
TOOLS

Object detection networks and augmented reality
for cellular detection in fluorescence microscopy
Dominic Waithe1,2, Jill M. Brown3, Katharina Reglinski4,6,7, Isabel Diez-Sevilla5, David Roberts5, and Christian Eggeling1,4,6,8

Object detection networks are high-performance algorithms famously applied to the task of identifying and localizing objects
in photography images. We demonstrate their application for the classification and localization of cells in fluorescence
microscopy by benchmarking four leading object detection algorithms across multiple challenging 2D microscopy datasets.
Furthermore we develop and demonstrate an algorithm that can localize and image cells in 3D, in close to real time, at the
microscope using widely available and inexpensive hardware. Furthermore, we exploit the fast processing of these networks
and develop a simple and effective augmented reality (AR) system for fluorescence microscopy systems using a display
screen and back-projection onto the eyepiece. We show that it is possible to achieve very high classification accuracy using
datasets with as few as 26 images present. Using our approach, it is possible for relatively nonskilled users to automate
detection of cell classes with a variety of appearances and enable new avenues for automation of fluorescence microscopy
acquisition pipelines.

Introduction
The microscopy image acquisition process can be highly repet-
itive and time consuming for the scientists who must be present
throughout much of the process. Furthermore, experimental
decisions made through this conventional acquisition process
are difficult to describe and quantify, making the experiment
hard to document and share scientifically. This lack of ability to
communicate decisions means it is difficult for the scientific
community as a whole to question and discuss methodologies
and selection strategies, meaning we are at risk from the un-
conscious (and potentially conscious) bias of individuals. This
issue is difficult to address but can be approached by adopting
and introducing technology that allows improved documenta-
tion and reproducibility of data acquisition during an
experiment.

There are a number of conventional high-content automated
optical light microscopes that can find and image cells on the fly,
relieving the effort of acquisition for the researchers and pro-
viding thorough documentation of the acquisition pipeline
(Bellomo et al., 2017; Thomas, 2010). Techniques like this often
use expensive hardware and computers and are often built on
signal-processing methods for 2D or, more recently, 3D imaging

platforms. Once created, these methods are powerful and fast,
but they lack flexibility, and a skilled analyst is often required to
tweak the parameters or modify the algorithms to detect a dif-
ferent cellular appearance, which can distance the user (e.g., the
biologist) from the process of acquisition. An optimum solution
represents hardware and algorithms that are easy to adapt by
relatively unskilled users to recognize and localize cells of any
type reproducibly and reliably and that can then be left, once
validated, to perform bulk experimentation. Furthermore, for
these approaches to be widely used, they must be deployable in
an affordable and modular form and work in tandem with
conventional microscopes and equipment.

Computer vision (CV) has developed to solve various chal-
lenges in video and photography (LeCun et al., 2015). In recent
years, algorithms inspired from the CV domain have made a
noticeable impact in the domain of microscopy image analysis,
and interest continues to grow (Çiçek et al., 2016; Ronneberger
et al., 2015; Schmidt et al., 2018 Preprint; Weigert et al., 2017).
Object detection, a subdiscipline of CV, has developed with the
goal of predicting bounding boxes for multiple objects in images
or videos with potentially different classes and scales. In the
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past, this approach has been applied across many fields, in-
cluding pedestrian detection, face detection, autonomous ve-
hicles, and robotics (for reviews, see Andreopoulos and Tsotsos,
2013; Dollár et al., 2012; Li and Allinson, 2008; Li et al., 2015;
Ruiz-del-Solar et al., 2018; Sun et al., 2006; Verschae and Ruiz-
del-Solar, 2015). So far, object detection networks have not been
used extensively for microscopy-based applications, though
there are some recent contributions that use these type of net-
works (e.g., astrocyte detection; Schmidt et al., 2018 Preprint;
Suleymanova et al., 2018). What potentially makes the object
detection networks so attractive to microscopy is their accuracy,
ease of use, and predictive speed. Thanks in part to the design of
the more recent networks, these can be efficiently implemented
on a graphics processing unit (GPU) and so can evaluate images
in close to real time. This makes them perfect for use in an
automatedmicroscopy setup where a microscope will image and
apply analysis in sequence. For these reasons, the possibility of
using object detection networks in microscopy is an interesting
one and worthy of investigation.

Faster-RCNN (region-based convolutional neural network)
was the first network to combine features for region proposal
with object classification and represents the culmination of a
systematic set of advances and optimizations (Girshick, 2015
Preprint; Girshick, R., J. Donahue, T. Darrell, and J. Malik. 2014.
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 580–587; Ren et al., 2015). Following
Faster-RCNN, several other competitive algorithms have been
developed that compete with and outperform Faster-RCNN in
several aspects, including SSD (Liu et al., 2016), YOLO (Redmon,
J., S. Divvala, R. Girshick, and A. Farhadi. 2016. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion. 779–788; Redmon and Farhadi, 2017 Preprint; Redmon and
Farhadi, 2018 Preprint), and RetinaNet (Lin, T.-Y., P. Goyal, R.
Girshick, K. He, and P. Dollár. 2017. Proceedings of the IEEE
International Conference on Computer Vision. 2980–2988).
Augmented reality (AR) is a technology that takes real-world
scenes and enhances them through graphical annotation and
works especially well when combined with CV techniques that
work in real time. AR has been used for many years in jetfighter
head-up displays and now is finding increasing usage in AR
headsets (e.g., Microsoft HoloLens) and the automotive indus-
try. Recently, AR has started to appear in microscopy (Chen
et al., 2019; Edwards et al., 1999). In all its domains, AR brings
the user in closer proximity to the information which can sup-
port them in their work and also reduces the distraction which
can come with continually looking backward and forward from
different independent displays or sources of information.

Because of the relative complexity of deep learning archi-
tectures and the high rates of data acquisition possible by
modern sensors, there is currently a commercial trend toward
developing cheap distributed hardware. An example application
for this is a self-driving car, which acquires terabytes of data per
day but must be able to analyze and respond to that information
in real time. To respond to this need, companies like Nvidia have
developed miniaturized and affordable GPU-enabled computers
known as “Edge” devices. The Nvidia Jetson TX2 development
board is one such example. The Jetson boards are compact, well

defined, and affordable, meaning that they can be adopted and
supported easily by an open community. These devices are used
to distribute computation, allowing real-time processing within,
for example, an autonomous car or, in our case, an autonomous
microscope.

We show here that object detection networks are very suit-
able for fluorescence microscopy. We show that despite their
complexity, these algorithms can be trained to work on rela-
tively modest-sized training datasets. We characterize and
contrast several object detection algorithms and determine
which is best for application in microscopy. Further, we proto-
type and test an algorithm that can use the bounding boxes
predictions from these networks to find and localize cells in
close to real time in a 3D environment, a framework we call the
autonomous microscope control algorithm (AMCA). We dem-
onstrate AMCAworking on a compact inexpensive Nvidia Jetson
TX2 development board and show that the outputs of this
analysis and acquisition can be visualized using an inexpensive
display integrated with the microscope binoculars, making it
much more appealing and immersive for the user. These tech-
niques allow the user to automate their research in a highly
customizable way but also allow them to question their as-
sumptions and quantify and understand their sample earlier in
the experimental pipeline.

