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Don’t sugarcoat it: How glycocalyx composition
influences cancer progression
Alexander Buffone Jr.1,2 and Valerie M. Weaver2,3

Mechanical interactions between tumors and the extracellular matrix (ECM) of the surrounding tissues have profound effects
on a wide variety of cellular functions. An underappreciated mediator of tumor–ECM interactions is the glycocalyx, the sugar-
decorated proteins and lipids that act as a buffer between the tumor and the ECM, which in turn mediates all cell-tissue
mechanics. Importantly, tumors have an increase in the density of the glycocalyx, which in turn increases the tension of the
cell membrane, alters tissue mechanics, and drives a more cancerous phenotype. In this review, we describe the basic
components of the glycocalyx and the glycan moieties implicated in cancer. Next, we examine the important role the
glycocalyx plays in driving tension-mediated cancer cell signaling through a self-enforcing feedback loop that expands the
glycocalyx and furthers cancer progression. Finally, we discuss current tools used to edit the composition of the glycocalyx and
the future challenges in leveraging these tools into a novel tractable approach to treat cancer.

Introduction
The mechanical interactions between a cell and the ECM tissue
that encompasses it control nearly all aspects of cellular fate
(Daley et al., 2008). The glycocalyx, the thick mixture of protein,
lipids, and their post-translational sugar structures, surrounds
all living cells and acts as a buffer between the cell and the ECM,
especially in terms of mechanics (Butler and Bhatnagar, 2019).
In cancer, the size of the tumor cell glycocalyx as a whole is
significantly increased (Pavelka and Roth, 2010), and this in turn
alters all aspects of tumor progression including transmembrane
receptor function, cellular tension, integrin-mediated signaling,
cell–cell and cell–ECM interactions, and immune recognition
(Uchimido et al., 2019). On the other hand, the composition of
the glycan structures decorating the protein and lipid backbones
during cancer is context dependent, as the glycan trees are
either elongated or truncated based on the specific cancer
(Munkley and Elliott, 2016). Regardless, the composition of these
sugar structures in the glycocalyx plays an important role in
regulating both the overall phenotype and mechanics of the
tumor (Martinez-Seara Monne et al., 2013). This review will
discuss both the protein and lipid backbones that comprise the
glycocalyx and also the critical glycan structures attached to
these backbones, which are altered during cancer progression.
Furthermore, we will detail how mechanics modulates the
structure and function of the cancer glycocalyx and how this

drives a “feedback loop” which drives malignancy. Finally, we
will discuss current strategies to “prune” the glycocalyx in a
specific manner to modulate cancer progression.

Key protein and lipid backbones of the glycocalyx in vivo
The composition and structure of the glycocalyx, a heteroge-
neous mixture of proteins and lipids that extend away from
the cell membrane to which they are anchored, affect nearly
all interactions between the cell and the extracellular envi-
ronment. The height of the glycocalyx varies widely between
cells and tissues but in general ranges from tens of nano-
meters to several micrometers thick (Möckl et al., 2019). The
proteins and lipids of the glycocalyx have bulky post-
translational sugar structures decorating their surface that
extend the height and bulkiness of the glycocalyx and give it a
strong negative charge (Reitsma et al., 2007). Cell surface
chemokine receptors and integrins that are encompassed by
the glycocalyx are much shorter (∼10 nm; Ye et al., 2010) and
must navigate this negative charge and the repulsion between
the ECM and glycocalyx, in order for cellular adhesion, mi-
gration, signaling, and most any cell-surface interactions to
occur (Hammer and Tirrell, 1996).

The protein and lipid backbones of the cellular glycocalyx
comprise four main classes with unique glycosylation pat-
terns (Fig. 1): mucins, which are glycoproteins with bulky
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O-linked glycan attachments that influence integrin function
and cell signaling; trafficking glycoproteins, which primarily
regulate cell adhesion through N- and O-linked structures;
glycolipids, which consist of ganglioside attachments to ce-
ramides; and proteoglycans, which are characterized by gly-
cosaminoglycans (GAG) attachments. Each of these classes is
discussed separately below.

