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Autophagosome biogenesis: From membrane growth
to closure
Thomas J. Melia1, Alf H. Lystad2, and Anne Simonsen2

Autophagosome biogenesis involves de novo formation of a membrane that elongates to sequester cytoplasmic cargo and
closes to form a double-membrane vesicle (an autophagosome). This process has remained enigmatic since its initial discovery
>50 yr ago, but our understanding of the mechanisms involved in autophagosome biogenesis has increased substantially
during the last 20 yr. Several key questions do remain open, however, including, What determines the site of autophagosome
nucleation? What is the origin and lipid composition of the autophagosome membrane? How is cargo sequestration regulated
under nonselective and selective types of autophagy? This review provides key insight into the core molecular mechanisms
underlying autophagosome biogenesis, with a specific emphasis on membrane modeling events, and highlights recent
conceptual advances in the field.

Introduction
Autophagosomes are double-membrane vesicles containing cy-
toplasmic components destined for lysosomal degradation in a
process referred to as macroautophagy (hereafter autophagy).
Autophagosome biogenesis involves nucleation, expansion, and
closure of a cup-shaped membrane (called a phagophore or
isolation membrane) to allow sequestration of cytoplasmic
cargo, followed by their fusion with endolysosomal compart-
ments to facilitate degradation of the sequestered material
(Lamb et al., 2013). Autophagosomes form on demand, either to
facilitate recycling of metabolic precursors to promote cell sur-
vival under conditions of cellular stress or to mediate clearance
of damaged or surplus cellular components, thereby promoting
cellular homeostasis (Dikic and Elazar, 2018). Knowledge about
the molecular mechanisms involved in cargo sequestration and
autophagosome biogenesis under various metabolic and patho-
logical conditions is important to better understand the impor-
tance of this pathway in various pathophysiological conditions
(Levine and Kroemer, 2019).

Autophagosomes are generally devoid of any transmembrane
proteins (Baba et al., 1995; Fengsrud et al., 2000), which has
made it difficult to trace the origin of the phagophore membrane
and understand the dynamic events leading to phagophore
elongation, bending, and closure. Indeed, the source of the au-
tophagosomal membrane has been one of the major questions in
the field for several decades and is still a topic of intense in-
vestigation. Our understanding of the mechanisms involved in

autophagosome biogenesis have increased substantially over the
last 20 yr, however. Pioneering screens in yeast identified sev-
eral autophagy-related genes (ATG) as essential for autophagy
(Harding et al., 1995; Thumm et al., 1994; Tsukada and Ohsumi,
1993), which later led to the characterization of mammalian ATG
orthologues, commonly referred to as the core autophagy ma-
chinery (Inoue and Klionsky, 2010; Mizushima et al., 2011).
Structural and functional decipherment of such ATG proteins
has shown that they typically formmultisubunit complexes that
work together to coordinate the multiple membrane modeling
events involved in autophagosome biogenesis (Dikic and Elazar,
2018; Hurley and Young, 2017; Mercer et al., 2018; Yin et al.,
2016). In humans these include (a) the Unc51-like kinase
(ULK) complex, (b) the autophagy-specific class III phospha-
tidylinositol 3-kinase complex I (PIK3C3-CI), (c) the trans-
membrane protein ATG9 and its cycling system, and (d) the
ubiquitin-like proteins of the light chain 3 (LC3)/GABA type A
receptor-associated protein (GABARAP) subfamilies (com-
monly referred to as ATG8) and ATG12, as well as their con-
jugation machineries (see Box 1 for details).

Sequestration of cargo for degradation by autophagy was
long considered a random, nonselective process, but the
identification of so-called autophagy receptors, which con-
nect the cargo to be degraded to ATG8 proteins in the auto-
phagic membrane, opened up the field of selective autophagy
(Khaminets et al., 2016; Johansen and Lamark, 2020; Sánchez-
Mart́ın and Komatsu, 2020). As will be discussed, recent studies
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indicate that autophagy receptors not only facilitate selective
engulfment of cargo, but also recruit the core autophagy ma-
chinery to allow cargo-specific de novo autophagosome biogen-
esis. Our understanding of this process is still limited, however,
and more investigation is needed.

This review focuses on the molecular mechanisms of the
core autophagy components involved in autophagosome bi-
ogenesis during nonselective and selective types of autoph-
agy, with a specific focus on membrane dynamics and the
recent advances in the field. The intricate signaling pathways
regulating autophagosome biogenesis and the mechanisms un-
derlying fusion of autophagosomes with endolysosomal com-
partments have been extensively reviewed elsewhere (Walker
and Ktistakis, 2019; Wesselborg and Stork, 2015; Zhao and
Zhang, 2019) and are only briefly mentioned here. Finally,

we point out some of the open questions that need further
investigation.

Mechanisms of autophagosome formation
The origins of the membrane contributing to autophagosome
formation and growth and the mechanisms that support
membrane delivery have been contentious questions for >50
yr. The molecular mechanisms underlying autophagosome
biogenesis have been elucidated mainly in cells subjected to
nutrient starvation, when cells induce autophagy in a seemingly
nonselective manner to provide breakdown products necessary
to maintain cellular homeostasis. Less is known about regulation
of the machinery and lipid mobilization involved in autopha-
gosome formation during basal conditions, where autophagy
plays an important role in cellular homeostasis by clearance of

Box 1. An overview of the core autophagy complexes and their main functions in autophagosome biogenesis. See main text for key references.
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dysfunctional or surplus cellular components. In yeast sub-
jected to nitrogen starvation, autophagosomes form from a
single preautophagosomal structure located in close proximity
to the vacuole (Ohsumi, 2014; Suzuki et al., 2001). In contrast,
mammalian autophagosomes can originate concomitantly at
several sites that are closely associated with specific phospha-
tidylinositol 3-phosphate (PtdIns(3)P)-enriched subdomains of
the ER, referred to as omegasomes (Axe et al., 2008; Ylä-Anttila
et al., 2009; Hamasaki et al., 2013). Further elongation of the
phagophore membrane seems to involve several membrane
sources. An individual autophagosome takes ∼10 min to form
(Axe et al., 2008) and persists for ∼10–20 min after membrane
conjugation of LC3 (Hailey et al., 2010; Kirisako et al., 1999; Xie
et al., 2008). Autophagosomes can vary in size from a few
hundred nanometers to more than a micrometer in diameter,
depending on the size of the cargo being sequestered (Jin and
Klionsky, 2014; Xie et al., 2008). Although the site of phag-
ophore formation and the membrane sources involved may
vary depending on the autophagy-inducing signal and the na-
ture of the sequestered cargo, the core autophagy machinery
required for autophagosome biogenesis is generally well con-
served. The interconnections between these core ATG proteins
are tightly regulated in space and time to allow phagophore
nucleation (Fig. 1), elongation (Fig. 2), and closure (Fig. 3) to
form an autophagosome.