Results
Choice of algorithm for cellular detection
An extensive collection of 10 datasets was established for this
study. Each dataset was split into training and test sets, and each
image was manually annotated with ground-truth regions
(bounding boxes; example images are shown in Fig. 1, Fig. 3,
Fig. 4, Fig. S1, and Fig. S4). With these data, we were able to
thoroughly test and benchmark four deep learning object de-
tection networks, specifically Faster-RCNN, YOLOv2, YOLOv3,
and RetinaNet, and assess their performance on microscopy-
acquired images. Many of the learned features in visual tasks
are universal and can be applied with minimal tuning to dif-
ferent “objects” through a technique known as transfer learning
(Hollandi et al., 2020; Pawlowski et al., 2016 Preprint; Stringer
et al., 2020; Yosinski, J., J. Clune, Y. Bengio, and H. Lipson. 2014.
Proceedings of Neural Information Processing Systems 27.
3320–3328). In our study, the object detection networks used
had models that were pretrained on the photography image
database ImageNet (Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li,
and L. Fei-Fei. 2009. IEEE Conference on Computer Vision and
Pattern Recognition. 248–255) and then fine-tuned for our ap-
plication. Upon visual inspection, the predictions made by each
of the networks on the test data were highly accurate with re-
spect to the ground-truth regions created by manual annotation
of the datasets (Fig. 1).

With six datasets, we evaluated the average precision (AP) of
the algorithm at different iterations of training (Fig. S2) and
under a number of different training regimens (TRs; Fig. S3).
The four different TRs (TR1–TR4) represent different data-
augmentation and training methodologies, AP and TR1–TR4
are described in detail in the Materials and methods section.
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Deep learning networks typically have some kind of data-
augmentation procedure to maximize the amount of data used
for training. In addition to the normal methods, we additionally
augmented the datasets by vertically flipping the microscopy
images. This is possible with microscopy, as the images pro-
duced are rotationally invariant, as opposed to photographic
images, where flipping vertically would yield an unnatural
upside-down result. When we pooled the individually trained
datasets from all the networks (Fig. 2 A, TR1 and TR2), we found
a significant increase in accuracy when including additional
vertically flipped training data (P = 0.016). Furthermore, we
reasoned that training on jointly on several discrete
(i.e., different cell types) but similar datasets would produce
models that would generalize better and perform more accu-
rately on individual cell classes (Hollandi et al., 2020). How-
ever, when the networks were jointly trained across different
datasets and then evaluated on individual datasets (Fig. 2 A,
TR1–TR3), we found no significant increase in accuracy (P =
0.172). It should be noted, however, despite no substantial boost
in accuracy, it is still very attractive to train one model to

recognize multiple classes rather than training a different
model specifically for each class, as this saves a lot of compu-
tation time and memory.

To more easily compare the algorithms, we calculated their
representative accuracy across each of the datasets by calculat-
ing the mean AP (mAP) of all the TRs (Table S1). Looking at the
performance of each algorithm over the datasets (Fig. 2 B), we
saw that overall YOLOv2 and RetinaNet were best performing,
each performing best for three datasets. YOLOv3 performed
significantly less well than the two best algorithms in all but two
datasets. Compared with YOLOv2, v3 has been designed with a
cluster of three output layers, each which make predictions at
different spatial scales. Although this increased capacity to
handle scale is beneficial in photography (Redmon and Farhadi,
2018 Preprint), this may not yield benefits in microscopy and
therefore may be restrictive due to the added complexity. In
summary, we saw that there was added accuracy benefits gained
from using training sets augmented with additionally vertically
flipped data, and we conclude that YOLOv2 was the preferred
algorithm overall because of its speed advantage over RetinaNet
(Redmon and Farhadi, 2017 Preprint), in addition to its high ac-
curacy for our data.

Testing across different scales and optical resolutions
For collaborative research, and for using different microscopy
modalities in concert, it may be necessary to train models on a
set of data derived from onemicroscope and tomake predictions
based on data generated on a different system. We explored this
idea and, specifically, the capacity of YOLOv2 to handle differ-
ences in digital and optical resolution. First, we explored dif-
ferent digital resolutions (Fig. 3, A–D). An image of COS-7 cells
taken with 100× objective (Fig. 3 A) was resampled, using bin-
ning, to 50% (Fig. 3 B) and 20% (Fig. 3 C) of its initial resolution.
Additionally, for three datasets (COS-7 nucleopore, C127 DAPI,
and erythroid DAPI), we took models trained independently and
then evaluated them on test data downsampled to lower reso-
lutions (Fig. 3 D). Across the datasets, the AP was reduced by
<1.5% at 50% resolution (0.5) and <15% at 20% resolution (0.2).
We conclude that digital resolution had some impact on quality,
especially at 20%, but this impact was not huge, given the dra-
matic reduction in pixels present. We reasoned that this resil-
ience in YOLOv2was because images are always preprocessed to
fit the network input (416 × 416 pixels) and, as long as there was
not toomuch loss of visual detail, then the accuracy of prediction
was relatively well maintained. We also addressed how sensitive
YOLOv2 was to the quality of objective (specifically the NA and
magnification; Fig. 3, E–G). Here, COS-7 cells stained with nuclear
pore were imaged on a Nikon microscope equipped with a 40×
0.55 NA and also a 10× 0.45 NA objective. The images were an-
notated with bounding boxes and evaluated with models (n = 3)
previously trained on test images acquired using a 100× objective
on an Olympus microscope. The object detection network per-
formed well on the test dataset acquired with the 40× objective,
yielding similar accuracy to the default 100× test dataset 0.978 ±
0.034 (AP ± SD). With the 10× objective, the images were first
cropped to be the same physical scale as a 40× image (200 ×
200 µm; Fig. 3 F, dashed red box). Upon assessment, the AP

Figure 1. Example fluorescence microscopy data generated for our
study with corresponding ground-truth human annotations and object
detection predictions. All object detections >0.5 confidence are shown. (A
and B) Eukaryotic cell dataset, fluorescently stained with DAPI. (C and
D) Neuroblastoma cells fluorescently stained with GFP-phalloidin. (E and
F) HEK cells fluorescently expressing GFP-SCP2 protein. Ground-truth boxes
(white), YOLOv2 prediction boxes (red), and Faster-RCNN prediction boxes
(green). Scale bars, 25 µm.
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dropped by 85% (0.145 AP) even though these images represented
a similar level of digital resolution with respect to the digital 0.2
scale (Fig. 3 D). We reasoned that this drop in APwas likely due to
the lower NA andmagnification of this objective and the resulting
loss of fidelity of key details in those images that resulted. In-
terestingly, we found the accuracy of detection could be partially
restored when the physical size of the cells in the image was close
to that of the training dataset. When images were cropped to
represent the same physical size (133.12 × 133.12 µm) as the
training images (Fig. 3, E and F, dashed white boxes), the ac-
curacy increased (Fig. 3 G). In conclusion, networks such as
YOLOv2 will perform well across different microscopy platforms
as long as the optical resolution is consistent and the physical
dimensions of the images are matched.