Mucins
The mucins are critical glycoprotein components of the gly-
cocalyx that form a gel-like mucus on the surface of cells that
modulates a variety of cellular interactions including integrin
clustering, tension sensing, and signaling (Kufe, 2009). Mu-
cins consist of rather lightly glycosylated N- and C-terminal
domains flanking a central region containing a massive
amount of O-glycosylation, which increases the overall mo-
lecular weight of the glycoprotein and makes mucins uniquely
resistant to degradation (Bansil et al., 1995). The sheer amount
of glycosylation on mucins makes them especially susceptible
to changes during cancer progression as there are countless
sites for aberrant glycans. In particular, the mucins MUC1 and
MUC16 have been implicated in driving cancer progression.
MUC1 is a key oncomarker and is critical for maintaining
the cancer stem cell population (Nath and Mukherjee, 2014).
During breast and other cancers, MUC1 becomes even more
heavily glycosylated than in normal tissues, with many more
O-glycan sites occupied, and adds to the overall bulk of the
glycocalyx (Müller et al., 1997; Taylor-Papadimitriou et al.,
1999). Furthermore, MUC16 is critical for shielding cancer
cells from natural killer (NK) cells during innate immune
surveillance (Gubbels et al., 2010). Recent work has described
how synthetic glycopolymers that truncate either MUC1 or
MUC16 serve to de-bulk the glycocalyx and slow cancer pro-
gression in response to mechanical stimuli (Paszek et al., 2014;
Woods et al., 2017).

PSGL-1, CD43, and CD44, the glycoprotein regulators of cell
adhesion
The glycoproteins P-selectin glycoprotein ligand-1 (PSGL-1), CD43
(leukosialin), and CD44 are components of the glycocalyx that act as
regulators of cell–cell, cell–endothelial, and cell–ECM interactions in
cancer (Spertini et al., 2019). PSGL-1 is a cell surface glycoprotein
found on all leukocytes and some cancers that is a critical regulator
of selectin binding to the endothelial surface (McEver and
Cummings, 1997). It binds to E-, P-, and L-selectin at varying af-
finities and can carry both sialyl Lewis x (sLex) and sialyl Lewis a
(sLea) glycans to confer this binding (Moore, 1998). PSGL-1 has been
shown to have profound effects on immune recognition and cancer
progression as its deletion has been shown to up-regulate macro-
phage cytokine production and colorectal cancer formation (Li et al.,
2017), prevent T cell exhaustion and improve outcomes in mela-
noma (Tinoco et al., 2016), and attenuate trafficking to the lung and
platelet adhesion in epithelial cancers (Kim et al., 1998).

CD43 or leukosialin is a glycoprotein constituent of the gly-
cocalyx that acts as a selectin-dependent trafficking receptor
(Matsumoto et al., 2007) and is expressed on all hematopoietic
subsets except some B cell populations (Carlsson and Fukuda,
1986; Fukuda and Carlsson, 1986). Aberrant glycosylation of
CD43, detected by the biomarker UN1, is a hallmark of many
lymphoid cancers (Tuccillo et al., 2014) and also solid tumors in
the breast, colon, gastrointestinal tract, and lung (Tassone et al.,
2002). Furthermore, overexpression of CD43 has been impli-
cated in an increase in the p53 tumor suppressor and enhanced
p53-mediated cell death of colon cancer (Kadaja et al., 2004).

Finally, CD44 is a glycoprotein expressed on pancreatic and
breast tumors (Li et al., 2014) that binds its principal ligand,
hyaluronan (hyaluronic acid), but also collagen and fibronectin
in the ECM (Chen et al., 2018). CD44-HA binding of tumors leads
to an up-regulation in cell proliferation and cell motility (Ponta
et al., 2003) in the tumor through activation of the MAPK and
phosphoinositide 3-kinase pathways (Lv et al., 2016). Changes in

Figure 1. Structure of the tumor cell glyco-
calyx. The glycocalyx is the first line of contact
between the tumor cell and the components of
the ECM such as fibronectin, collagens, and
laminin. The cancer cell glycocalyx consists of
four main glycan branches on four distinct types
of protein or lipid backbone: O-glycans attached
to glycoproteins and mucins at serine/threonine
sites, N-glycans attached to glycoproteins at
asparagine sites, gangliosides attached to ce-
ramide glycolipids, and GAGs characterized by
the Xyl-Glc-Glc motif attached to a protein at a
serine/threonine site on proteoglycans.
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the association of CD44 with the actin cytoskeleton through the
Ezrin-Radixin-Moesin protein Ezrin have been implicated in
both breast (Donatello et al., 2012) and pancreatic (Meng et al.,
2010) cancer progression through both loss of cell–cell contacts
and altered growth factor signaling (Clucas and Valderrama,
2014). Furthermore, CD44 has up to 10 splice variants termed
CD44v1–10 that are alternatively expressed in other cancers,
such as head and neck (Reategui et al., 2006), prostate (Ni et al.,
2014), colorectal (Todaro et al., 2014), bladder (Kobayashi et al.,
2016), and gastric (Lau et al., 2014), and are correlated with
increased cancer progression and poorer patient outcomes
(Mulder et al., 1994). Finally, CD44 is able to switch between the
CD44s and CD44v forms (Brown et al., 2011), and epithelial to
mesenchymal transition (EMT) in pancreatic and breast tumors
requires a switch from CD44v to CD44s (Zhao et al., 2016).

