, the effect of
the conditional knockout on the KCl dose-response was limited
(Fig. 3 H). Counterbalancing expression of Cay2.1 and 2 as well as
Cay3.2 may not underlie this effect (Fig. 2, A and B), as inhibitors
of these channel were ineffective (Fig. 2 C). In contrast to Cayl.2,
these VGCCs (especially Cay3.2) are also expressed in NF200-
expressing DRG neurons, which showed very little activation of
PKA-II upon depolarization (Fig. S1B). Thus, compensation by up-
regulation of Cayl.3 (Xu et al., 2003) or ineffective Cre recombi-
nation (Harno et al., 2013) may have reduced the effect in cKO
mice. This is in line with virus-transduced adult DRG neurons
using a Cacnalc-specific ShRNA to knock down Cayl.2 (Fig. 4). In
agreement with ever-larger reductions of Cayl.2 over time, we
observed a progressive reduction in the basal and induced PKA-II

Journal of Cell Biology
https://doi.org/10.1083/jcb.202002083

620z Jequiade( z0 uo 3senb Aq 4pd'£8020020Z a0l/0€.L181/£8020020Z8/01/0ZZ/3Pd-2o1e/qal/Bio ssaidnu//:dpy woly papeojumoq

12 of 19


https://doi.org/10.1083/jcb.202002083

activity supporting an important, but not necessarily exclusive,
role of Cayl.2 for depolarization-induced activation of PKA-II.

PKA-mediated regulation of calcium channel activity
Intriguingly, blocking the kinase activity of the catalytic subunit
of PKA with H89 reduced the pRII response to depolarization
(Fig. 6, ] and K). This is in contrast to effects of cAMP ago-
nists, which are insensitive to ATP-site inhibitors, because the
pRII readout indicates PKA-II dissociation upstream of PKA-II
catalytic activity (Isensee et al., 2018). The effect of H89 on
depolarization-induced PKA-II activity therefore suggests that
PKA-II itself increases Cayl.2 activity. Indeed, PKA-dependent
Ser1928 phosphorylation was shown to enhance neuronal L-type
currents (De Jongh et al., 1996; Gao et al., 1997; Hall et al., 2007;
Hofmann et al.,, 2014; Hulme et al., 2006a; Kamp and Hell, 2000;
Mitterdorfer et al., 1996; Patriarchi et al., 2016; Weiss et al., 2013)
but also primes the channel for Ca*-dependent inactivation
involving calcineurin (Dittmer et al., 2014). In line with this,
depolarization of sensory neurons led to transient Serl928
phosphorylation similar to the PKA-II response and sensitive to
Cayl.2 and PKA inhibitors (Fig. 5, D and H). Consistent with a
model in which PKA-dependent phosphorylation of Ser1928
enhances Cayl.2 gating, inhibition of PKA with H89 partially
inhibited ERK1/2 (Fig. 5 L). Further supporting this model, in-
hibition of calcineurin increased Ser1928 phosphorylation of
Cayl.2 (Fig. 6 I). Following depolarization, pCayl.2 signals in-
creased in the cytoplasm and slightly delayed also in the nucleus
(Fig. 6, F and G). This is in line with a sequential order of
phosphorylation-dependent proteolysis and transport. These
findings, however, are in contrast to reports using cortical
neurons, in which depolarization led to the export of the Cayl.2 C
terminus out of the nucleus, whereas chelating extracellular
calcium resulted in nuclear accumulation (Gomez-Ospina et al.,
2006). What mechanism underlies this difference and to what
extend this is a cell type-specific event will require further
studies.