Phagophore nucleation
Induction of autophagosome biogenesis involves the coordinated
activation and proper localization of the core autophagy ma-
chineries (Fig. 1 and Box 1). Their activity is tightly regulated by
various posttranslational modifications, including phosphoryl-
ation and ubiquitination, which are discussed in more detail
elsewhere (Mercer et al., 2018; Walker and Ktistakis, 2019). In
general, signaling pathways that promote cell growth typically
inhibit autophagosome formation, while those activated upon
poor nutrient and energy status will stimulate autophagosome
biogenesis. Prime examples include the mechanistic target of
rapamycin (mTOR) kinase and AMP kinase (AMPK), which
oppositely regulate autophagosome biogenesis by phosphoryla-
tion of key components of the core autophagy machinery, in-
cluding subunits of the ULK and PIK3C3 complexes.

The ULK complex
\The multimeric ULK complex, comprising the kinase ULK1 (or
ULK2), ATG13, ATG101, and FIP200 (FAK family kinase-interacting
protein of 200 kD) is considered the master regulator of auto-
phagosome biogenesis (Chan et al., 2007; Ganley et al., 2009; Hara
et al., 2008; Hosokawa et al., 2009b; Jung et al., 2009;Mercer et al.,
2009). The ULK complex is constitutively assembled and this is not
regulated by nutrient conditions (Hosokawa et al., 2009a). It is not
completely understood what causes translocation of the ULK
complex to phagophore nucleation sites upon amino acid starva-
tion, but it is independent of ULK1 kinase activity and does require
the C-terminal EAT domain of ULK1 (Chan et al., 2009) and an
interaction of the N-terminus of ATG13 with acidic phospholipids
in the membrane, including PtdIns(3)P and PtdIns(4)P (Karanasios
et al., 2013; Fig. 1 B). In line with this, ATG9-mediated delivery of

the PI4-kinase PI4KIIIβ to phagophore nucleation sites and sub-
sequent binding of ATG13 to PtdIns(4)P seems important for
translocation of the ULK complex to such sites (Judith et al., 2019).
Moreover, the ULK complex was found to localize to phosphati-
dylinositol synthase (PIS)-enriched ER subdomains (Nishimura
et al., 2017). ULK complex activation and ER translocation is fur-
ther promoted by binding to the ras-related protein 1 (RAB1) ef-
fector C9orf72 (Webster et al., 2016; Fig. 1 B).

The activated ULK1 complex phosphorylates several core
autophagy components, various regulatory proteins, and itself,
leading to recruitment of the PIK3C3-CI and PtdIns(3)P pro-
duction, resulting in formation of PtdIns(3)P-positive omega-
somes that function as platforms for phagophore elongation
(Fig. 1 A). An overview of ULK1 substrates and their functions
can be found inMercer et al. (2018). Importantly, inactivation of
mTOR in the absence of amino acids or growth factors is key to
activation of ULK1. ActivemTOR interacts directly with ULK1 via
the mTOR complex 1 (mTORC1) subunit Raptor and inhibits
autophagosome biogenesis via phosphorylation of ULK1 and
ATG13 (Ganley et al., 2009; Hosokawa et al., 2009a; Jung et al.,
2009; Kim et al., 2011; Puente et al., 2016; Shang et al., 2011; Fig. 1
A). In contrast, AMPK phosphorylates ULK1 and ATG13 to pro-
mote autophagosome biogenesis (Puente et al., 2016; Sanchez
et al., 2012; Shang et al., 2011). Active AMPK and ULK1 both
phosphorylate Raptor to inhibit mTORC1 activity (Gwinn et al.,
2008; Kim et al., 2011), leading to further ULK1 stimulation
(Fig. 1 A). In addition to this positive-feedback phosphor-
egulation of ULK1 activity, LYS-63–linked ubiquitination of
ULK1 by the E3-ligase TRAF6 bound to AMBRA1 (autophagy and
beclin 1 regulator 1, the activating molecule in beclin 1 [BECN1]-
regulated autophagy) promotes ULK1 complex stabilization and
function (Nazio et al., 2013). ULK1 ubiquitination by neural pre-
cursor cells expressing developmentally down-regulated protein
4–like (NEDD4) ligase (Lys-27, Lys-29 linked) or CULLIN3 ligase
(Lys-48 linked) rather facilitate its degradation and down-
regulation of the autophagic response (Liu et al., 2016; Nazio
et al., 2016). ULK1 activation and ER targeting are also closely
linked to recruitment and activation of the PIK3C3 complex I and
trafficking of ATG9, the only transmembrane protein required for
autophagosome biogenesis.

The PIK3C3-CI
The autophagy-specific PIK3C3 complex I (consisting of vac-
uolar protein sorting 34 [VPS34], p150, BECN1, ATG14, and
nuclear receptor binding factor 2 [NRBF2]) is responsible for
PtdIns(3)P production at omegasome structures (Axe et al.,
2008). ULK1 enhances VPS34 activity by phosphorylation of
several PIK3C3-CI subunits, including VPS34 itself, BECN1,
and ATG14 (Mercer et al., 2018; Wold et al., 2016). Moreover,
ULK1-mediated phosphorylation of the PIK3C3 regulator
AMBRA1 causes release of BECN1-VPS34 from the cytoskele-
ton and their recruitment to the ER (Di Bartolomeo et al.,
2010). Finally, a direct interaction between the ULK complex
subunit ATG13 and ATG14 stabilizes membrane localization
of the PIK3C3-CI (Park et al., 2016). Targeting of the PIK3C3-
CI to the ER membrane is further facilitated by membrane-
associated regions in PIK3C3-CI subunits, including an N-terminal
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cysteine-rich domain and a PtdIns(3)P-binding BATS domain in
ATG14 (Fan et al., 2011; Matsunaga et al., 2010; Tan et al., 2016), an
aromatic finger in BECN1 (Huang et al., 2012), and an N-terminal
myristate on p150 (Panaretou et al., 1997). Moreover, ATG14 in-
teracts with the ER-resident SNARE protein Syntaxin-17 (STX17)
at ER–mitochondria contact sites (Hamasaki et al., 2013) and
NRBF2, which promotes VPS34 lipid kinase activity and complex
assembly (Cao et al., 2014; Lu et al., 2014; Ohashi et al., 2016;
Young et al., 2016; Fig. 1 B).