Glycolipids
In addition to the glycan structures attached to proteins that we
have discussed, glycans attached to lipids play a critical role in
cancer progression and are susceptible to manipulation during
cancer progression (Daniotti et al., 2013). There are two main
classes of glycolipids: glyceroglycolipids, which contain a glycerol
and a fatty acid as the lipid, and glycosphingolipids (GSLs), which
carry a sphingosine as the lipid (Lopez and Schnaar, 2006). Since
glyceroglycolipids are only found in plants, we will focus on GSLs,
which are divided into several subclasses, including cerebrosides,
which are singly glycosylated GSLs (Glc-Cer or Gal-Cer), globo-
sides, which are poly-glycosylated GSLs (Lac-Cer), and ganglio-
sides, which contain at least one sialic acid attached to the Lac-Cer
structure (Schnaar, 2019; Schnaar and Kinoshita, 2015). GSLs play
a critical role in tumor progression in the brain, an organ with
complex and abundant gangliosides (Hirabayashi, 2012), but also
in the bone, skin, and lung (Daniotti et al., 2016). GSLs also play
roles in escaping tumor immunosurveilance by repressing mon-
ocyte cytokine release (Heitger and Ladisch, 1996), preventing
release of IgG and IgM from B cells (Kimata and Yoshida, 1994),
and limiting CD8+ T cell production (McKallip et al., 1999). Fur-
thermore, GSLs increase tumor cell trafficking as they carry sLex

structures, which confer E-selectin binding, the master regulator
of leukocyte and tumor cell trafficking, through the endothelium
(Mondal et al., 2016; Nimrichter et al., 2008).

Proteoglycans
Proteoglycans are the last major component of the glycocalyx
and are characterized by a protein backbone with abundant
O-linked GAG attachments (Nikitovic et al., 2018). The most
abundant GAG attachments include heparin sulfate, chondroitin
sulfate, or keratin sulfate and are characterized by the galactose-
galactose-xylose motif (Gal-Gal-Xyl; Pomin and Mulloy, 2018).
Several tumor-associated proteoglycans have been implicated in
cancer signaling and progression, including the Syndecan
(Cheng et al., 2016a) and Glypican (Li et al., 2018) families, and
their roles are discussed in great detail in the cited reviews.

Critical glycan moieties aberrantly expressed in cancer
In terms of the glycocalyx content, it is not only the protein
and lipid backbones that are important but also the post-

translational sugar structures attached to the backbones
(Pinho and Reis, 2015). After the proteins and lipids are syn-
thesized ER, they move to the Golgi, where they are post-
translationally modified by the combination of activated sugar
donors and enzymes called glycosyltransferases before being
transported to the cell surface (Stanley, 2011). This leads to the
diverse set of glycan structures which, when presented on the
surface of the protein and lipid backbones, form the typical
“brush”-like structure of the glycocalyx (Kabedev and Lobaskin,
2018). There are several main glycosylation types on the back-
bones of the glycocalyx. Glycoprotein glycosylation comprises
two main types: the branched N-glycan chains attached to as-
paragine and the step-wise constructed O-glycan chains at-
tached to either serine or threonine. Finally, glycolipids have
glycans attached to a lipid and are initiated by a glucosamine
attached to the ceramide backbone (Glc-cer; Varki, 2017). The
composition of these glycan structures is not only critical in
regulating tumor cell function as a whole but also modified in
tumors as compared with normal cells. To this end, specific
aberrant glycan structures have been implicated as playing a
regulatory role in cancer progression (Fig. 2), and they are
outlined in the next section.

Terminal sialylation with ST3Gal-1, ST6Gal-1, and ST6GalNAcs
Sialylation is a critical modification to glycan chains as the ad-
dition of a sialic acid both terminates further glycosylation on
the chain and is the only sugar that carries a (negative) charge
(Wopereis et al., 2006). Altered sialylation is a hallmark of
cancer progression, and which class of sialyltransferase adds the
sialic acid plays a key role to this progression. To this end, the
sialyltransferases ST3Gal-1, ST6Gal-1, and the ST6GalNAcs all
add sialic acid to specific glycan structures and have been im-
plicated in cancer. ST3Gal-1 is a sialyltransferase that catalyzes
the terminal addition of a sialic acid in a 2,3 linkage to the ga-
lactose and terminates the O-glycan. High levels of these short
core 1 O-glycan structures have been implicated in a variety of
cancers including breast (Yeo et al., 2019), ovarian (Wu et al.,
2018), prostate (Tzeng et al., 2018), and brain (Chong et al.,
2015). ST3Gal 1 is thought to be up-regulated during tumori-
genesis (Picco et al., 2010), and the truncated glycan created
interacts with galectin-4, which promotes metastatic signaling
(Tzeng et al., 2018).