Multiclass and multichannel data
We wanted to explore the network’s ability to distinguish more
than one class (or phenotype) of cell within a given image. To
this end, we differentially labeled images with multiple cell
classes in the human embryonic kidney (HEK) peroxisome da-
taset, where we compared cells with punctate staining only
versus all cells present in the image (“all”; i.e., with punctate and
diffuse/residual staining; Fig. 3, H and J). In addition, we used
the erythroid DAPI all dataset (Fig. 3, I and J), where we train-
ed for either single and multinucleate cells or for all cells
(i.e., single/multinucleate and apoptotic cells. We found that
the network was able to distinguish subtle phenotypes in both
cases even in these challenging datasets, though with a lower
accuracy (Fig. 3 J). The reduction in accuracy is a consequence
of the subtlety of the task; it is easier to recognize all the cells
present rather than to distinguish them based on subtle visual
phenotypes. This capacity of multiclass detection is intrinsic to

object detection networks and could be used to great effect in
microscopy in the development of assays that search for rare
phenotypes or dynamic imaging triggered in response to
morphological change. We were also interested in how the
object detection networks would perform on multichannel data
(Fig. S4, A–C). Both the neuroblastoma phalloidin DAPI and
erythroblast DAPI glycophorin A datasets were dual stained
(Fig. S4, A and B). We found that YOLOv2 was clearly capable of
recognizing two-channel images as compared with the single-
DAPI-channel images and that this additional information was
neither detrimental nor greatly beneficial to the classification
performance in these cases (Fig. S4 C).

Integrated and automated image acquisition by
object detection
Cells when viewed under a microscope are predominantly 3D,
spanning more than one focal plane. A natural progression from
localizing cells in 2D, therefore, is to localize them in a 3D en-
vironment. To adapt the object detection networks so that they
could be used for acquiring cells in a 3D environment, we de-
veloped AMCA. AMCA is a Python-written control framework
that interfaces with the microscope, camera, and control hard-
ware to dynamically acquire images in 3D (Fig. 4 A). At its core is
an object detection network (e.g., YOLOv2), which is used to
inform the systemwhether there are cells present in a particular
optical slice. Through custom Python scripts, it is possible to
efficiently scan the slide (automated acquisition) and only ac-
quire image volumes and slices where cells are identified (cel-
lular detection). This is efficient, as only slices encompassing
cells are retained and imaged and the microscope can quickly
move through areas lacking cells, without continual prompting
from the user.

Figure 2. Summary comparison of object detection algorithms for cellular detection. (A) Comparison of AP for all datasets showing that additional
vertical data flipping is effective for raising accuracy in general. Without (TR1) and with vertically flipped data augmentation (TR2) and when trained using
multiple datasets without (TR3) and with (TR4) vertically flipped data. The Friedman’s test was applied using Dunn’s multiple comparisons to compare TR1/TR2
(n = 24, AP ± SD, * P < 0.05) and TR1/TR3 (n = 24, AP ± SD, nonsignificant). (B) Overall average AP comparison of Faster-RCNN, YOLOv2, YOLOv3, and
RetinaNet for each dataset, averaging across each of the training modalities (TR1–TR4), described in A. Numerically, the best-performing algorithm is marked
with an arrow for each dataset case YOLOv2 (3/6) and RetinaNet (3/6; n = 4, AP ± SD).
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Figure 3. YOLOv2 object detection performs well in a number of domains. (A–D) YOLOv2 detection accuracy is consistent across images of lower digital
resolution but is sensitive to optical resolution. (A) COS-7 cells stained for nuclear pore and imaged using a 1.4 NA 100× objective. (B) Same image as in A
resampled at 50% of pixel resolution. (C) Same image as in A but resampled at 20% of pixel resolution. Scale (A–C) is 20 µm. (D) The accuracy of prediction on
the 0.5 (B) and 0.2 scaled dataset (C) stays relatively high compared with normal resolution (1.0, 100×) when compared across three independent datasets (n = 3,
mean ± SD). (E) COS-7 cells stained for nuclear pore and imaged with 40× 0.55 NA objective (scale bar, 20 µm). The dotted frame represents image area of
equivalent physical scale of images A–C i.e., 133.12 × 133.12 µm. (F) COS-7 cells stained for nuclear pore and imaged with a 10× 0.45 NA objective (scale bar, 100
µm; inset, 20 µm). The white dotted inset is a zoom region on the dotted frame and represents an equivalent physical dimension of A (i.e., 133.12 × 133.12 µm);
the red dotted frame represents same physical dimension as E (i.e., 200 × 200 µm). (G) Graph showing optical resolution is critical for performance of YOLOv2
when used to evaluate images collected on different microscopes with different objective types (40× and 10×; n = 3, mean ± SD). (H–J) Multiclass cellular
detection in HEK peroxisome and erythroid DAPI datasets. YOLOv2 can be used to discretely identify cells with specific visual phenotypes within a single image.
(H) HEK cells with varying levels of GFP-SCP2 expression, with either punctate fluorescence or a low level of diffuse nonpunctate fluorescence. (I) Erythroid
nuclei stained with DAPI, highlighting either single/multinucleate cells that are healthy or in a state of apoptosis characterized by a blebbed appearance. In both
images (H and I), white dashed ROIs represent ground-truth annotations used for training. ROIs with a star in close proximity represent the subset of annotations
that were labeled positive for a phenotype of interest in the training. Blue ROIs represent predicted regions frommodel trained to recognize all cells in the image,
whereas the green ROIs represent prediction for model trained to recognize a specific subset of cells present. (H) Output of an experiment with ROI predictions
from a classifier trained to recognize all the cells in the image, while the second model (blue ROI) was trained to only recognize the cells exhibiting punctate
fluorescence. (I) Output of an experiment where one network was trained to recognize only heathy single/multinucleate cells (green ROI), whereas the second
model was trained to recognize all cells, including apoptotic cells (blue ROI). In perfectly classified images, green regions should only appear next to annotation
regions with a green star (I has some wrongly classified regions). Scale bars represent 20 µm in both images. (J) Graph summarizes the AP measured with respect
to the different conditions in H and I. Detector is capable of recognizing phenotypic subsets; however, the accuracy drops (in these experiments) when the
network is trained to recognize a subset of cells (white bars) rather than cells in each image (filled bars; n = 3, mean ± SD).

Waithe et al. Journal of Cell Biology 5 of 13

Automated microscopy vision https://doi.org/10.1083/jcb.201903166

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/219/10/e201903166/1815375/jcb_201903166.pdf by guest on 09 February 2026

https://doi.org/10.1083/jcb.201903166


Figure 4. Autonomousmicroscopy and AR powered using Jetson TX2 and LattePanda allows extensive and descriptive screens to be performed with
ease. (A–D) Schematic illustrating the AMCA working with a Jetson TX2 development board and AR optics. (A) The AMCA will control the automated ac-
quisition on the microscope and will move the slide, imaging at different positions in sequence. If cells are detected in a location, the image will be stored and
then the location optically sectioned in the “z” dimension until no more cells are detected. Once all the regions containing cells have been detected in a stage
location, they are processed using a contiguous volume detection to find the 3D regions that encapsulate the individuals cells (see G). (B) Photo of the Jetson
TX2 development board (left) on which the AMCA algorithm, object detection, hardware control, and image acquisition are running. On the right-hand side is
the LattePanda Windows computer, which runs Windows-specific hardware control software and communicates with the Jetson TX2 via an ethernet cable.
(C) AR allows the user to see the outputs of the analysis algorithm when viewing the sample down the microscope. The ROI generated from cellular detection
can be visualized through the AR system as the microscope acquires images online or subsequently offline, when the user views areas of the sample that have
already been processed. (D) View down the binocular eyepiece of the microscope where the AR graphics are overlaid with the light emitted from the sample
(scale bar, ∼20 µm). (E–H) Preliminary screen of C127 cells stained with DAPI. (E) Low-resolution overview image of C127 cells acquired during screen. Scale
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To be as affordable and accessible as possible, we used a
Nvidia Jetson development board as the main control computer
of the system. This system has all the desired functionality
needed to control the system and is muchmore affordable than a
full PC; configuring the system is also straightforward. It has a
powerful GPU and also comes with a central processing unit and
random access memory (RAM) and all the necessary function-
ality for a computer. The Jetson could handle most of the func-
tionality and interactivity required; however, some Windows
functionality was required to run some of the drivers for the
specialist hardware. We therefore implemented an inexpensive
LattePandaWindows development board. This is a muchweaker
computer than the Jetson but comes preinstalled with Windows
10. We used the LattePanda in concert with the Jetson to control
the microscope acquisition (Fig. 4 B). By using this standardized
inexpensive system, we hope to attract a large user base for this
system and can support them directly and effectively as users
can easily setup the same base hardware.