In addition to ULK1, several other kinases and scaffolding
proteins have been found to regulate the activity of the PIK3C3-
CI (Fig. 1 A). mTOR phosphorylates and inhibits ATG14 and

NRBF2, as well as AMBRA1 (Egan et al., 2015; Ma et al., 2017).
Interestingly, AMPK-mediated regulation of PIK3C3-CI activity
is coordinated with the availability of ATG14, as AMPK inhibits
VPS34 in the absence of ATG14, while its phosphorylation of
BECN1 activates VPS34 activity in the presence of ATG14 (Kim
et al., 2013; Zhang et al., 2016). Several PIK3C3-CI–interacting
proteins are found to stabilize the complex or promote its ac-
tivity, including dishevelled-interacting protein (Dapper1; Ma
et al., 2014), progestin and adipoQ receptor family member 3
(PAQR3; Xu et al., 2016), and receptor for activated C kinase
1 (RACK1; Zhao et al., 2015). Moreover, as for ULK1, both the
stability and activity of the PIK3C3 can be modulated by

Figure 1. Overview of signaling events and protein–protein and protein–membrane interactions involved in phagophore nucleation. (A)Nutrient-rich
conditions promote the activity of mTORC1, which inhibits autophagy by mTOR-mediated phosphorylations of the ULK complex (ULK1/2 and ATG13) and
PIK3C3-CI (NRFB2, ATG14, and AMBRA1). In contrast, low energy status (high AMP-to-ATP ratio) causes activation of AMPK, which positively regulates au-
tophagy by phosphorylation of the mTORC1 complex (Raptor), the ULK complex (ULK1 and ATG13), and PIK3C3-CI (BECN1 in the presence of ATG14 and VPS34
in the absence of ATG14). Activation of the ULK complex facilitates autophagy by autophosphorylation (ULK1, FIP200, and ATG13), inhibitory phosphorylation
on mTORC1 (Raptor), and activating phosphorylations of the PIK3C3-CI (BECN1, VPS34, ATG14, and AMBRA1). (B) The autophagy-inducing signaling events
described in A lead to membrane recruitment of the ULK complex. This is promoted by its interaction with C9orf72 (Rab1 effector) and dependent on the EAT
domain of ULK1 and the N-terminus of ATG13. The latter interacts with acidic phospholipids, including PtdIns(4)P, generated by the PI4KIIIβ, which interacts
with ATG9, a transmembrane protein important for phagophore elongation (see Fig. 2). The ULK complex stabilizes the PIK3C3-CI through direct interactions
between ATG14 and ATG13. ATG14 also interacts with the ER-resident protein STX17 at ER–mitochondria contact sites. PIK3C3-CI membrane binding is further
mediated by ATG14 (N-terminal cysteine-rich domain and a PtdIns(3)P binding BATS domain), BECN1 (aromatic finger), and p150 (N-terminal myristate).
Generation of PtdIns(3)P by the PIK3C3-CI facilitates recruitment of the PtdIns(3)P effector protein WIPI2 that promotes ATG8 conjugation to PE through
recruitment of the ATG12-ATG5-ATG16L1 complex, an E3 of the ATG8 conjugation machinery. Lipidated ATG8 proteins can function as a scaffold for core
autophagy machinery components and as membrane attachment sites for autophagic cargo receptors (see Fig. 4). The phagophore membrane is indicated in
purple.
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ubiquitination (Antonioli et al., 2014; Liu et al., 2016; Xia et al.,
2013, 2014). Finally, PI3KC3-C1 stabilizes the ULK complex at the
ER (Karanasios et al., 2013; Koyama-Honda et al., 2013), pro-
viding positive-feedback regulation of PtdIns(3)P production at
phagophore nucleation sites.

The class II PI3-kinase α (PIK3C2A), also able to generate
PtdIns(3)P, was recently implicated in autophagosome
biogenesis following inhibition of mTOR with rapamycin
(Merrill et al., 2017). PIK3C2A was found to interact with
ATG9 and ATG14, and its depletion resulted in accumulation
of RAB11- and transferrin-positive clathrin-coated vesicles.
In line with a role for PIK3C2A-mediated PtdIns(3)P pro-
duction at recycling endosomes, it was suggested that the
PtdIns(3)P effector protein WD-repeat domain phosphoino-
sitide interacting 2 (WIPI2), interacts with RAB11A and that
autophagosomes can evolve from RAB11A-positive mem-
branes (Puri et al., 2018).

Role of PtdIns(3)P
So what is the purpose of PtdIns(3)P production at phagophore
nucleation structures? The ER contains very little PtdIns(3)P
under basal conditions (Gillooly et al., 2000), so localized

enhanced PtdIns(3)P levels would function to recruit specific
PtdIns(3)P effector proteins. The PtdIns(3)P binding protein
DFCP1 (double FYVE-containing protein 1, also known as
ZFYVE1) localizes to omegasomes, but is itself dispensable for
autophagosome biogenesis flux (Axe et al., 2008). More im-
portantly, the presence of PtdIns(3)P at the omegasome allows
recruitment of members of theWIPI1–4 protein family (Proikas-
Cezanne et al., 2015), which are functionally related to yeast
Atg18 (Barth and Thumm, 2001; Guan et al., 2001; Dove et al.,
2004), containing a seven-bladed β-propeller structure that
preferably binds two molecules of PtdIns(3)P, but also can bind
PtdIns(5)P or PtdIns(3,5)P2 (Jeffries et al., 2004). While all WIPI
proteins localize to nascent autophagosome membranes (Bakula
et al., 2017; Polson et al., 2010; Proikas-Cezanne et al., 2004),
they seem to function at different stages of autophagosome
formation. WIPI1 and WIPI2 localize to omegasomes, where
WIPI2 promotes PE conjugation of ATG8 proteins by recruit-
ment of the ATG12-ATG5-ATG16L1 E3-like complex through a
direct interaction with ATG16L1 (Dooley et al., 2014; Fig. 1 B).
WIPI3 and WIPI4 seem to link upstream regulatory pathways to
PtdIns(3)P production and autophagosome biogenesis by inter-
acting with the AMPK-activated TSC complex and the AMPK/

Figure 2. Model of suggested mechanisms involved in phagophore elongation. (A) A rough estimate shows that ∼3 million lipids could be required to
produce an autophagosome of 400 nm (see Box 2). Three distinct mechanisms for delivery of lipids for phagophore elongation have been proposed: vesicle-
mediated delivery, membrane extrusion from pre-existing organelles, and protein-mediated lipid transport. (B) For vesicle-mediated delivery, ATG9- and
ATG16L1-positive vesicles formed from recycling endosomes (dependent on SNX18, DNM2, and adaptor proteins) and COPII vesicles from ER exit sites (ERES)
and ERGIC have been implicated in phagophore elongation. (C) For membrane extrusion from preexisting organelles, tubular extrusions from the ER and
mitochondria have been proposed to form the expanding phagophore. (D) For protein-mediated lipid transport, illustrated for ATG2A and GRAMD1A, ATG2A
acts as a lipid tunnel with little or no lipid specificity, while GRAMD1A functions as a cholesterol transfer protein.

Melia et al. Journal of Cell Biology 5 of 18

Autophagosome biogenesis https://doi.org/10.1083/jcb.202002085

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/219/6/e202002085/1837737/jcb_202002085.pdf by guest on 09 February 2026

https://doi.org/10.1083/jcb.202002085


ULK1 complex at lysosomes, respectively, followed by their
translocation to nascent autophagosomes in response to glucose
starvation (Bakula et al., 2017). WIPI4 also interacts with the
lipid transfer protein ATG2 to promote phagophore elongation,
as is discussed below.