ST6Gal-1, which adds a sialic acid in a 2,6 linkage on N-linked
glycans, causes drastically different functions in cancer, espe-
cially in terms of resistance to treatment and survival (Garnham
et al., 2019). Sialylation by ST6Gal-1 is thought to maintain a
more stem-like state in cancer cells (Schultz et al., 2016) and has
been implicated in bladder (Antony et al., 2014), colon (Zhang
et al., 2017), breast (Lu et al., 2014), and ovarian cancers (Christie
et al., 2008). Multiple works have demonstrated how ST6Gal-1
both confers resistance to chemotherapy (Britain et al., 2018;
Schultz et al., 2013) and protects cancer cells from apoptosis by
sialylation of Fas (Swindall and Bellis, 2011) and tumor necrosis
factor receptor (Holdbrooks et al., 2018). Interestingly, ST6Gal-1
is also the only glycosyltransferase to date in which its soluble
form can “extrinsically” glycosylate outside the cell (Manhardt
et al., 2017). This mechanism describes how donor sugar from
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platelets (Lee-Sundlov et al., 2016; Lee et al., 2014) and ST6Gal-1
from B cells (Irons and Lau, 2018; Irons et al., 2019) can sialylate
progenitors in the bone marrow (Nasirikenari et al., 2014) and
prevent granulopoiesis (Dougher et al., 2017). In fact, this “ex-
trinsic” sialylation mechanism has recently been implicated in
colon cancer progression, as ST6Gal-1 loaded into exomeres can
both sialylate β1 integrins and promote cancer organoid growth
(Zhang et al., 2019).

Finally the ST6GalNAc family of sialyltransferases catalyzes
the addition of a 2,6 sialic acid to the initial GalNAc instead of the
galactose-like ST3Gal-1 and ST6Gal-1 and creates the sialyl-Tn
antigen that is expressed in a wide variety of cancers (Marcos
et al., 2004). ST6GalNAcs are thought to be regulators of ma-
lignancy as they form the binding epitopes for galectin-3 and
other galectins as well (Dimitroff, 2015, 2019) and compete away
possible core 2 O-glycan extensions such as sLex (Lo et al.,
2013b). In sum, the interplay between these three structures
in preemptively terminating O- and N-glycosylation affects al-
most all aspects of cancer progression.

Sialyl Lewis antigens
The sialyl Lewis antigens, especially sLex and sLea, form the
binding epitopes to the endothelial selectins on immune cells
(Buffone et al., 2013; Mondal et al., 2015) and circulating tumor
cells (Burdick et al., 2012; Li and King, 2012). These tetrasac-
charide structures, consisting of sialic acid bound to a lactos-
amine (Gal-GlcNAc) in a 2,3 linkage and a fucose bound in either
a 1,3 or 1,4 linkage (Trinchera et al., 2017), are highly implicated
in the metastasis of tumors to secondary sites through the
bloodstream (Blanas et al., 2018; Mondal et al., 2018). They are

strongly up-regulated in a variety of tumors, and sLea (CA19.9)
and sLex (NCC-ST-439) are prognostic markers for both colon
and pancreatic cancer (Shiozaki et al., 2011). Furthermore, en-
forced fucosylation of hematopoietic stem and progenitor cells
(or other immune cells; Buffone et al., 2017; Videira et al., 2018)
generates sLeX structures on CD44 to create the hematopoietic
cell E- and L-selectin ligand epitope, which is the principal
regulator of trafficking to the bone marrow compartment
(Dimitroff et al., 2001a,b; Sackstein, 2012; Zhao et al., 2016).

Core fucosylation of N-glycans
Another critical regulator of cancer invasiveness and progres-
sion is the core fucosylation of N-glycans. The addition of a 1,6
linked fucose to the chain initiating GlcNAc on complex
N-glycans is catalyzed by the fucosyltransferase, FUT8 (Yang
et al., 2017). FUT8-mediated core-fucoylation has been impli-
cated as a driver of cancer invasiveness in breast cancer by fu-
cosylation of TGF-β (Tu et al., 2017), in colorectal cancer through
a p53-mediated mechanism (Noda et al., 2018), in melanoma by
fucosylation of L1CAM (Agrawal et al., 2017), through a
β-catenin– and LEF-1–dependent mechanism in nonsmall cell
lung cancer (Chen et al., 2013), and throughmiRNA regulation of
fucosylation in hepatocellular carcinoma (Cheng et al., 2016b).