PKA-dependent sensitization toward nociceptive input

PKA is one of the best-established intracellular mediators of pain
(Ferreira et al., 1990; Ferreira and Nakamura, 1979; Taiwo et al.,
1989). Finding VGCCs to be up- as well as downstream of PKA-II
in nociceptors adds a new component to the regulatory network
controlled by pro-nociceptive PKA. Ion channels such as Nayl.8
and TRPVI are well-established targets of PKA downstream of
GPCR signaling (Bhave et al, 2002; England et al., 1996;
Fitzgerald et al., 1999; Jeske et al., 2008; Rathee et al., 2002;
Wang et al., 2007; Zhang et al., 2008). We performed whole-cell
patch-clamp electrophysiological recordings before and after
applying a train of depolarizations and confirmed that electrical
activity results in calcium- and PKA-dependent sensitization of
calcium channels in sensory neurons (Fig. 7). This suggests a
feed-forward mechanism in which electrical activity sensitizes
the nociceptor toward subsequent noxious events. To verify that
this concept holds true also in peripheral nociceptive terminals,
we measured mechanical pain behavior after KCI injection into
the paw. Depolarization of nerve terminals led to transient but
rather long-lasting hyperalgesia (Fig. 8 A). Supporting the
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cellular data, KCl-induced hyperalgesia was sensitive to the
same L-type VGCC inhibitor (Fig. 8 B).

In conclusion, our study demonstrates that strong depolari-
zation drives sensitization signaling and hyperalgesia. This
supports a novel mechanism regulating the sensitivity of pri-
mary afferent neurons specifically after substantial depolariza-
tion events. The identified feed-forward mechanism of electrical
activity-driven sensitization, which in turn facilitates further
electrical activation, opens the possibility of a self-maintaining
hyperalgesic state. This is of especial interest, as the identified
mechanism is opioid unresponsive, similar to many neuropathic
pain states. It will be of great interest to test how this novel
mechanism behaves in the plethora of described stimulation
paradigms affecting naive as well as diseased sensory neurons.

Materials and methods

Antibodies

The following antibodies were used in this study: chicken pol-
yclonal anti-UCHL1 (1:2,000; Novus; #NBI110-58872), rabbit
monoclonal anti-RIla (phospho-Ser96; 1:1,000, clone 151; Abcam;
#ab32390), mouse monoclonal anti-RIIB (1:2,000; BD Trans-
duction Laboratories; #610625), mouse monoclonal anti-NF200
(1:1,000, clone N52; Sigma; #N0142), mouse monoclonal IgG2a
anti-CGRP (1:500, clone 4901; Biorbyt/Biozol; #orb319478),
mouse monoclonal anti-NaV1.8 (1:500; NeuroMab; clone N134/
12, #75-166), rabbit polyclonal anti-Cayl.2 (phosphor-Ser1928;
1:1,000; Covalab; #pab0692), mouse monoclonal anti-Cay1 (1:100,
clone L57/46; NeuroMab; catalog no. 75-053), mouse mono-
clonal anti-Cay1.2 (1:100, clone N263/31; NeuroMab; catalog
no. 73-257), highly cross-adsorbed Alexa Fluor 647-, 555-, and
488-conjugated secondary antibodies (Invitrogen).

Reagents

Diltiazem-HCI (100 mM in distilled H,0 [dH,0]), D-AP5 (50 mM
in dH,0), lidocaine (100 mM in DMSO), (S)-(-)-Bay K 8644
(50 mM in DMSO), TTA-P2 (10 mM in DMSO), verapamil-HCl
(100 mM in dH,0), w-conotoxin GVIA (1 mM in dH,O0),
w-conotoxin MVIIC (300 uM in dH,0), and w-agatoxin IV A
(200 uM in dH,0) were from Alomone Laboratories and dis-
solved as indicated in parentheses. AIP (500 uM in dH,0), H-89
dihydrochloride (10 mM in DMSO), and U0126 (50 mM in
DMSO) were from Calbiochem. IBMX (100 mM in DMSO), 5-HT
(10 mM in dH,0), fentanyl (10 mM in dH,0), NBOO1 (75 mM in
dH,0), NKY80 (100 mM in DMSO), and oxycodone hydrochlo-
ride (10 mM in dH,0) were from Sigma-Aldrich. FK 506 (50 mM
in DMSO), forskolin (10 mM in DMSO), ionomycin calcium salt
(10 mM in DMSO), KN-92 (10 mM in DMSO), KN-93 (10 mM
in DMSO), [Leu®]-enkephalin (1 mM in 0.1% BSA in dH,0),
$Q22536 (50 mM in DMSO0), and ST 034307 (50 mM in DMSO)
were from Tocris. Rp-cAMPS-pAB and 4-ABnOH (10 mM in
DMSO) were synthesized and provided by F. Schwede (BioLog,
Bremen, Germany).