PtdIns(3)P turnover seems necessary for dissociation of the
ATG machinery from the surface of autophagosomes before
their fusion with the lysosome/vacuole (Cebollero et al., 2012).
PtdIns(3)P levels at the growing phagophore are closely regu-
lated by PtdIns(3)P phosphatases, which negatively regulate
autophagy by dephosphorylation of PtdIns(3)P (Cebollero et al.,
2012; Taguchi-Atarashi et al., 2010; Vergne et al., 2009). More-
over, additional phosphoinositide kinases facilitate phospho-
rylation of PtdIns(3)P, including the PtdIns 5-kinase FYVE-type
zinc finger containing (PIKFYVE) that converts PtdIns(3)P into
PtdIns(3,5)P2, being involved in autophagosome maturation
(Rusten et al., 2007). Interestingly, in addition to its negative
regulation of autophagy by converting PtdIns(3)P to PtdIns(3,5)
P2, PtdIns(5)P production by PIKFYVE was found to rescue

WIPI2b recruitment to omegasomes in PIK3C3-deficient cells,
particularly in glucose starvation conditions (Vicinanza et al.,
2015).

Phagophore elongation
As the expanding phagophore is largely devoid of transmem-
brane proteins (Baba et al., 1995; Fengsrud et al., 2000), mem-
brane expansion is primarily through the delivery of lipids. To
estimate the magnitude of lipid demand needed to form a single
autophagosome, we consider the number of lipids required to
build a model autophagosome-like structure (Box 2). Using es-
tablished physical dimensions for phosphatidylcholine to ap-
proximate a single lipid (i.e., a headgroup area of 65 Å2 and a
length of 20 Å; Kucerka et al., 2005) and an estimate of the lu-
minal space between bilayers in an autophagosome (which
various studies suggest is between 10 and 30 nm as described in
Nguyen et al. [2017]), we calculate that for a ∼400-nm-diameter
autophagosome, expansion could require the delivery of as
many as 3,000,000 lipids (Box 2). Furthermore, in mammals,

Figure 3. Autophagosome closure is facilitated by the ESCRT machinery. (A) ESCRT-I components are recruited to the phagophore by an unknown
mechanism, followed by recruitment of the filament-forming ESCRT-III components CHMP2A and CHMP4B. In yeast, Atg17 (FIP200) interacts with the ESCRT-
III subunit Snf7 (CHMP4), indicating a role for the ULK complex in recruitment of ESCRT-III for phagophore closure. (B) ESCRT-III polymerization leads to
filament formation, bringing the leading edge of the phagophore into close apposition to allow membrane fission. (C) Recruitment of the AAA-ATPase VPS4
resolves the fission process and facilitates depolymerization of the ESCRT-III filament structure. ATG8 proteins are also implicated in phagophore elongation
and closure, but the mechanisms involved are not clear.

Melia et al. Journal of Cell Biology 6 of 18

Autophagosome biogenesis https://doi.org/10.1083/jcb.202002085

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/219/6/e202002085/1837737/jcb_202002085.pdf by guest on 09 February 2026

https://doi.org/10.1083/jcb.202002085


autophagosomes form continuously throughout the cytoplasm
and, in periods of stress, can number close to 100 per cell, de-
pending on cell type (Fass et al., 2006; Guo et al., 2012; Hailey
et al., 2010). Thus, the macroautophagy stress response is fun-
damentally an organelle biogenesis event that, when stimulated,
could require the mobilization of 100,000,000-plus lipids per
cell. How lipid is harvested to support autophagosome growth
and how it is delivered to the many forming structures remains
unclear, but recent advances in cell biology, imaging, and pro-
tein biochemistry have highlighted three mechanisms by which
lipids appear to reach the expanding phagophore: vesicle-
mediated delivery (Fig. 2 B), direct extrusion from a preexisting
organelle (Fig. 2 C), and direct protein-mediated transport of
lipids (Fig. 2 D).

Vesicle-mediated delivery
The multispanning transmembrane protein Atg9 (yeast) or
ATG9 (mammals) resides in vesicles that traffic to and from the
developing autophagosome (Kakuta et al., 2012; Mari et al., 2010;
Orsi et al., 2012; Reggiori et al., 2005; Takahashi et al., 2011;
Yamamoto et al., 2012; Fig. 2). In yeast, these vesicles may
cluster together via Atg1 complexes that drive initiation of au-
tophagosome biogenesis (Matscheko et al., 2019; Rao et al.,
2016), into a phase-separated compartment (Fujioka et al.,
2020). Then, homotypic fusion of these vesicles (Yamamoto
et al., 2012) gives rise to the phagophore. In mammals, the

phagophore is surrounded by tubules and vesicles that are
ATG9-positive, but the evidence for fusion into the phagophore
is less clear (Orsi et al., 2012), and the precise role for ATG9-
associated membranes is still under investigation. Thus, ATG9
vesicle flux to and from the phagophore during membrane ex-
pansion may serve additional purposes, such as scaffolding of
protein complexes functioning in initiation of autophagosome
biogenesis and organization of the machinery needed during
expansion such as ATG2. ATG9 localizes to the Golgi complex
under normal conditions but translocates to recycling endo-
somes and small vesicles referred to as the ATG9 compartment
upon induction of autophagy in an ULK1-dependent manner
(Mari et al., 2010; Orsi et al., 2012; Young et al., 2006; Zhou et al.,
2017). Exactly where and when the ULK1–ATG9 interaction
takes place is not clear, but it was found that small ATG9 vesicles
colocalize with the ULK1 complex in regions that overlap with
the ER-Golgi intermediate compartment (ERGIC; Karanasios
et al., 2016). At the recycling endosome, ATG9A localizes to
ATG16L1 and RAB11-positive recycling endosomes, which may
either transform into a nascent phagophore or provide mem-
brane to the growing phagophore by vesicle-mediated delivery
(Knævelsrud et al., 2013; Longatti et al., 2012; Puri et al., 2013;
Puri et al., 2018; Ravikumar et al., 2010; Søreng et al., 2018).
Indeed the importance of continued ATG9 trafficking to and
from the endosome is supported by studies demonstrating a key
role in autophagy for adaptor proteins (Imai et al., 2016; Mattera

Box 2. Calculation of the approximate amount of lipids going into a model autophagosome of various sizes.
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et al., 2017; Popovic and Dikic, 2014; Zhou et al., 2017), Dynamin
2 (DNM2), and the DNM2 interacting protein SNX18 (Søreng
et al., 2018; Fig. 2 B). Although Atg9/ATG9 vesicles are essen-
tial to the expansion phase, it is likely that lipid is also harvested
from other sources.

A role for coat protein complex II (COPII) vesicles was first
suggested by the discovery that the autophagy-specific traf-
ficking protein particle (TRAPP)-III tethering complex engages
the COPII machinery (Tan et al., 2013) and that yeast autopha-
gosome biogenesis occurs precisely at ER exit sites normally
dedicated to COPII vesicle production (Graef et al., 2013). In vitro
experiments separating cellular membranes then demonstrated
that COPII-related vesicles derived from the ERGIC can support
LC3-II formation in vitro (Ge et al., 2014), indicating that the
lipid composition and structure of these membranes is consis-
tent with autophagosome-directed biochemistry. Most recently,
the transmembrane COPII cargo protein Axl2 was found to co-
localize with growing phagophores, supporting a direct role for
these vesicles in phagophore expansion (Shima et al., 2019);
however, the machinery that supports fusion of these vesicles
into the phagophore has not yet been identified (Fig. 2 B).
Consistent with this idea, a variety of studies have suggested
that unique ER exit sites are engineered to produce vesicles
dedicated to eventual consumption by autophagosomes or
autophagy-related processes (Crawford et al., 2019; Ge et al.,
2017). By controlling the formation of the vesicles destined for
autophagosome expansion, these engineered ER sites might also
regulate the accessibility of transmembrane proteins, providing
a potential explanation for the relative dearth of these molecules
on the mature organelle.