Here, we show that AMCA can dynamically acquire images in
3D in an automated fashion. Importantly, we demonstrate that
the object detection network is fully integrated into the data
acquisition workflow and runs in close to real time alongside it.
Using our Jetson TX2 Development board and an input resolu-
tion of 416 × 416 pixels for the YOLOv2 object detection network,
we achieved 4–5–frames per second output speed (∼150–200 ms
for the detection/control and allowing 50 ms for exposure).
Detections are therefore instantly visible with this system and
can greatly assist in the process of acquisition of the desired cell
states/phenotypes.

AR provides visual feedback in real time
The experience of using AR in the context of microscopy en-
riches the experience and helps integrate the acquisition phase
with sample analysis. Using off-the-shelf components and op-
tical elements, we used a simple solution to provide AR within
the microscope binoculars (see Materials and methods for more
details; Fig. 4 C). The AR system lends itself very well to work
alongside AMCA, which provided near-real-time analysis and
processing of the object detection network. The AR system can
work in two different ways: (1) “online” mode (Fig. 4 D and
Videos 1 and 2), where the system simultaneously analyzes as
you manually move around the slide; or (2) “offline” mode,
where the slide has already been imaged and analyzed and you
review the detections in the context of the images of the sample.

We wanted to showcase the potential for AMCA to perform
screens on volumetric acquisitions of cells. For this, we used
C127 cells, where nuclei were stained with DAPI after having
been treated with a technique known as RASER-FISH (Brown
et al., 2018). Using a 100× objective, we screened 624 imaging
positions, arranged with uniform spacing of 200 µm between

positions, across three slides. A low-resolution overview image
of one of the slides is shown in Fig. 4 E, and a higher-resolution
image is shown in Fig. 4 F. Uniquely localized cells were clas-
sified with colored bounding boxes (Fig. 4 G). The classification
persists through the in-focus volumetric region, and each clas-
sification is linked with its counterparts from the same cell,
denoted by the same color (Fig. 4 G, right). This clearly shows
that object detection algorithms, when applied to microscopy,
offer significant possibilities with regard to the identification
and extraction of cellular subvolumes. As an overview, image
volumes were “maximum” projected and the average intensity
measured in each cell area (Fig. 4 H; 2,105, 2,100, and 1,887 cells
for the first, second, and third slides, respectively), and this took
∼34 min per slide. The resulting distributions have one main
peak and an extended tail that suggests that there is more than
one component contributing to the overall intensity distribution
of the DAPI-stained cells. What this preliminary experiment
does show is the potential power of this higher-throughput
automated volumetric imaging approach to reveal data not
usually visible from assays run across a small number of cells. By
using AMCA, we were also able to optimize the acquisition
owing to the dynamic analysis allowed by the objection detec-
tion algorithm. This dynamic analysis system cut short imaging
of any volumes where the sectioning had already extended
across all the cells present, saving valuable time. For large
screens, this represents a considerable time-saving factor and
also requires less storage.

Discussion
In this study, we created a publicly available collection of data-
sets of cellular images (http://doi.org/10.5281/zenodo.3894389)
and annotated the identified cells therein with bounding boxes.
This provided an excellent resource for training, benchmarking,
and improving the object detection algorithms in this study and
hopefully future studies.

We have comprehensively benchmarked four popular object
detection algorithms (Faster-RCNN, YOLOv2, YOLOv3, and
RetinaNet) for the task of cellular classification and localization.
We found YOLOv2 to be an excellent choice for accurate cell
detection, even with challenging data, and it also is the fastest.
Furthermore, we found that we could enhance the performance
of these algorithms with additional data augmentation in the
form of vertical flipping. The future for these kind of networks
within the imaging sciences is likely to revolve around gener-
ating network designs that can outperform YOLOv2 in terms of
accuracy and flexibility. The main bottleneck for the acquisition
process is no longer the speed of processing but the exposure
time of the camera. There is certainly convenience to screening a
sample and then performing fine-grain analysis with the same

bar, 200 µm. (F) Zoom area shown by green rectangle in E. Image areas are shownwith detected cells bounded by colored boxes. Cells touching the image area
boundaries are excluded in this analysis. Scale bar, 200 µm. (G) Left: Example image with bounding boxes representing discrete cellular classification from
object detection algorithm and the color represents track linking with the contiguous volume detection (colored rectangles). Depiction of cell classifications
tracked through the different z-slices; color border represents cells in G. (H) Summary violin plots calculated over the mean intensity values for the cells
acquired during the screen. Three independent slides were screened and analyzed (green, red, and blue). The median value (3,216, 3,905, and 2,487, solid line),
the lower quartile (2,891, 3,404, and 2,227, left dashed line) and the upper quartile (3,923, 4,825, and 3,055, right dashed line) for each slide (1–3), respectively.
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objective, but there are limits to the throughput achievable with
high-magnification optics due to the limited field of view. A superior
system would automatically correlate measurements made using a
low-magnification “screening” objective with those of a higher-
magnification immersion objective. Such a system would allow the
user to accurately and quickly perform high-resolution imaging on a
specific cell (or region) with a complete understanding of how that
cells fits into the overall distribution of the cells in the sample.

In this work, we have developed a dynamic 3D acquisition
control framework, AMCA, that interfaces with an automated
stage and fast-acquisition camera to acquire image volumes. The
object detection algorithm at the heart of AMCA allows
near–real-time identification of cells and their efficient acquisi-
tion. Importantly, we demonstrated that multiple phenotypic
classes of cells could be classified within images showing that
AMCA can be extremely helpful in scanning for rare or partic-
ular cell types. This powerful technique can easily be trained by
nonskilled users due to its simplicity. To aid in the adoption of
AMCA and this technique in general, we have developed the
system to work on an inexpensive Nvidia Jetson TX2 and Lat-
tePanda Development boards. This makes the system very af-
fordable, easy to install, and easily applied to other systems as the
installation steps will work for all Nvidia and equivalent boards.
The development boards are also physically small and could
potentially be incorporated directly into the microscope housing,
making it possible to have an intelligent acquisition system
embedded in the microscope, reducing the overall footprint of a
system. We believe that such ease of accessibility of the system
will make it a popular choice among scientists developing their
own automated solutions. Using bounding boxes as a form of
annotation by AMCA has the advantage that it is simple and
quick to create and interpret. One criticism of using bounding
boxes, however, is that cellular image analysis generally involves
some form segmentation to discretize each cell and potentially
reduce the impact of background pixels. Using bounding boxes,
however, does not exclude this type of analysis and actually is an
excellent prior for applying subsequent analysis methods
through providing demarcation of the image.