Animals
For cellular experiments, male Sprague Dawley rats (200-225 g,
aged 8-10 wk) were obtained from Harlan. Rats were kept in a
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temperature- and humidity-controlled animal care facility at the
University Hospital of Cologne on a 12-h light/dark cycle and
provided with food and water ad libitum. Male TRPA1 (Kwan
et al, 2006), TRPV1 (Caterina et al., 2000), and TRPAI/
V1 double-knockout mice (aged 8-12 wk) were provided by John
N. Wood (Wolfson Institute for Biomedical Research, University
College London, London, UK) and kept on a 12-h light/dark cycle
and provided with food and water ad libitum. Conditional Cay1.2
knockout mice were produced by crossing heterozygous Nay1.8-
Cre knock-in mice (Agarwal et al., 2004) provided by Rohini
Kuner (Pharmacology Institute, Medical Faculty Heidelberg,
Germany) with homozygous floxed Cayl.2 mice (Seisenberger
et al., 2000; Cacnalct™3Hfn, JAX No. 024714). Offspring were
kept on a 12-h light/dark cycle and provided with food and water
ad libitum. For cellular experiments, animals were sacrificed
between 9 and 12 a.m. by CO, intoxication. DRGs (cervical,
lumbar, and thoracic) were removed within 30 min per animal.
Nociceptive testing was performed on 240-340 g adult male
Sprague Dawley rats (Charles River Laboratories). Animals were
housed three per cage under a 12-h light/dark cycle in a tem-
perature- and humidity-controlled animal care facility at the
University of California, San Francisco. Food and water were
available ad libitum. Nociceptive testing was performed be-
tween 9:00 a.m. and 5:00 p.m. Experimental protocols were
approved by the Institutional Animal Care and Use Committee at
the University of California, San Francisco and adhered to the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals. Effort was made to minimize the number of
animals used and their suffering.

AAVs (AAV-PHP.S)

A dual-promoter shRNA rAAV cis vector was used to generate
AAV-PHP.S (Chan et al., 2017) expressing Cacnalc-specific or
scrambled control shRNA driven by an U6 promoter as well as
EGFP driven by a CAG promoter (U6-shRNA-CAG-eGFP). The
subcloned shRNA sequences were as follows Cacnalc, 5'-TGG
AAAGCTCTATACCTGTT-TTCAAGAGAAACAGGTATAGAGCT
TTCCTTTTTT-3'; scrambled, 5-TGGCGCGTATAGTCGCGCGTA
TGTCTTCAAGAGAGACATACGCGCGACTATACGCGCC-TTTTTT-
3'. These published sequences were validated in hippocampal
HT22 cells (Michels et al., 2018). Subcloning of shRNAs and
production of viruses was performed by SignaGen Laboratories.

DRG neuron cultures

DRGs were de-sheathed, pooled, and incubated in Neurobasal
A/B27 medium (Invitrogen) containing collagenase P (Roche; 0.2
U/ml, 1 h, 37°C, 5% CO,). DRGs were dissociated by trituration
with fire-polished Pasteur pipettes. Axon stumps and disrupted
cells were removed by BSA gradient centrifugation (15% BSA,
120 g, 8 min). Viable cells were resuspended in Neurobasal A/B27
medium, plated in 0.1 mg/ml poly-L-ornithine/5 ug/ml laminin-
precoated 96-well imaging plates (Greiner), and incubated over-
night (37°C, 5% CO,). Neuron density was 1,500 neurons/cm?.