Direct extrusion from a preexisting organelle
In mammals, both immunobiochemistry (Dunn, 1990) and cryo-
electron tomography (Hayashi-Nishino et al., 2009; Ylä-Anttila
et al., 2009) suggest that phagophores form at ER subdomains
termed omegasomes (Axe et al., 2008). At the omegasome, two
groups have postulated that the phagophore might directly
extrude from the ER itself (Hayashi-Nishino et al., 2009; Ylä-
Anttila et al., 2009). Cryo-electron tomography and immunogold
electron microscopy suggest possible continuity between the
cup-shaped phagophore and the surrounding ER (Fig. 2 C). In
such an instance, growth could be by continued extrusion and
rely on the almost limitless supply of lipids in the ER. Moreover,
the early core autophagy machinery components translocate
to omegasomes, and several ER-localized proteins, including
vacuole membrane protein 1, vesicle-associated membrane protein-
associated proteins A and B (VAPA and VAPB), extended synapto-
tagmin, PIS, and transmembrane protein 41B (TMEM41B), have
been implicated in autophagosome biogenesis (Ktistakis, 2020).
Conversely, not all studies have been able to observe direct con-
nections between isolation membranes and the ER (e.g., Kishi-
Itakura et al., 2014), and thus the generality of extrusion from the
ER remains uncertain.

Autophagosome biogenesis has been documented at sites
other than the ER, and in cases of both the mitochondria (Hailey
et al., 2010) and early recycling endosome (Puri et al., 2018),
these results can also be interpreted as growth by extrusion. By

combining superresolution fluorescence microscopy with en-
gineered markers of the mitochondria, LC3-positive structures
forming directly on extruded regions of the mitochondria outer
membrane were detected (Hailey et al., 2010). These regions
specifically excluded transmembrane proteins of the mito-
chondria, but could recruit proteins embedded in only a single
cytoplasm-facing leaflet of the outer mitochondrial membrane,
suggesting that, as for the ER exit sites, a selection process
against transmembrane proteins may occur at the moment of
membrane utilization (Fig. 2 C). Interestingly, omegasomes
overlap with ER–mitochondria contact sites (Hamasaki et al.,
2013; Karanasios et al., 2013) and specific ER exit sites, where
also ATG9 vesicles seem to be recruited (Karanasios et al., 2016),
suggesting a close interconnection between several membrane
sources of autophagosome biogenesis.

Direct protein-mediated transport of lipids
At contact sites throughout the cell, lipid transport proteins
function to move lipids from one organelle to another. In most
cases, these proteins can bind one or two lipids; flux across the
contact site is then regulated by either specific exchange for
lipids on the acceptor membrane or by maintaining a gradient
through the consumption of the transported lipid (Wong et al.,
2019). Membrane expansion by such a mechanism has not yet
been demonstrated and would likely require that lipids are
transferred en masse in one direction.

At least three lipid-transport proteins are now known to
support autophagosome biogenesis. GRAM domain–containing
1A (GRAMD1A) is a cholesterol transfer protein in the StART
domain family, and recent work developing small-molecule in-
hibitors of its cholesterol-binding activity unexpectedly revealed
a role in autophagy (Laraia et al., 2019). These inhibitors spe-
cifically delayed the recruitment of ATG5 to WIPI2-positive
puncta, suggesting a role for GRAMD1A-mediated cholesterol
transport in the membrane expansion step (Fig. 2 D). TipC
(Dictyostelium) and its human homologue VPS13A were previ-
ously each shown to support efficient autophagosome produc-
tion in model systems (Muñoz-Braceras et al., 2015) through an
unknown mechanism. In 2018, VPS13A was established as the
first in a new class of lipid-transport proteins (Kumar et al.,
2018), which have the notable distinctions of binding large
numbers of lipids at once and appearing to exhibit little to no
lipid specificity during in vitro lipid transport. Thus, this class of
proteins could be ideally suited for bulk delivery of lipid in
support of dramatic membrane expansion. Intriguingly, VPS13A
shares two short stretches of homology with ATG2, called
chorein domains. In a series of papers last year, it was demon-
strated that Atg2 (yeast) and ATG2A (humans) harbor the same
high lipid-binding capacity and in vitro lipid transport activity
as VPS13A (Maeda et al., 2019; Osawa et al., 2019; Valverde et al.,
2019). The crystal structures of the N-terminal chorein domains
of VPS13A and Atg2 reveal a similar shovel-like fold in which the
“scoop” region of the shovel is covered entirely in hydrophobic
amino acids, likely comprising the lipid-binding surface (Kumar
et al., 2018; Osawa et al., 2019). In VPS13A, this scoop region ex-
tends down the length of the structure as a series of β-sheets (Li
et al., 2020). Likewise, cryo-electron reconstruction of full-length
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ATG2A revealed a continuous cavity down the length of the 1,900-
aa protein of the same width as this scoop (Valverde et al., 2019),
suggesting that in both ATG2A and VPS13A, a lipid-binding sur-
face is extended along the entire length and essentially forms a
lipid tunnel (Fig. 2 D).

ATG2 lipid transfer activity during phagophore expansion
Overexpression of GFP-ATG2A in non-starved cells dramatically
labels lipid droplets (Pfisterer et al., 2014; Velikkakath et al.,
2012), and knockout of ATG2A has been implicated in dys-
functional lipid droplet homeostasis (Velikkakath et al., 2012),
suggesting that this protein family might have a role outside of
autophagy at these organelles. Direct immunostaining of en-
dogenous ATG2A, however, shows very little (Velikkakath et al.,
2012) or no (Valverde et al., 2019) staining of lipid droplets.
Instead, all of the easily observable puncta colocalize with early
markers of the phagophore and both the numbers and colocal-
ization increase following starvation, consistent with its role in
membrane expansion. Knockout of ATG2A blocks autophagy
flux and inhibits membrane expansion (Kishi-Itakura et al.,
2014; Tamura et al., 2017; Valverde et al., 2019), although a few
small and apparently closed autophagosomes have been re-
ported (Tang et al., 2019). Thus, ATG2A is an essential compo-
nent of the phagophore membrane expansion apparatus.