GM3, GD2, and GD3 gangliosides
Mammalian GSL glycosylation is characterized by the initial
addition of a glucosamine (Glc-Cer) to the ceramide followed by
a galactose to form Lac-Cer (Merrill, 2011). It is from this basic
glycan structure that all of the gangliosides, or sialic acid–
containing GSLs, are formed (Maccioni, 2007). The shortest of

Figure 2. Principal glycan structures associated with cancer. A listing of the most common glycosylation structures seen during cancer including sLex and
sLea, sialyl-Tn antigen, α2,6 sialylation by ST6Gal1, α2,3 sialylation by ST3Gal1, core-fucosylation by FUT8, and the GM3, GD3, and GD2 structures. The name,
structure, which glycocalyx backbone it decorates, class of glycan, and which cancers it is associated with are listed for each glycan.
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the cancer associated glycolipids is GM3, which is has one sialic
acid attached to the Lac-Cer structure (Birklé et al., 2003), and is
highly up-regulated in brain, lung, and skin cancers (Zheng
et al., 2019; Gu et al., 2008). GD2 and GD3 are longer glycans
that are characterized by two sialic acids apiece and differ by an
extra GalNAc structure on GD2 (Liu et al., 2018a). GD3 is a
structure that is seen in low levels in healthy adults, and in-
creases in GD3 correlate with a treatment resistant brain cancer
stem cell population (Yeh et al., 2016). Elevated levels are seen in
melanomas, acute lymphoblastic leukemias, and lung cancers,
where it regulates tumor growth and proliferation (Furukawa
et al., 2012; Merritt et al., 1994). Furthermore, the GD3 structure
has been shown to bind and suppress both T helper and NKT cell
function in brain and ovarian cancers (Mycko et al., 2014; Webb
et al., 2012). GD2 is also a well-known ganglioside that is up-
regulated in in melanoma, lung cancers, sarcomas, neuroblas-
tomas, and triple-negative breast cancers (Dobrenkov et al.,
2016; Orsi et al., 2017; Terzic et al., 2018; Yanagisawa et al.,
2011). GD2 associates with the VLA-2 integrin and up-regulates
the binding of neuroblastomas to ECM proteins such as colla-
gens. In fact, anti-GD2 therapies (dinutuximab) are currently
approved for use in the clinic to treat neuroblastomas and os-
teosarcomas (Greenwood and Foster, 2017; Roth et al., 2014).

Glycocalyx function in EMT, mechanics, and anti-tumor
immunity
The glycocalyx plays a critical role in mediating the interactions
between the tumor and its extracellular environment and has
profound effects on EMT transition, mechanosensing, signaling,
metastasis, and immune evasion, all of which will be discussed
in the following sections.

Composition changes of the glycocalyx during EMT in cancer
The transition of cancer cells from an epithelial phenotype to a
more mobile mesenchymal phenotype, the EMT, has in many
instances been correlatedwithmore invasive (Moustakas and de
Herreros, 2017) and treatment-resistant cancers (Brabletz et al.,
2018), and overall poorer patient outcomes (George et al., 2017).
This a source of open debate, though, as not all cancers display
EMT as a prerequisite to cancer metastasis and the link to hu-
man cancers in vivo is complex (Ledford, 2011). Even so, a major
change associated with the EMT is the change to a more bulky
and taller phenotype in the structure of the tumor glycocalyx
(Lange-Consiglio et al., 2014; Mitchell and King, 2014; Paszek
et al., 2014; Zeng et al., 2016).

For complex and hybrid N-glycans, a major change during
the EMT is the loss of the bisecting GlcNAc structure and the
accompanying up-regulation of β1,6 branches (Xu et al., 2017).
The glycosyltransferase MGAT5 regulates the β1,6 branching,
and studies in MGAT5-deficient breast tumors showed that ab-
lation of MGAT5 and loss of β1,6 branching correlated with
pronounced reductions in tumor growth and activation due to
increased immune response from CD4+ T cells and macrophages
(Li et al., 2008). Furthermore, EMT in liver carcinoma (hepa-
tocellular carcinoma) correlated with up-regulated core-fucose
and β1,6 branching on N-glycans and sLex and T-antigens (Gal-
GalNAc) on O-glycans (Li et al., 2013), all of which are markers

of cancer as discussed in the previous section.
MUC1 O-glycosylation is also specifically up-regulated during
EMT in a variety of cancers (Freire-de-Lima, 2014). Deletion of
theMUC1 cytoplasmic tail leads to a subsequent decrease in EMT
and metastasis in pancreatic cancer through loss of its associa-
tion with β-catenin, which is required for nuclear localization
and transcription (Roy et al., 2011). Finally, glycolipid composi-
tion is also modified during EMT as sialylated gangliosides such
as GM2, GD2, and GD3 are present at high levels in brain cancers
while absent in normal tissues (Hakomori, 1996). More detailed
information can be found in the comprehensive review of the
changes seen in the glycocalyx during cancer EMT (Li et al.,
2016).