Stimulation of DRG neurons
DRG neurons were stimulated 24 h after isolation in 96-well
imaging plates. Compounds were dissolved in 12.5 pl PBS in
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96-well V-bottom plates, mixed with 50 pl medium from the
culture wells, and added back to the same wells. Stimulations
were performed with automated eight-channel pipettes (Ep-
pendorf) at low dispense speed on heated blocks, and stimulated
cells were placed back in the incubator. Kinetic experiments
were performed in the reverse order starting with the longest
time point. The cells were fixed by adding 100 ul 8% PFA for
10 min at RT, resulting in a final concentration of 4%. When
performing experiment with cells from knockout mice, the ex-
perimenter was blinded to the genotype.

Immunofluorescence staining

Fixed cells were treated with goat serum blocking (2% goat se-
rum, 1% BSA, 0.1% Triton X-100, and 0.05% Tween 20, 1 h, RT)
and incubated with respective primary antibodies diluted in 1%
BSA in PBS at 4°C overnight. After three washes with PBS (30
min, RT), cells were incubated with secondary Alexa dye-
coupled antibodies (1:1,000, 1 h, RT). After three final washes
(30 min, RT), wells of 96-well plates were filled with PBS, sealed,
and stored at 4°C until scanning.

Calcium imaging

DRG neurons were seeded in poly-L-ornithine/laminin-precoated
384-well glass-bottom plates (Greiner; #781892) in 100 pl sup-
plemented NB medium and cultured overnight. Then, 70 ul of the
medium was removed, 30 ul FLIPR Calcium 5 dye (Molecular
Devices; #R8185; dissolved in medium) was added, and the cells
were incubated for 1 h in the incubator. Baseline CA5 signal in-
tensities were acquired for 30-60 s with one frame/s, using a
Cellomics ArrayScan XTI with LED light source. Images of 1,104 x
1,104 pixels were acquired with a 5x objective (Zeiss). Stimulus
was applied fivefold concentrated in 15 pl volume. Images were
acquired for 3-5 min with one frame/s. Neurons were depolarized
by adding 15 pl 240 mM KCl (final 40 mM) and further imaged for
30 s with one frame/s. The images were analyzed using a cus-
tomized Image] plugin. Raw data were processed with R (R Core
Team, 2011).

Quantitative microscopy

We used a Cellomics ArrayScan XTI microscope equipped with
an X1 charge-coupled device camera and LED light source to scan
stained cultures of DRG neurons in 96-well imaging plates. 2 x
2 binned images (1,104 x 1,104 pixels) were acquired with a 10x
(NA = 0.3) EC Plan Neo-Fluor objective (Zeiss) and analyzed
using the Cellomics software package. Briefly, images of UCHL1
staining were background corrected (low pass filtration), con-
verted to binary image masks (fixed threshold), and segmented
(geometric method), and neurons were identified by the object
selection parameters: size of 80-7,500 pm?, circularity (perim-
eter?/4m area) of 1-3, length-to-width ratio of 1-2, average in-
tensity of 800-12,000, and total intensity of 2 x 10°5-5 x 10”. The
image masks were then used to quantify signal in other chan-
nels. To calculate spillover between fluorescence channels, three
respective controls were prepared for each triple staining: (1)
UCHLI alone, (2) UCHLI + antibody 1, and (3) UCHLL + antibody
2. Raw fluorescence data of the controls were used to calculate
the slope of best-fit straight lines by linear regression, which
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was then used to compensate spillover as described previously
(Roederer, 2002). Compensated data were scaled to a mean
value of 1 (or 1,000) for the unstimulated cells to adjust for
variability between experimental days. 1D and 2D probability
density plots were generated using R packages (R Core Team,
2011). Gating of subpopulations was performed by setting
thresholds at local minima of probability density plots.