Computer-based exploration of 3D data can often be cum-
bersome and unintuitive. In contrast, a microscope is a well-
designed tool for navigating a 3D space and lends itself well to
3D exploration. By using AR in the visual output of the micro-
scope, we have enabled the data generated by the microscopy
system to be displayed within the context of the physical spec-
imen. This is an enjoyable and intuitive experience for the user
and allows for the quick comparison of areas that have been
imaged, allowing one to understand it better. AR is a very at-
tractive feature of our system, especially as it has been developed
using conventional optical components. We envisage this type of
technology becoming commonplace inmicroscopy andwill work
toward more compact and convenient implementations.

Materials and methods
Dataset generation
Our goal for applying object detection networks to microscopy
was ultimately so that these algorithms could be applied to find

and isolate cells within a 3D environment. As they stand, object
detection algorithms are predominantly used to find objects in
single 2D photography images or movies, and the training ma-
terial is supplied to the algorithm exclusively in a 2D format
(Andreopoulos and Tsotsos, 2013; Dollár et al., 2012; Li and
Allinson, 2008; Li et al., 2015; Ruiz-del-Solar et al., 2018 Pre-
print; Sun et al., 2006; Verschae and Ruiz-del-Solar, 2015).
Single-plane images are far easier to label by users than 3D
volumes, requiring only a 2D bounding box to be placed around
examples within the image. Therefore, we wanted to establish
our methodology for microscopy, including training and pre-
diction, in 2D and then apply it in a 3D environment. To validate
the object detection algorithms, we created six different cell-
based datasets and modified the networks so that they could
be trained on these data and also validated against holdout test
data (i.e., not used for training). Each dataset was divided into
train and test datasets, and the object detection networks were
trained and evaluated on the train and test datasets, respectively.
With the exception of the neuroblastoma phalloidin data, each
dataset was created and imaged within our host institution using
conventional wide-field microscopes. The neuroblastoma phalloi-
din data were generated from an online resource (Yu et al., 2010)
and the ground-truth segmentations converted into bounding box
representations. These data in their entirety, as well as the anno-
tations, are available in the repository (http://doi.org/10.5281/
zenodo.3894389). The collection includes the following data.

Erythroblast DAPI (+glycophorin A)
Erythroblast cells were stained with DAPI and glycophorin A
protein (CD235a antibody, JC159 clone; Dako) and Alexa Fluor
488 secondary antibody (Invitrogen). DAPI staining was per-
formed using VectaShield Hard Set mounting solution with
DAPI (Vector Lab). The number of images used for training was
80, and the number used for testing was 80. The average
number of cells per image was 4.5.

Neuroblastoma phalloidin (+DAPI)
Images of neuroblastoma cells (N1E115) stained with phalloidin
and DAPI were acquired from the Cell Image Library (Yu et al.,
2010). Cell images in the original dataset were acquired with a
larger field of view than our system, and so we divided each
image into four subimages and also created region of interest
(ROI) bounding boxes for each of the cells in the image. The
images were stained for FITC-phalloidin and DAPI. The number
of images used for training was 180, and the number used for
testing was 180. The average number of cells per image was 11.7.

Fibroblast nucleopore
Fibroblast (GM5756T) cells were stained for a nucleopore pro-
tein (anti-Nup153 mouse antibody; Abcam) and detected with
anti-mouse Alexa Fluor 488. The number of images for training
was 26, and the number used for testing was 20. The average
number of cells per image was 4.8.

Eukaryote DAPI
Eukaryote cells were stained with DAPI and fixed and mounted
in Vectashield (Vector Lab). The number of images for training

Waithe et al. Journal of Cell Biology 8 of 13

Automated microscopy vision https://doi.org/10.1083/jcb.201903166

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/219/10/e201903166/1815375/jcb_201903166.pdf by guest on 09 February 2026

http://doi.org/10.5281/zenodo.3894389
http://doi.org/10.5281/zenodo.3894389
https://doi.org/10.1083/jcb.201903166


was 40, and the number used for testing was 40. The average
number of cells per image was 8.9.

C127 DAPI
C127 cells were initially treated with a technique called RASER-
FISH (Brown et al., 2018), stained with DAPI, and fixed and
mounted in Vectashield (Vector Lab). The number of images for
training was 30, and the number used for testing was 30. The
average number of cells per image was 7.1.

HEK peroxisome all
HEK-293 cells expressing peroxisome-localized GFP-SCP2 pro-
tein were transfected with a GFP-SCP2 encoding plasmid, which
contains a PTS-1 localization signal that redirects the fluo-
rescently tagged protein to actively importing peroxisomes
(Stanley et al., 2006). Cells were fixed and mounted. The
number of images for training was 55, and the number of images
for testing was 55. Additionally, we subcategorized the cells as
“punctated” and “nonpunctated,” where punctate represented
cells that have staining where the peroxisomes are discretely
visible and nonpunctated represented diffuse staining within the
cell. The HEK peroxisome all dataset contains ROI for all the cells.
The average number of cells per image was 7.9. The HEK perox-
isome dataset contains only those cells with punctate fluorescence.
The average number of punctate cells per image was 3.9.

Erythroid DAPI all
Murine embryoid body–derived erythroid cells, differentiated
from murine embryonic stem cells, were stained with DAPI and
fixed and mounted in Vectashield (Vector Lab). The number of
images for training was 51, and the number of images for testing
was 50. Multinucleate cells are seen with this differentiation
procedure. There is a variation in size of the nuclei (nuclei become
smaller as differentiation proceeds). The smaller, “late erythroid”
nuclei contain heavily condensed DNA and often have visible heavy
“blobs” of heterochromatin. Apoptotic cells are also present, with
apoptotic bodies clearly present. The erythroid DAPI all dataset
contains ROI for all the cells in the image. The average number of
cells per image was 21.5. The subset erythroid DAPI contains non-
apoptotic cells only. The average number of cells per imagewas 11.9.

COS-7 nucleopore
Slides were acquired from GATTAquant. GATTA-Cells 1C are
single-color COS-7 cells stained for nuclear pore complexes
(Anti-Nup) and Alexa Fluor 555 Fab(ab9)2 secondary stain.
GATTA-Cells are embedded in ProLong Diamond. The number of
images for training was 50, and the number for testing was 50.
The average number of cells per image was 13.2.

COS-7 nucleopore 40×
The same GATTA-Cells 1C slides (GATTAquant) as above were
used, but they were imaged on a Nikon microscope with a 40×
NA 0.55 objective. The number of images for testing was 11. The
average number of cells per image was 31.6.

COS-7 nucleopore 10×
The same GATTA-Cells 1C slides (GATTAquant) as above were
used, but they were imaged on a Nikon microscope with 10× NA

0.45 objective. The number of images for testing was 20. The
average number of cells per image was 24.6 (the entire field of
view was not used).

Dataset annotation
Datasets were annotated by a skilled user. These annotations
represent the ground-truth of each image with bounding boxes
(regions) drawn around each cell present within the staining.
Annotations were produced using Fiji/ImageJ (Schindelin et al.,
2012) ROI Manager and the OMERO (Allan et al., 2012) ROI
drawing interface (https://www.openmicroscopy.org/omero/).
The dataset labels were then converted into a format compatible
with Faster-RCNN (Pascal), YOLOv2, YOLOv3, and also Reti-
naNet. The scripts used to perform this conversion are docu-
mented in the repository (https://github.com/dwaithe/amca/
tree/master/scripts/).