Precise determination of which organelles and which contact
sites are associated with the lipid transport activity of ATG2 has
been complicated. ATG2A appears to reside predominantly at
organelle–organelle contact sites, as the phagophore-associated
protein in mammals lies perfectly along the ER (Valverde et al.,
2019). In yeast, Atg2 is needed to form the phagophore–ER
contact site (Kotani et al., 2018), and this activity is coordinated
with Atg9 (Gómez-Sánchez et al., 2018). Studies on elongated
phagophores in yeast further reveal that Atg2 is restricted to the
highly curved rim of the phagophore (Suzuki et al., 2013). Thus,
fluorescence imaging of ATG2A and Atg2 suggests a simple lipid
transport model in which the proteins move lipids from the ER
to the expanding phagophore. However, ATG2 association with
the phagophore is coincident with ATG9 vesicle recruitment
(Papinski et al., 2014), and at least in yeast, both proteins are
part of the larger complex defining the ER–phagophore contact
site (Gómez-Sánchez et al., 2018). Thus, it is possible that this
contact site actually involves at least three distinct membranes
(ER, isolation membrane, and ATG9 vesicle; Fig. 2 D). Further-
more, autophagosome biogenesis is tightly associated with ER–
mitochondria contact sites (Hamasaki et al., 2013), suggesting
another level of potential complexity.

In fact, ATG2A could potentially engage each of these mem-
branes. Specific recruitment of Atg2/ATG2B and its binding
partner Atg18/WIPI4 to the phagophore requires Atg9 (Gómez-
Sánchez et al., 2018) and TRAPP-II (Stanga et al., 2019). In ad-
dition, ATG2A has been shown to interact with the translocase of
outer mitochondrial membrane 40 (TOM40)/TOM70 complex
on mitochondria (Tang et al., 2019), WIPI4 at the omegasome
(Zheng et al., 2017), and GABARAP likely decorating the phag-
ophore (Bozic et al., 2020). The very large size of ATG2A sug-
gests it could engage many of these contacts simultaneously
(Fig. 2 D); alternatively, these different contacts might allow

relocalization of ATG2 in a stress-dependent manner, similar to
the way in which yeast VPS13 moves to different contact sites
depending on the local needs for lipid mobilization (Bean et al.,
2018).

In vitro, ATG2A is sufficient to tether separate liposomal
membranes, provided they exhibit a very strong curvature
(Chowdhury et al., 2018), and in yeast, Atg2 is essential to the
tethering of phagophore membranes and the neighboring ER
(Gómez-Sánchez et al., 2018; Kotani et al., 2018). Thus, ATG2A
itself could be the key component of the contact site. However,
in ATG2A/B double knockout cells, autophagy can be rescued by
strong overexpression of relatively short N-terminal fragments
of ATG2A harboring the chorein domain (Valverde et al., 2019).
This suggests two other key elements of ATG2A function: (a) As
in other sites of lipid transport, there is already a contact site
machinery that maintains close organelle apposition indepen-
dent of ATG2A. Moving forward, it will be essential to establish
with which other contact-site protein complexes ATG2A asso-
ciates, including, for example, proteins already thought to play a
role in maintaining ER–phagophore interfaces in mammals
(i.e., VMP1 or VAPA/B proteins; (Zhao et al., 2017, 2018). (b) The
tunnel architecture is not itself essential (as the short N-terminal
fragment probably cannot span between two membranes), but
rather the tunnel dramatically increases the efficiency of lipid
transport to allow endogenous levels of ATG2A to meet the de-
mands of cell biology.

High lipid mobilization is likely coupled to increased local
lipid synthesis
The ER is the site of most lipid synthesis in the cell, and several
studies have suggested that autophagosome biogenesis may be
localized to regions on the ER where lipid synthesis enzymes are
concentrated. Mizushima and colleagues first described how
PIS1 colocalizes with key early autophagy markers including
ULK1 and FIP200 (Nishimura et al., 2017). PIS1 was later
shown to more broadly colocalize with the ER contact site
protein VMP1, found at interfaces with both autophagosomes
and endosomes, and also colocalized with the choline/etha-
nolamine phosphotransferase enzyme (Tábara et al., 2018).
VMP1 also interacts with the ER-localized transmembrane
protein TMEM41B, which plays a role in lipid mobilization or
homeostasis. Knockout of TMEM41B phenocopies VMP1 and
ATG2 knockouts, blocking autophagosome biogenesis at an
early stage consistent with a failure in expansion (Moretti
et al., 2018; Morita et al., 2018; Shoemaker et al., 2019).
Thus, the production and mobilization of bulk lipids is physi-
cally coupled to sites where autophagosomes and the ER make
contact. Sustained phospholipid synthesis requires available
pools of fatty acids, and intriguingly, recent work in yeast
found the acyl-CoA synthetase Faa1 accumulating directly on
growing phagophores (Schutter et al., 2020). Critically, the
efficiency of autophagosome growth depended not only on the
presence of Faa1 in the cell, but also on its precise localization to
autophagosome biogenesis sites. Active phospholipid synthesis
has also been observed as essential in mammalian autophagy,
with at least some newly synthesized lipids becoming directly
integrated into the growing phagophore (Andrejeva et al.,
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2019). How these locally produced lipids are specifically used in
autophagosome membrane expansion is not yet known, but
could involve direct coupling to the transfer machinery (like
ATG2) or reflect a uniquely available lipid pool that is stably
associated with contact sites (King et al., 2020). Likewise, how
these lipids might be moved in one direction across ATG2 (to
support expansion) is not yet understood. Finally, if ER-derived
lipids are moved via lipid transport proteins or hemifusion-like
extrusion structures, they would be expected to populate only
the outer leaflet of the growing phagophore. How these lipids
might reach the inner leaflet for the purpose of membrane
expansion remains to be determined. Alternatively, one or both
of these lipid-exchange mechanisms could be used to control
lipid homeostasis, perhaps allowing for the rapid redistribution
of a key lipid on the cytosol-facing leaflet.

Phagophore membrane curvature
Theoretical modeling of autophagosome biogenesis suggests that
the phagophore forms de novo and grows as a flattened double-
membrane sheet that, upon relaxation of membrane curvature
energy, bends into a spherical autophagosome (Agudo-Canalejo
and Knorr, 2019). According to such studies, mechanisms must
exist to prevent premature bending of the phagophore rather
than a machinery to drive their bending. Several factors can
affect membrane curvature, including the lipid composition of
the two leaflets of the bilayer membrane or the binding of
proteins to lipids in one bilayer. Conical lipids such as PE and
phosphatidic acid induce membrane curvature, while other
lipids, such as PI, phosphatidylcholine, and phosphatidylserine,
promote bilayer formation (Carlsson and Simonsen, 2015).
PtdIns(3)P is an example of a cone-shaped lipid that, when
clustered, can create a cytosol-facing bud in the membrane that
serves as a platform for recruitment of the autophagic machin-
ery via WIPI2 (Dooley et al., 2014). The membrane curvature
of autophagic membranes can also be affected by binding of
various proteins, including proteins containing specific lipid-
binding domains; a membrane inserted helix; or being cova-
lently conjugated to a lipid. There are several examples of lipid
binding and curvature sensing proteins involved in autophagy.
Prime examples include the BAR domain–containing proteins
SNX18 and BIF-1/Endophilin-1, as well as the fission yeast pro-
teins Atg20 and Atg24 (Knævelsrud et al., 2013; Takahashi et al.,
2011; Zhao et al., 2016); the ATG8 conjugation machinery pro-
teins ATG3 and ATG16L1, containing membrane inserted helixes
essential for ATG8 lipidation (Lystad et al., 2019; Nath et al.,
2014); and LC3 itself, being covalently conjugated to PE (Knorr
et al., 2014). Moreover, several components of the ULK and
PIK3C3 complexes contain specific regions that likely facilitate
membrane recruitment in a geometry-dependent manner, in-
cluding an EAT domain in Atg1/ULK1 (Chan et al., 2009) and
a BATS domain in ATG14 (Fan et al., 2011). ATG12-ATG5-
ATG16L1–mediated conjugation of LC3 or GABARAP to PE is also
highly curvature sensitive, being more efficient on liposomes
with high curvature (25–65 nm) than those with relatively low
curvature (∼400 nm; Lystad et al., 2019). This is likely due to an
amphiphatic helix in the N-terminus of the E2-enzyme ATG3
that facilitates lipidation preferentially onmembranes with local