Nociceptive threshold testing

Mechanical nociceptive threshold was measured using an Ugo
Basile Analgesymeter (Stoelting; Randall-Selitto paw-withdrawal
device), which applies a linearly increasing mechanical force to
the dorsum of a rat’s hindpaw, with a dome-shaped plinth, as
described previously (Araldi et al., 2018). Rats were placed in
cylindrical acrylic restrainers that provide ventilation and allow
extension of their hind legs from lateral ports to assess nociceptive
threshold while minimizing restraint stress. To acclimatize rats to
the testing procedure, they were placed in restrainers for 30 min
before starting training sessions (three consecutive days of
training) and for 30 min before experimental manipulations.
Nociceptive threshold was defined as the force, in grams, at which
the rat withdrew its paw. Baseline nociceptive threshold was de-
fined as the mean of three readings taken before injection of test
agents. Each experiment was performed on a different group of
rats and only one paw per rat was used. To minimize experi-
menter bias, the individual conducting the behavioral experi-
ments (D. Araldi) was blinded to experimental interventions.
Intradermal drug administration was performed on the dorsum of
the hindpaw using a 30-gauge hypodermic needle adapted to a
50-ul Hamilton syringe by a segment of PE/10 polyethylene tub-
ing (Becton Dickinson). Male rats were treated intradermally with
vehicle (5 pl, dH,0 + 1% ethanol) or verapamil (a calcium channel
blocker, 10 pg diluted in 5 pl of dH,0 + 1% ethanol). 30 min later,
KCl (80 mM diluted in 5 pl dH,0) was injected intradermally on
the dorsum of the hindpaw and mechanical nociceptive threshold
evaluated 5, 15, 45, 60, 120, 180, 360, and 1,440 min after its in-
jection. The intradermal administration of vehicle and verapamil
were preceded by a hypotonic shock to facilitate the permeability
of the cell membrane to these agents (1 ul dH,O separated by a
bubble to avoid mixing in the same syringe) to enhance entry into
the nerve terminal (Burch and Axelrod, 1987).

Electrophysiology

The cells kept in 35-mm culture dishes were washed at room
temperature (19-23°C) with bath solution immediately before
recording. Bath solution contained (in mM) 5 BaCl, or 5 CaCl,,
1 MgCl,, 10 Hepes, 40 TEA-C], and 10 glucose (pH 7.3 with TEA-
OH) and the pipette solution (in mM) 110 CsCl, 10 EGTA, 10
Hepes, 5 MgCl,, 4 MgATP, and 0.1 GTP (pH 7.3 with CsOH). For
experiments including H89, cells were incubated with 25 pM
H389 for 1 h before recording. Holding potential was -90 mV.
Patch pipettes made from borosilicate glass (Hilgenberg; 1.7-mm
diameter and 0.283-mm wall thickness) were pulled using a
Sutter Instrument P-97 horizontal puller and fire-polished using
a Narishige MF-83 microforge (Narishige Scientific Instrument
Lab). Pipette resistance was 4-6 MQ. For I-V relation, currents
were elicited by applying 500-ms-long test potentials of -40 mV

Isensee et al.

Depolarization induces nociceptor sensitization

TR
(: k(J
IV

to +60 mV from a holding potential of -90 mV using Clampex
software pClamp 10 and an Axopatch 200B amplifier (Molecular
Devices). For generation of high Ba?*/Ca?* influx, 1,000-ms-long
test potentials to 0 mV were applied (10 times; 0.2 Hz). Holding
potential was -90 mV. Currents were sampled at 10 kHz and
filtered at 2 kHz. Leak and capacity currents were compensated
for. Data were analyzed using pCLAMP10O (Molecular Devices)
and GraphPad 6 Prism (GraphPad Software). For voltage de-
pendence of activation, data were fitted by combined Ohm and
Boltzmann relation I(V) = (V - VR) x —Sm . according
to Karmazinova and Lacinova (2010). [reexp547]
Statistical analysis