Microscopy setup
The fibroblast nucleopore, eukaryote DAPI, C127 DAPI, HEK
peroxisome, erythroid DAPI, and COS-7 nucleopore cell datasets
were acquired on an Olympus IX73 microscope with a 100×
UPlanSApo NA 1.4 objective. The microscope was also equipped
with a Photometrics Prime sCMOS camera (6.5 × 6.5 µm pixel,
2,048 × 2,048 chip), a CoolLED Ultra pe300 LED light source, an
Applied Scientific Instrumentation automated xy stage, and a
Physik Instrumente Piezo (P-733 2CL). Typically, 2× binningwas
applied to the camera (13 × 13 µm) and later and additional 2 ×
2 digital binning. The erythroblast DAPI dataset was acquired on
a DeltaVision Elite (GE Healthcare Life Sciences) equipped with
an Olympus 60× NA 1.42 lens, filters for DAPI (excitation 390
nm, emission 435 nm) and FITC (excitation 475 nm, emission
525 nm) and a CoolSNAP HQ2 camera. The neuroblastoma
phalloidin +DAPI cell line was acquired on a Zeiss Aviovert 200
microscope with filters for DAPI and FITC (Yu et al., 2010). The
COS-7 nucleopore 40× and 10× datasets were acquired on a Ni-
kon Eclipse TE300 microscope. The Nikon was equipped with a
Excelitas XCite 120Q light source, a QImaging Rolera EM-C2
(electron multiplying charge-coupled device) camera, 8 × 8 µm
pixel size, 1,004 × 1,002 chip, and a 40× long working distance
phase 1 NA 0.55 and a 10× PlanApo differential interference
contrast NA 0.45 objective. All acquisition experiments were
performed at room temperature and pressure.

AR modifications
To develop the AR setup, we adapted commercial components
with custom parts. The AR effect is created through the merging
of the image emanating from a display screen with the image
emanating from the microscopy sample. This was achieved
through the coupling of a 50:50 beam splitter (BSW10R; Thor-
labs) into the light path of the microscope. This was realized
through adapting a Mightex Dichroic/filter cube (DSI-CUBE-OL-
UA) to fit in between the observation tube and the observation
tube mount of an IX73 microscope (Olympus). The Mightex
Dichroic filter has the required circular dovetail mounts to fit
within the binocular of the IX73 system, but in its default con-
figuration, the beam splitter couples light toward the specimen
and not the observer, which is what we require for the AR
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system. To correct this, we engineered two adapter plates to
reverse the gender of the mounts, and details of these plates can
be found in Data S1. The computer screen (HDMI 8” IPS LCD
Screen Kit; Pimoroni) was positioned to the right of the micro-
scope so that the base of the screen was parallel to the Mightex
cube and perpendicular to the light path through the micro-
scope. The screen was secured at the desired angle using stan-
dard M6 Post components (Thorlabs) and an Ailun Tripod
Mount Adapter (B071XHYG5R; Amazon). Attached to the
Mightex cube, between the beam splitter and light coming from
the computer screen, was a 300-mm biconvex lens (LB1779;
Thorlabs), which converged the light from the screen onto the
beam splitter. The computer screen was placed ∼30 cm from
the beam splitter, which resulted in an in-focus view of the
screen graphics when looking down the binocular. An optional
modification we made to the conventional IX73 setup to use a
50:50 beam-splitter cube in place of the mirror that directs
light either to the camera or to the binocular. We made this
modification so we could simultaneously view the specimen
down the binocular and also record the same image on the
computer. For this, we engineered our own cube holder (Data
S1) and using superglue adhesive attached a 30-mm 50R/50T
Standard Cube beam splitter (#32-701; Edmund Optics).

Benchmarking computer hardware
Benchmark experiments were run on Dell PowerEdge R730
Server (2x Intel Xeon E5-2650, 256 RAM, Nvidia Tesla K80 GPU)
as well as on a Dell Precision Tower, with 32 GB RAM, Nvidia
Quadro P5000 16 GB GPU, Dual Xeon Processor E5-2637, both
with CentOS 7 installed.

Object detection algorithms
In this study, we took four leading publicly available object de-
tection networks (Faster-RCNN, YOLOv2, YOLOv3, and Reti-
naNet). We found that typically, a peak level of accuracy was
reached before the accuracy stabilized to a consistent value, and
so all comparisons were made at the optimal number of iter-
ations of training for each algorithm.

The code used for the Faster-RCNN is a tensorflow im-
plementation and was modified from dBeker/Faster-RCNN-
TensorFlow-Python3.5; it can be found at https://github.com/
dwaithe/Faster-RCNN-TensorFlow-Python3.5. Faster-RCNN was
configured as follows. The VGG16 network was used to initialize
the classification layers. The parameters for learning were
configured as follows: ‘Weight_decay’ = 0.0005, ‘learning_rate’ =
0.001, ‘momentum’ = 0.8, ‘gamma’ = 0.1, ‘batch_size’ = 256,
‘max_iters’ = 40,000, ‘step_size’ = 30,000. The network was
modified to flip images not only horizontally but also vertically
during data augmentation.

YOLOv2 was cloned from the source (https://github.com/
AlexeyAB/darknet) and modified for this work (https://github.
com/dwaithe/darknet3AB). The modified YOLOv2 network
was run with configuration settings (yolov2_dk3AB-clas-
ses-#-##flip.cfg): ‘batch’ = 64, ‘subdivisions’ = 8, ‘height’ = 416,
‘width’ = 416, ‘channels’ = 3, ‘momentum’ = 0.9, ‘decay’ = 0.0005,
‘angle’ = 0, ‘saturation’ = 1.5, ‘exposure’ = 1.5, ‘hue’ = 0.1, ‘lear-
ning_rate’ = 0.001, ‘burn_in’ = 1000, ‘max_batches’ = 10000,

‘policy’ = steps, ‘steps’ = 4500, 4800, ‘scales’ = 0.1, 0.1. The net-
work was modified to flip images not only horizontally but also
vertically during data augmentation.

YOLOv3 was also cloned from the source (https://github.
com/AlexeyAB/darknet) and modified for this work (https://
github.com/dwaithe/darknet3AB). It was run with the follow-
ing configuration settings (yolov3_dk3AB-classes-#-##flip.cfg):
‘batch’ = 64, ‘subdivisions’ = 16, ‘width’ = 608, ‘height’ = 608,
‘channels’ = 3, ‘momentum’ = 0.9, ‘decay’ = 0.0005, ‘angle’ = 0,
‘saturation’ = 1.5, ‘exposure’ = 1.5, ‘hue’ = .1, ‘learning_rate’ =
0.001, ‘burn_in’ = 1,000, ‘max_batches’ = 10,000, ‘policy’ = steps,
‘steps’ = 9,000, 9,600, ‘scales’ = 0.1, 0.1. The network was
modified to flip images not just horizontally but vertically dur-
ing data augmentation. The number of classes was set to 1 or to 6
and the filters adjusted accordingly to 18 or 33 respectively.
(filters=(classes + 5)*3). YOLOv3 has three output layers, rep-
resenting different scales, and the number of filters was cor-
rected in each case.

RetinaNet was cloned from the source (https://github.com/
fizyr/keras-retinanet) and was modified for this work (https://
github.com/dwaithe/keras-retinanet) and run with settings:
‘batch’ = 1, ‘lr’ = 0.00001, ‘epochs’ = 50, ‘steps’ = 10,000, ‘back-
end’ = resnet50, ‘image-min-side’ = 800, ‘image-max-side’ =
1,333. The network was modified to flip images not only hori-
zontally but also vertically during data augmentation. The number
of classes was defined through the ‘retina_classes.csv’ file, which
accompanies the training data.