lipid packing defects (Nath et al., 2014), but an amphiphatic
helix in ATG16L1 is also required for its membrane binding
and function in ATG8 protein lipidation (Lystad et al., 2019).
Thus, lipidation of ATG8 family proteins likely occurs at the
highly curved ends of the phagophore, which may explain
their function in membrane elongation, but may also facilitate
their interaction with cargo-bound receptors upon de novo
autophagosome biogenesis during selective autophagy, as is
discussed below. It is possible that the highly bent rim of the
phagophore functions as a diffusion barrier for lipids and
conjugated ATG8 proteins, thereby facilitating asymmetric
lipid compositions in both membranes, but this concept is yet
to be tested.

The various roles of ATG8 family proteins
Recent studies have found that while autophagosomes can form
in cells depleted of components of the ATG conjugation ma-
chinery (Engedal and Seglen, 2016; Nguyen et al., 2016;
Tsuboyama et al., 2016), they are formed at a reduced rate, are
unable to fuse properly with lysosomes, and, critical to expansion,
they are smaller. In yeast expressing little or no Atg8 (Abeliovich
et al., 2000; Kirisako et al., 2000; Xie et al., 2008), in mammals
depleted of a single LC3/GABARAP subfamily (Weidberg et al.,
2010), or in a complete knockout of both mammalian LC3 and
GABARAP families (Nguyen et al., 2016), autophagosome size is
reduced. Because Atg8/ATG8 proteins can tether or fuse small
liposomes in vitro (Nair et al., 2011; Nakatogawa et al., 2007;
Weidberg et al., 2011), one possible model is that ATG8 proteins
are part of the machinery needed to fuse vesicles to drive mem-
brane expansion. Notably, in vitro, these proteins tether mem-
branes only in a topologically restricted trans conformation (Motta
et al., 2018), and they drive lipid-mixing only if the membranes
exhibit strongly destabilized lipid packing (Nair et al., 2011). Thus
if they drive fusion in vivo, lipidated Atg8 would need to be
present on both the incoming vesicle and expanding phagophore
at sites where one or both of these membranes were “prone” to
fuse, perhaps because of high local curvature or high surface
densities of fusogenic lipids.

Interestingly, in mammalian cells depleted for ATG8 pro-
teins, apparently “open” autophagosomes accumulate (Fujita
et al., 2008; Weidberg et al., 2010), and depletion of the conju-
gation machinery leads to a significant delay in degradation of
the inner autophagosomal membrane and cargo (Tsuboyama
et al., 2016), likely because of incomplete closure of the auto-
phagosomal edge. Thus, these proteins may also be needed for
efficient closure. How they contribute to closure is uncertain,
but it is tempting to speculate that ATG8 proteins could be in-
volved in the recruitment of LC3-interacting region (LIR)-con-
taining proteins required for phagophore closure (see below and
Fig. 3 A).

While ATG8 proteins are needed throughout autophago-
some growth, they must be recycled by the ATG4 family of
proteases to support efficient fusion into the lysosome (Sánchez-
Wandelmer and Reggiori, 2017). For some ATG8 homologues,
ATG4 proteolysis proceeds much more slowly on membranes
than in solution (Hill et al., 2019; Kauffman et al., 2018) and could
function as a kind of timer-based mechanism to limit rapid
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turnover of lipid-attached proteins. In addition, both the ATG4
protease and the ATG8 substrate are subjected to posttransla-
tional modifications that allow strict temporal control over
ATG8-family protein removal. In yeast and mammals, the Atg1/
ULK1 kinase can inhibit total Atg4/ATG4B activity (both priming
and delipidation; Pengo et al., 2017; Sánchez-Wandelmer et al.,
2017), by phosphorylating serines within the catalytic site. Thus,
the local accumulation of Atg1/ULK1 at expanding phagophores
will naturally suppress active ATG4 proteins. In mammals, re-
cycling of ATG8 proteins depends on their interaction with a
C-terminal LIR on ATG4B (Kauffman et al., 2018; Skytte Rasmussen
et al., 2017), and phosphorylation of serine residues near this motif
has been implicated in slowing protein removal and promoting
autophagic flux (Huang et al., 2017). In addition to phosphorylation,
these proteases are controlled by oxidation (Pérez-Pérez et al., 2014;
Scherz-Shouval et al., 2007), ubiquitination (Kuang et al., 2012),
O-GlcNacylation (Jo et al., 2016), and S-nitrosylation (Kuk et al.,
2009; Li et al., 2017), potentially allowing for varying controls de-
pending on the cellular stress condition. Direct modification of the
ATG8 proteins is also possible: it was recently discovered that TBK1-
mediated phosphorylation of LC3C and GABARAPL2 regulates their
delipidation by specifically disrupting the ability of ATG4 proteins
to recognize these substrates (Herhaus et al., 2020). Finally, both
Atg1 and ULK1 can bind ATG8 family proteins (Alemu et al., 2012;
Grunwald et al., 2020; Kraft et al., 2012), implying a continuing role
for these kinases on maturing autophagosomes.

Autophagosome closure
Recent technical advances and the identification of STX17 as a
marker for closed autophagosomes (Itakura et al., 2012) have
made it possible to study the mechanisms involved in phag-
ophore closure, a process involving fission of the inner and outer
membrane of the phagophore edge (Knorr et al., 2015; Fig. 3).
Several recent studies have implied a role for the endosomal
sorting complexes required for transport (ESCRT) machinery in
closure of the phagophore to form an autophagosome. This
process shares topology with canonical ESCRT-dependent pro-
cesses, including multivesicular body formation, virus budding
from the plasmamembrane, and cytokinesis (Vietri et al., 2020).
A possible role for the ESCRTs in phagophore closure was pre-
viously suggested, as autophagosomes were found to accumulate
in ESCRT-depleted cells (Filimonenko et al., 2007; Lee et al.,
2007; Rusten et al., 2007), but owing to technical limitations,
it has been difficult to distinguish fully closed autophagosomes from
those containing small holes in ESCRT-depleted cells. Recently,
several elegant imaging studies using advanced fluorescent probes,
such as HaloTag-LC3 in combination with membrane-impermeable
and -permeable HaloTag ligands (Takahashi et al., 2018) or LC3
tagged with a pH-sensitive red-fluorescent protein (pHuji; Zhen
et al., 2020), have established a direct role for the ESCRT ma-
chinery in autophagosome closure, during both starvation-
induced autophagy and mitophagy (Takahashi et al., 2018,
2019; Zhen et al., 2020; Zhou et al., 2019). Targeting of ESCRT-
I components (VPS37A and VPS28) to the phagophore seems
to facilitate transient recruitment of ESCRT-III components, in-
cluding chromatin-modifying protein/charged multivesicular
body protein 2A (CHMP2A) and the filament-forming subunit