Statistical analyses were performed with Student’s t tests and
one- or two-way ANOVA with respective post hoc tests as in-
dicated in the figure legends. P < 0.05 was considered statisti-
cally significant. Dose-response curves from HCS microscopy
were generated using nonlinear regression curve-fitting (three
parameters, standard Hill slope) using Prism software (Graph-
Pad). The parameters of the model (top, bottom, or the negative
logarithm of the ECs0/ICso values) were compared using the
extra-sum-of-squares F test. HCS kinetic experiments were
analyzed with R (R Core Team, 2011) using ordinary two-way
ANOVA. Bonferroni’s post hoc analysis was applied to determine
P values of selected pairs (i.e., control versus treatment at each
time point) defined in a contrast matrix using the R library
multcomp. Error bars represent the SEM of three to five inde-
pendent replicate experiments using cells of different animals.
Per experiment, 600-900 neurons were analyzed in one 96-well
per condition.

Online supplemental material

Fig. S1 shows a dose-response curve of pRII intensity in mouse
DRG neurons exposed to KCI as well as an analysis of neuronal
subgroups responding to KCI. Fig. S2 shows the effect of lido-
caine on KCl-induced activation of PKA-II, KCl dose-responses
in DRG neurons from TRP channel knockout mice, as well as the
calcium influx and PKA-II response to ionomycin. Fig. S3 shows
immunocytochemistry results of sensory neurons from condi-
tional Cay1.2 knockout mice and after viral knockdown of Cay1.2
using a pan-Cayl antibody (clone L57/46). Fig. S4 shows the
RNA-seq expression pattern of AC isoforms in rat DRG and the
effects of AC inhibitors on KCl-induced PKA-II activity. Fig. S5
shows the effects of CaMKII and MEK inhibitors on KCl-induced
PKA-II activity.

Data availability
For material, please contact Jorg Isensee, joerg.isensee@uk-
koeln.de, or Tim Hucho, tim.hucho@uk-koeln.de.
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Figure S4. The KCl-induced increase of pRII intensity cannot be altered by inhibition of adenylycyclases or phosphodiesterases. (A) Expression
pattern of AC isoforms in adult rat DRGs determined by RNA-seq (Isensee et al., 2014b). (B-1) Effect of the AC inhibitors NBOO1, ST034307, SQ22536, and
NKY80 (100 uM each, 30-min pretreatment) on the pRIl increase induced by KCl (40 mM) or 5-HT (250 nM). (J and K) Effect of the phosphodiesterase inhibitor
IBMX (100 pM, 30-min pretreatment) on the pRIl increase induced by 5-HT (250 nM) or KCl (40 mM). The data shown are not normalized to the baseline
difference due to IBMX treatment alone. Data in A are means + SD, n = 6 replicates. Values in B-K represent means + SEM; n = 3-4 experiments; >2,000
neurons/condition; two-way ANOVA with Bonferroni’s test; §§, P < 0.01; §8§, P < 0.001 indicate significance levels between 5-HT-induced pRIl signals in the

absence or presence of an inhibitor.
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Figure S5. Neither CaMKII nor MEK inhibitors modulate KCl-induced pRIl increases. (A and B) Effect of the CaMKil inhibitor KN93 (compound effect: Fy 4,
=16.3,P < 0.0003) and its inactive analogue KN-92 (compound effect: F; 4, = 17, P < 0.0002; 10 uM each, 30-min pretreatment) on the pRIl increase induced by
KCL (40 mM). (C) Exposure to AIP (1 M, 30 min) is not inhibiting the pRII response to KCL (40 mM). (D) Exposure to the ERK1/2 inhibitor U0126 (1 M, 30 min) is
not inhibiting the pRIl response to KCl (40 mM). (E) Dose-response of KCl (0-80 mM) in the absence or presence of U0126 (1 uM, 30 min). (F) The MEK
inhibitor U0126 (1 uM, 30 min) prevents the pERK1/2 increase after KCl depolarization. Values represent means + SEM; n = 3-4 experiments; >2,000 neurons/
condition; two-way ANOVA with Bonferroni’s test; §, P < 0.05; §8§, P < 0.001 indicate significance levels between KCl-induced pRII signals in the absence or
presence of an inhibitor.
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