Evaluation metrics
AP is a commonly used metric for assessing the accuracy of al-
gorithms that are performing classification and/or localization.
For this study, we use the updated VOC2010 AP definition de-
scribed previously (Everingham et al., 2015) and as follows. In a
given 2D image, containing one or more objects (i.e., cells), a
trained object detection network will predict bounding regions
for each of the objects contained within the image and associate
a level of confidence (0–1.0) with that prediction. At a low-
confidence threshold, many regions will be predicted whereas
a higher confidence far fewer will, normally for visualization of
results we show the predictions with a specific cutoff for each
algorithm. For comparison between algorithms, however, we
need to evaluate performance across confidence levels. The first
stage in this process is to assess which of the predicted regions
(Bp) is overlapping the ground-truth regions (Bgt). Those de-
tections that have an overlap coefficient (a0) of >50% are con-
sidered correct detections (true positives [TPs]); otherwise, they
are defined as false positives (FPs):

a0 � area
�
Bp \​ Bgt

�

area
�
Bp[​ Bgt

� ,

where Bp \​ Bgt is the intersect and Bp[ ​ Bgt is the union of these
regions. Multiple detections are then ordered in terms of de-
creasing confidence. Multiple positive detections of the same
region will only count the first detection as a positive and the
rest as negative detections (false negatives [FNs]). If a ground-
truth region contains no detections, this counts as a FN also.

Waithe et al. Journal of Cell Biology 10 of 13

Automated microscopy vision https://doi.org/10.1083/jcb.201903166

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/219/10/e201903166/1815375/jcb_201903166.pdf by guest on 09 February 2026

https://github.com/dwaithe/Faster-RCNN-TensorFlow-Python3.5
https://github.com/dwaithe/Faster-RCNN-TensorFlow-Python3.5
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/dwaithe/darknet3AB
https://github.com/dwaithe/darknet3AB
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/dwaithe/darknet3AB
https://github.com/dwaithe/darknet3AB
https://github.com/fizyr/keras-retinanet
https://github.com/fizyr/keras-retinanet
https://github.com/dwaithe/keras-retinanet
https://github.com/dwaithe/keras-retinanet
https://doi.org/10.1083/jcb.201903166


There are no true negative values, as background regions are
never actively identified. For a given class, a precision–recall
curve is computed from a method ranked based on confidence.
The precision is then calculated (precision = TP/(TP + FP)), and
the recall (recall = TP/(TP + FN)) across all the data at each rank.
We simplify the data by taking the maximum precision for any
recall value, which results in the generation of a precision/recall
curve, the area under which we can use to compare different
algorithms. The so-called AP metric is achieved by taking the
maximum precision across all recall values and taking the av-
erage. The metric mAP represents the mean AP value yielded
from evaluation over different classes (i.e., performance across
different cell types or objects).

Four different TRs (TR1–TR4) were formulated for the vali-
dation and comparison of each of the object detection networks:
(1) In the naive approach, TR1, the training component of a
single dataset was taken and used to train the network. The
normal data augmentation for that network was applied with no
additional step. (2) In the second approach, TR2, again the
training component of a single dataset was taken and used to
train the network, but this time, additional data augmentation
was performed on the training data. Training images were also ver-
tically flipped during the data augmentation, creating a larger set of
training images. (3) In the third approach, TR3,we trainednot just one
dataset butmultiple datasets simultaneously. A singlemodel produced
by this method could be then be used to evaluate images from each of
the testing datasets. For the third approach, no additional data aug-
mentation was applied. (4) Finally, in the fourth approach, TR4, we
combined theTRs of the second and third approach. The networks are
trained on multiple datasets simultaneously, and the data are also
additionally vertically flipped during the data augmentation.

Statistical tests
Within the architecture of Faster-RCNN, YOLOv2/3, and Reti-
naNet, there are points at which randomness is injected into the
training process. For example, the way the bounding boxes are
selected and how they are shuffled for the training are done
randomly.Much of this is unseeded in that it is nonreproducible.
This will mean that every time a network is trained, the resulting
model will be slightly different, and the model will see different
training data at different points of training. As a consequence,
the accuracy of trained models will vary slightly when retrained.
If the variance is very high between these models, this suggests
that the training procedure andmodel are not well optimized for
the task. In this situation with relatively small amounts of data,
some variance was likely. To gain awareness of the network
stability, each experiment was repeated three times, the AP was
measured and averaged, and the SD was calculated.

Statistics were calculated using GraphPad Prism software (v8.3.1).
Normality tests (Shapiro–Wilk) were applied to the data in Fig. 2 A
and Fig. S3, E–H, and the data were found to be not normally dis-
tributed. Nonparametric Friedman’s tests were therefore used with
Dunn’s multiple comparison tests applied to the data in these cases.

Innovative acquisition control hardware
The computer used to control the microscope and manage
the acquisition is a relatively inexpensive Nvidia Jetson TX2

development board. Along with a powerful central processing
unit and RAM configuration, this system is equipped with a
powerful GPU essential for running the deep learning object
detection networks at speed. The Jetson has Ubuntu OS installed
and can be connected to a monitor and keyboard/mouse like a
regular computer. The Jetson TX2 is connected to the Photo-
metrics Prime scientific complementary metal oxide semicon-
ductor camera by universal serial bus 3 (USB3) interface. The
CoolLED light source was connected via transistor–transistor logic
cables to the Photometrics camera, which allows for fast triggering
of the light source via the camera, however the lamp could also be
controlled directly from the Jetson via USB cable. The Applied
Scientific Instrumentation automated xy stage was connected to
the Jetson via a standard USB–serial interface. For the Physik In-
strumente Piezo, because the drivers written to control this soft-
ware are available only for the 64-bit Windows operating system,
we used an inexpensive Windows 10–installed LattePanda De-
velopment Board (https://www.lattepanda.com/) and connected
this to the Jetson via an ethernet cable. This allowed us to use the
specialist drivers of the Piezo in their native environment while
taking advantage of the GPU power of the Jetson for all other
functions. Full details of this system and how it was connected can
be found at https://github.com/dwaithe/amca/tree/master/jetson.

3D acquisition algorithm
AMCA is written in Python and is freely available (https://
github.com/dwaithe/amca). It has been designed to run fully
in Python, and installation and operation can be performed
easily and swiftly. Prior to the acquisition, the user defines the
rough positions in which in the system scans for cells using the
‘collect_position.py’ script. With the script running, the user
scans the slide manually and saves the positions of the stage at
key points around the area to be imaged. A minimum of four
points is required to scan a rectangular area. At each location,
the user coarsely focuses the microscope on the cells using the
z-piezo and stores the location. Once complete, the algorithm
interpolates the positions across the entire area, with a user-
defined sampling rate (e.g., every 200 µm xy, 0.5 µm z). This
array of spatial locations forms the basis from which the ac-
quisition of each stack/volume takes place in the xy dimension.