Mechanosensing through the glycocalyx and its impact on integrins
The glycocalyx is the principal structure in contact with the
ECM (Lahir, 2016); therefore, it plays a critical role in regulating
both the adhesions of integrins to the ECM and the mechanics of
the tumor cell in response to stiffness (Sun et al., 2016). Recent
works were the first to demonstrate that the glycocalyx is in-
trinsically coupled to integrin clustering and mechanosensing
with the ECM (Paszek et al., 2009, 2014). Initially, a computa-
tional model made two main predictions: first, that cell-bound
integrins cluster and bind to the ECM more avidly with in-
creasing stiffness, and, second, that the size and bulk of the
glycocalyx limits the ability of integrins to cluster and bind due
to the intrinsic repulsion between the glycocalyx and the ECM.
According to this model, the composition and size of the cellular
glycocalyx modulate the degree of mechanosensing that cell-
bound integrins undergo when in contact with the ECM
(Paszek et al., 2009). A second study experimentally examined
this computational model, demonstrating that in cancer, the
glycocalyx and especially bulky cancer-related glycoproteins
such as MUC1, drive integrin clustering and mechanosensing.
The overall mechanism involves bulky glycoproteins acting as
physical barriers that funnel integrins to cluster in the adhesive
zones in contact with the ECM. Finally, the bulky glycoproteins
are able to reinforce or enhance mechanosensing, and this in
turn promotes cancer cell growth and survival (Paszek et al.,
2014).

The role of the glycocalyx in cancer progression was ex-
panded by recent studies demonstrating that a bulky glycocalyx
drives the metastatic potential by increasing cell cycle progres-
sion through the phosphoinositide 3-kinase–AKT axis and me-
chanosensing through integrin-FAK interplay (Woods et al.,
2017). Furthermore, increasing the size of the glycocalyx with
the MUC1 ecto-domain was sufficient to drive metastatic po-
tential in an in vivo model of breast cancer (Woods et al., 2017).
A subsequent study found that in glioblastoma multiforme, a
mesenchymal phenotype is linked with greater aggression, and
this is regulated by increased mechanosensing through stiffer
ECM substrates (Barnes et al., 2018). Overall, a bulkier glyco-
calyx is linked with a more mesenchymal and aggressive cancer
phenotype, and mechanosensing up-regulates both mesenchy-
mal and bulky glycocalyx-related genes, most principally
galectin-1, to drive aggression (Barnes et al., 2018). This work
was the first to describe a tension-mediated glycocalyx–integrin
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feedback loop wherein mechanical signaling through the FAK
pathway up-regulates both mesenchymal and bulky glycocalyx
genes, which in turn increases the glycocalyx size and further
enhances integrin mechanosignaling (Fig. 3). Knockdown of
either the glycocalyx component galectin-1 or FAK was able to
decrease both glycocalyx bulkiness and the glioblastoma multi-
forme aggressiveness (Barnes et al., 2018).

The role of the glycocalyx in promoting migration, invasion,
and metastasis
A larger and bulkier glycocalyx has been implicated in both
increased migration and metastasis during cancer (Lahir, 2016).
As discussed, a taller, bulkier glycocalyx is associated with both
increased migration (Barnes et al., 2018) and metastatic poten-
tial of cancers (Woods et al., 2017). Furthermore, the cancer cell
glycocalyx itself acts as a mechanosensor that responds to the
interstitial flow coming from the comprised tumor vasculature,
which can increase the migration and invasion of the tumor
(Tarbell and Pahakis, 2006; Tarbell and Shi, 2013; Zeng and
Tarbell, 2014). The glycocalyx responds to the mechanical
force generated by the shear flow by secreting matrix metal-
loproteinases into the ECM to degrade it. This promotes tumor
migration, as the degraded ECM is easier to move through, and
eventual movement of the tumor out of the tissue and into the
vasculature to colonize secondary sites (Qazi et al., 2011, 2013,
2016). The ability of the glycocalyx to act as a mechanosensor to
degrade the ECM holds therapeutic potential as manipulating
the glycocalyx structure could influence the mechanical re-
sponse to fluid stress (Tarbell and Cancel, 2016). Furthermore, it
could impact whether tumor cells can migrate against the di-
rection of shear flow to reach the vasculature, a phenomenon so

far only seen in various immune cell subsets that allows for
faster and more effective trans-endothelial migration (Anderson
et al., 2019; Buffone et al., 2018, 2019; Dominguez et al., 2015;
Tedford et al., 2017; Valignat et al., 2013).