CHMP4B, bringing the two membranes of the phagophore
leading edge in close proximity to allow membrane abscission,
followed by VPS4 (an AAA-ATPase)-mediated depolymerization
of ESCRT-III (Fig. 3). It is not completely understood how the
ESCRT machinery is targeted to the unsealed phagophore, but in
budding yeast, it was found that the ESCRT-III subunit Snf7
(CHMP4) interacts with Atg17 (FIP200) in a Vps21 (RAB5)-de-
pendent manner (Zhou et al., 2019), suggesting that the ULK
complex may regulate ESCRT recruitment and phagophore clo-
sure (Fig. 3 A). Interestingly, an N-terminal putative ubiquitin E2
variant domain in VPS37A seems required for autophagosome
closur, but is dispensable for multivesicular body formation
(Takahashi et al., 2019). As the ESCRT-I subunit tumor suscep-
tibility gene 101 (TSG101) also contains a ubiquitin E2 variant
domain and is implicated in autophagy (Filimonenko et al.,
2007), it is tempting to speculate that ESCRT-I might be re-
cruited to sites of autophagosome closure through binding to
ubiquitinated cargo proteins. It is important to point out that
ESCRTs can promote only the very last scission step of a highly
constricted membrane neck (or opening), implying that other
yet unknown mechanisms must exist to constrict the phag-
ophore rim to this stage.

Autophagosome biogenesis during selective autophagy
The term selective autophagy refers to turnover of specific
cargo, including surplus or dysfunctional organelles and cellular
proteins or invading pathogens (Levine and Kroemer, 2019).
Cargo degradation by selective autophagy relies on autophagy
receptors, which are LIR-containing proteins that facilitate in-
teraction between a cargo (often ubiquitinated) and LC3/GA-
BARAP in the autophagosomal membrane and themselves
become degraded together with the cargo (Galluzzi et al., 2017).
Autophagy receptors can be cytosolic proteins (such as p62, NBR1,
or NDP52) or membrane-bound cargo-specific proteins (such as
the mitochondria proteins BNIP3 and BNIP3L [BCL-interacting
protein 3 and its ligand] and FUN14 domain-containing 1;
Montava-Garriga and Ganley, 2020). The identification of cargo
receptors initially offered a simple linear model of selective au-
tophagy, in which cargo is recognized by specific autophagy re-
ceptors that further recruit LC3-containing phagophores to
facilitate cargo sequestration. This model has been challenged,
however, by recent studies showing that autophagy receptors (p62
and NDP52) interact with the ULK complex subunit FIP200 to
initiate de novo autophagosome formation around the cargo to be
degraded, including protein aggregates (p62), mitochondria, and
bacteria (NDP52; Ravenhill et al., 2019; Turco et al., 2019; Vargas
et al., 2019; Fig. 4 A). The interaction of NDP52 with FIP200 ap-
pears to be regulated by TBK1-mediated phosphorylation of
NDP52 (Ravenhill et al., 2019; Vargas et al., 2019). In line with this
model, a study using the lactone ivermectin to induce mitophagy
found that ubiquitination of mitochondria was followed by acti-
vation of TBK1, leading to recruitment of FIP200 and the au-
tophagy receptor optineurin, and later ATG13 and the other core
autophagy components, including VPS34 and WIPI2, resulting in
ATG8 lipidation (Zachari et al., 2019; Fig. 4 B). TBK1-mediated
phosphorylation of STX17 was demonstrated to induce its
translocation from the Golgi to phagophore nucleation sites
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and interaction with ATG13-FIP200 upon starvation-induced
autophagy (Kumar et al., 2019). Whether STX17 has a similar
role in de novo autophagosome formation during selective
autophagy is not known, but it is clear that TBK1 is a central
regulator of selective autophagy.

It is interesting to note that the p62–FIP200 interaction is
outcompeted by LC3B (Turco et al., 2019), indicating a sequential
order of p62 binding partners (Fig. 4 C). In line with this, LC3/
GABARAP proteins can be recruited to damaged mitochondria
independent of their binding to autophagy receptors, where
they stimulate further ubiquitin-independent, LIR-dependent
recruitment of autophagy receptors (OPTN and NDP52), sug-
gesting that a LC3/GABARAP-dependent positive-feedforward
loop enables phagophore expansion and mitophagy (Padman
et al., 2019). Elegant live-imaging microscopy has demon-
strated that phagophore initiation seems to occur at multiple
mitochondria sites closely connected to the ER (Zachari et al.,
2019). Thus, it is tempting to propose a zippering model for
autophagosome biogenesis during selective autophagy, in
which ubiquitination of cargo-specific proteins acts as an eat-
me signal to initiate TBK1 activation and binding of autophagy
receptors, leading to further recruitment of FIP200 and core
autophagy components to facilitate lipidation of ATG8 proteins,
which again can recruit more autophagy receptors. The high

avidity of cargo receptors to membrane-localized ATG8 family
proteins facilitates zippering of the cargo in a manner that likely
excludes any non-targeted material from sequestration within
autophagosomes.

Future perspectives
In this review, we discuss the various models that currently
exist to explain autophagosome biogenesis during nonselective
and selective types of autophagy. Whether different models for
membrane delivery exist depending on the cargo sequestered or
the autophagy-inducing signal still remains unknown. Future
studies will be needed to address this. Likewise, to understand
the molecular mechanisms of autophagy it is also essential to
better describe the specific lipids that constitute the phagophore
and autophagosome membranes, as these molecules will no
doubt contribute to the multiple membrane modeling events
involved in autophagosome biogenesis. Finally, although we
here focused on the role of membranes in determining the local
biochemistry driving autophagosome biogenesis, it is increas-
ingly obvious that liquid condensates also play a significant role
as an organizing principle during the early events of autophagy
(Sun et al., 2020; Wang and Zhang, 2019). How membranes
physically engage and assemble around these structureswill be a
key area moving forward.

Figure 4. Hypothetical model for de novo autophagosome formation during selective autophagy. (A) Autophagy receptors (p62 and NDP52) bound to
selective cargo interact directly with FIP200, leading to recruitment of the ULK complex as well as VPS34. TBK1-mediated phosphorylation of NDP52
stimulates the NDP52–FIP200 interaction. The p62–FIP200 interaction requires the LIR domain in p62. (B) PtdIns(3)P production by VPS34 causes recruitment
of WIPI2 and the ATG8 conjugation machinery, leading to ATG8 lipidation. (C) The p62-FIP200 binding can be outcompeted by binding of p62 to ATG8, which
facilitates further recruitment of autophagy receptors and expansion of the autophagic membrane tightly around the selective substrate.
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