The acquisition is performed through a script called amca.py
and it is designed to run in a Python 3.5+ environment. This
script will signal the microscope to move around the slide either
in the xy or z dimension by interfacing directly with the control
hardware. In each location of interest, the script will signal the
camera to acquire an image. The camera is controlled, and the
image transferred from the camera, using a Python library
written by Photometrics. The Photometrics library provides
Python bindings specific for the Arch64 drivers, which can be
provided on request from Photometrics (for library and drivers,
see https://github.com/Photometrics/PyVCAM). The ‘amca.py’
script analyzes the camera image using the object detection al-
gorithm of choice (typically YOLOv2). If any cells are detected in
the image at this position, the microscope will be signaled to
move up in the z dimension to the next position. An image is
then acquired in this location. If again, cells are detected within
the image, the image is saved and the microscope triggered to
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move up. This process is repeated until the focal plane has
moved beyond the cells in this xy position and thus nomore cells
are detected. At this point the microscope is instructed to return
to the initial z position first visited in this xy location and then to
move down in the z dimension until again cells are no longer
detected. The image stack is saved as a TIFF file either in the
ImageJ or OME-TIFF standard and the ROI detected is embedded
within the file’s metadata. Next, the microscope is triggered to
move and the process repeated at the next xy location defined
earlier. The CoolLED lamp can either be left on throughout the
experiment or triggered via Photometrics camera Python bind-
ings. Furthermore, it is possible to interface directly with the
CoolLED lamp via the USB and through usingmicroscope control
software written in Python (https://www.python-microscope.
org/). Triggering is faster than USB control during acquisition,
but for the triggering towork, the lampmust be preprogrammed
(i.e., with exposures and illumination sequence) either via USB
or manually through the external lamp control module. Once all
the xy locations have been explored the system stops and no-
tifies the user that the acquisition is complete. Image volumes
are stored on a secure digital flash drive and can be then moved
to another computer or uploaded to a server or OMERO system.

An important aspect of the AMCA is its ability to extract the
cells from volumes once detected in the individual slices; one cell
detected in one z-slice, is not by default connected by reference to
the same cell detected in the following slice. This connectivity
problem is nontrivial to solve, as the detected cell regions do not
necessarily overlap perfectly between the slices and may appear
intermittently if the detection accuracy is low. To solve this chal-
lenge,wemodified a popular tracking algorithm called SORT (simple
online and real-time tracker; Bewley, A., Z. Ge, L. Ott, F. Ramos, and
B. Upcroft. 2016. 2016 IEEE International Conference. 3464–3468)
software and used it for linking the object detections between ‘z’
slices to form volumetric bounding regions for each detected cells.
Algorithms such as SORT ensure that an object labeled in one image
is connected to the same-labeled object in a subsequent frame. SORT
is based on the principle of a Kalman filter, which means that it can
accommodate significant perturbations to the cells. Typically, SORT
is applied offline, after acquisition, but this can be applied online also
if needed. Once a cell’s bounding volume has been uniquely identi-
fied, it is added to the TIFF file metadata along with the other ROIs.

Subsequent analysis of images and regions acquired using
AMCAwere performed using ImageJ/Fiji and Python scripts. For
this project, scripts were developed that would allow access of
datasets directly from an OMERO (Open Microscopy Environ-
ment - RO) instance or through processing of files in a folder
located on a local machine. All these scripts, along with detailed
instructions, are available in the repository (https://github.com/
dwaithe/amca/tree/master/scripts).

Online supplemental material
Fig. S1 shows example data generated for study with corre-
sponding ground-truth human annotations and object detection
predictions. Fig. S2 shows the AP of Faster-RCNN, YOLOv2,
YOLOv3, and RetinaNet at different levels of training for six
independent datasets. Fig. S3 shows a comparison of object detec-
tion networks for cellular detection. Fig. S4 shows a summary

performance of YOLOv2 when trained on multichannel data versus
single-channel data. Table S1 shows a summary performance of
Faster-RCNN, YOLOv2, YOLOv3, and RetinaNet networks on test
datasets. Video 1 shows AR binocular in operation. Video 2 displays
AR binocular in operation showing bounding boxes with cell in-
tensity. Data S1 shows the schematics for the custom adapter plates
and cube holder for the augmented reality modifications.
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Supplemental material

Figure S1. Example data generated for study with corresponding ground-truth human annotations and object detection predictions. (A and B) C127
cell dataset, stained with DAPI. (C and D) Erythroblast cells stained with DAPI. (E and F) Fibroblast cells stained for a nucleopore protein. Ground-truth boxes,
(white), YOLOv2 prediction boxes (red), and Faster-RCNN prediction boxes (green). Scale bars, 25 µm.
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Figure S2. AP of Faster-RCNN, YOLOv2, YOLOv3, and RetinaNet at different levels of training for six independent datasets. AP for each algorithm
trained and evaluated on individual datasets without (TR1; A, E, I, and M) and with (TR2; B, F, J, and N) additional vertically flipped training data augmentation.
AP for algorithm trained across multiple datasets and evaluated on individual datasets without (TR3; C, G, K, and O) and with (TR4; D, H, L, and P) additional
vertically flipped training data augmentation. Erythroblast DAPI cells (blue), neuroblastoma phalloidin dataset (magenta), fibroblast nucleopore dataset (red),
eukaryote DAPI dataset (orange), C127 DAPI dataset (green), and HEK peroxisome dataset (black). Error bars (n = 3, AP ± SD).
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Figure S3. Comparison of object detection networks for cellular detection. Performance in terms of AP of Faster-RCNN (A), YOLOv2 (B), YOLOv3 (C), and
RetinaNet (D) when trained on individual datasets without (TR1) and with vertically flipped data augmentation (TR2) and when trained using multiple datasets
without (TR3) and with (TR4) vertically flipped data augmentation (n = 3, AP ± SD). Erythroblast DAPI cells (blue), Neuroblastoma phalloidin dataset (magenta),
fibroblast nucleopore dataset (red), eukaryote DAPI dataset (orange), C127 DAPI dataset (green), and HEK peroxisome dataset (black). AP performance across
all datasets for Faster-RCNN (E), YOLOv2 (F), YOLOv3 (G), and RetinaNet (H) for TR1–TR4. Additional vertical flipping of data (TR2) and joint training with
multiple classes statistically boosts AP when using the Faster-RCNN networks, but not the other networks. Friedman’s test was applied using Dunn’s multiple
comparison test to compare TR2–TR4 to T1 (n = 6, AP ± SD; *, P < 0.05; ***, P < 0.005).
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Video 1. Augmented reality demonstration video. Video was acquired using iPhone SE camera positioned at the binocular eye-piece. The frame-rate is 15
frames per second..

Video 2. Augmented reality demonstration video showing bounding boxes with intensity graded to cellular intensity. Video was acquired using
iPhone SE camera positioned at the binocular eye-piece. The frame-rate is 15 frames per second..

Table S1 is provided online and shows summary performance of Faster-RCNN, YOLOv2, YOLOv3, and RetinaNet networks on test
datasets. Data S1 shows the schematics for the custom adapter plates and cube holder for the augmented reality modifications.

Figure S4. Summary performance of YOLOv2 when trained on multichannel data versus single-channel data. (A) Erythroblast cells stained with DAPI
(blue) and for glycophorin A protein (green). (B) Neuroblastoma cells stained with phalloidin (green) and DAPI (blue). Scale bars represent 25 µm in both
images. All training material includes vertically flipped data augmentation, and the ground-true for the first channel (DAPI) was accessed in both cases. (C) AP
of YOLOv2, comparing performance when trained and evaluated on a single dataset comprising one-channel data (a) and two-channel data (b) or when trained
on multiple data comprising two channels (c). Erythroblast DAPI glycophorin A dataset (blue) and neuroblastoma phalloidin DAPI dataset (magenta; n = 3, mean
± SD).
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