Sialic acid shielding evades anti-tumor immunity
The final major way in which the cancer cell glycocalyx is
known to affect tumor progression is by shielding the tumor
from immune surveillance and the subsequent immune re-
sponse (Kim et al., 2007; Xiao et al., 2016). The tumor glycocalyx
accomplishes this by tricking the immune system into thinking
the tumor is part of its normal, healthy tissue via an increase in
terminal sialic acids (Büll et al., 2014; Varki and Gagneux, 2012).
High sialic acid content of the cancer glycocalyx has been im-
plicated in both decreased anti-tumor activity and poorer sur-
vival outcomes (Brossart et al., 2001). Perhaps most critically,
the increased sialic acid content in tumor cells increases the
amount of ligands for self-inhibitory siglecs on the immune cell
surface (Crocker et al., 2007). Increased sialylated glycans
“trick” the responding NK cell into thinking the tumor is healthy
tissue by activating both Siglec-7 and -9 (Avril et al., 2004;
Hudak et al., 2014; Jandus et al., 2014). Blocking the function of
Siglec-7 or -9 with antibodies or removing the terminal sialic
acids from the tumor has been shown to restore NK-mediated
tumor killing (Jandus et al., 2014; Nicoll et al., 2003).

To conclude, the specific content and structure of the cancer
cell glycocalyx has a critical role in mediating all aspects of
tumor fate, from mechanosensing, signaling, migration, and
metastasis to immune evasion. To this end, in order to realize the
full therapeutic potential of manipulating the cancer cell glyco-
calyx, precise editing of the glycocalyx at the monosaccharide

Figure 3. Tension mediates a glycocalyx-
integrin feedback loop in cancer. The glycocalyx
drives enhanced mechanical signaling between the
integrin–actin axis on the tumor cell and the ECM.
This mechanical signaling promotes the up-
regulation of genes in the nucleus driving both a
more mesenchymal phenotype (production of ECM
proteins such as Tenascin C) and a bulkier glyco-
calyx (such as CD44, hyaluronic acid, and galectin-1)
in the tumor. Together, these drive glioma aggres-
siveness in a tension-dependent feedback loop,
which is self-enforcing. Illustration by Neil Smith (http://
www.neilsmithillustration.co.uk).
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level is needed. In the final section, we will discuss the currently
used methods for editing the glycocalyx, and potential strategies
to prune the specific glycans of the glycocalyx as if it were a tree.

Tools for specifically pruning the glycocalyx
As discussed, the structure, content, and bulkiness of the gly-
cocalyx have profound effects on the mechanics surrounding
tumor growth and signaling, along with immune evasion and
EMT.What is lacking are precise tools to specifically manipulate
the structure of the glycocalyx. A variety of approaches have
been attempted to manipulate the glycans; however, they still
lack the precision needed to make specific alterations.

Small molecule inhibitors and mimetics
The basic premise of small molecule inhibitors is to design them
in such a way that they either incorporate into the native glycan
during synthesis to stop further elongation of the glycan or act as
a natural competition for the glycan recognition site to stop the
binding and signaling processes associated with the glycan
(Jacob, 1995; Esko and Schnaar, 2017). In terms of the incorpo-
ration of a nonnative sugar, these act mainly as metabolic decoys
that hijack native glycosyltransferase activity and incorporate
themselves into the native glycan trees (Fig. 4 A). To this effect,
many different synthetic sugars have been generated to repro-
gramN- and O-glycan biosynthesis, including analogues to sialic
acids (Macauley et al., 2014; van den Bijgaart et al., 2019),
fucoses (Okeley et al., 2013), GalNAcs (Marathe et al., 2010),

GlcNAcs (Barthel et al., 2011; Gainers et al., 2007), and xylose
(Garud et al., 2008). Furthermore, inhibitors have been devel-
oped to modify other major glycosylation pathways including
O-GlcNAc pathways inmucin biosynthesis (Liu et al., 2018b) and
glycolipids (Nimrichter et al., 2008). The drawback to these
inhibitors is that most have minimal incorporation into cells at
relatively high millimolar concentrations, which limits their
therapeutic potential in the clinic (Kudelka et al., 2016). Some
newly described glycosylation mimetics such as thioglycosides
(Wang et al., 2018) may be able to overcome the hurdle of how to
get high incorporation at lower concentrations.

On the other hand, several glycan mimetics that compete
away binding activity of the native glycan receptors have found
great promise as therapeutics and are either on their way to or in
the clinic. Mimetics against the sLex tetrasaccharide along with
other ligands have been used in clinical trials for pan selectin
inhibition (Chang et al., 2010; Morikis et al., 2017) to treat sickle
cell crises, E-selectin inhibition to treat acute myeloid leukemia
in bone marrow (Winkler et al., 2012), and combined E-selectin
and CXCR4 inhibition (Price et al., 2016) to treat dormant breast
cancer. Furthermore, glycan-based therapeutics to cleave sialic
acid ligands on cancer cells to prevent siglec-based shielding
from immunosurveilance are also entering clinical trials (Haas
et al., 2019; Stanczak et al., 2018). While small molecule in-
hibitors and mimetics have therapeutic applications, they still
represent a brute force approach to manipulating glycosylation
and lack the precision needed to specifically edit the glycocalyx.

Figure 4. Methods for editing the cancer glycocalyx. (A–C) Representation of the various methods used to edit the cancer glycocalyx including small
molecule analogues such as 4F-GalNAc, which incorporate into and truncate glycan chains (A); addition of the activated sugar donors to cells to metabolically
reprogram glycan synthesis by manipulating the amount of substrate for glycosyltransferases (B), and synthetic glycopolymers that attach to the cell
membrane and can change the height of the glycocalyx (C), which affects integrin binding and clustering. The asterisk denotes the acetylation site. (D) Genetic
knockdown of MGAT1, COSMC, or UGCG can precisely truncate N-glycan, O-glycan, and ganglioside biosynthesis. Panel C was adapted from Woods et al.
(2017).
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Metabolic reprogramming of sugar donors
Another method of editing the content and structures of the
glycocalyx includes manipulating the metabolic pathways in-
volved in the synthesis of the activated sugar donors needed for
glycoyltransferases to catalyze their addition to growing glycan
chains (Fig. 4 B). This includes the activated sugars CMP-
Neu5Ac, GDP-Fuc, and UDP-GlcNAc. Loss of the CMP–sialic
acid transporter (Martinez-Duncker et al., 2005) and the GDP-
fucose transporter, called leukocyte adhesion deficiency II
(Lübke et al., 2001), are both congenital disorders of glycosyla-
tion seen in humans, and are characterized by defects in the
SLC35A1 and SLC35C1 genes, respectively. Researchers have
used knowledge from these disorders to disruptively manipulate
the sialylation and fucosylation patterns of cancer cells. Ma-
nipulation of the amount of GlcNAc has been done both by
feeding it into the diet of mice or adding it exogenously to PymT
tumor cells to up-regulate UDP-GlcNAc and rescue the branch-
ing of their N-glycans in the absence of MGAT5. This in turn
worsens their cancer prognosis as the more complex N-glycans
correlate with more growth factor signaling and galectin-3
binding (Mendelsohn et al., 2007; Ryczko et al., 2016). Another
major way that the metabolic pathways involved in glycosyla-
tion have been modified is the use of tunicamycin to block
proper N-glycosylation (Merlie et al., 1982). Tunicamycin in-
hibits GlcNAc phosphotransferase, which transfers GlcNAc-
1-phosphoate to dolichol phosphate, during the first steps of
N-glycan synthesis (Wyszynski et al., 2012). Thus, tunicamycin
has been used as a chemical tool in research as a way to study the
effect of disrupted N-glycosylation. In sum, while metabolic
regulation of the donor sugars is a viable mechanism to modify
the glycocalyx, it lacks the level of specificity needed to ma-
nipulate the cancer glycocalyx at the single-sugar level.

Modifying the protein backbone with recombinant and
synthetic glycoproteins
Another viable approach to modifying the structure of the gly-
cocalyx has involved modifying the protein and lipid backbones
that carry the glycans themselves (Fig. 4 C). For example, modi-
fication of both the height and bulk of the glycocalyx through the
use of mucin mutants of varying lengths has been accomplished
to tune the response to stiffness in cancer (Barnes et al., 2018;
Kramer et al., 2015; Paszek et al., 2014; Woods et al., 2017).
Modified glycoproteins that tune glycosylation have also been
used as a way to enforce selectin-binding activity in mesenchy-
mal stem cells (Abdi et al., 2015; Lo et al., 2013a, 2016), to present
antigens to activate dendritic cells (Garćıa-Vallejo et al., 2013),
and to increase NK-mediated killing of cancer cells by competing
away siglec binding (Hudak et al., 2014). Again, while these
methods are elegant in their control of the protein backbone, they
are only able to control the glycosylation by loss or gain of po-
tential glycosylation sites. This leaves manipulating glycan
structures at the single sugar level out of the scope of these tools.

CRISPR-based pruning of specific glycosyltransferases
While the other approaches discussed here rely on bulk dis-
ruption of the glycan structures by incorporation of a modified
sugar, removing or increasing the activated donor sugar, or

actually manipulating the protein or lipid backbone, disruption
of the glycosyltransferase enzyme associated with the addition
of a specific monosaccharide represents an elegant method for
the specific truncation of glycan structures (Steentoft et al.,
2014). This approach is two-pronged as it can be used to either
remove the enzymatic function of a specific glycan (Buffone
et al., 2013; Mondal et al., 2015) or target the chain-initiating
enzyme of the entire glycan tree (Mondal et al., 2016; Vester-
Christensen et al., 2013). In fact, specific removal of
N-glycosylation has been used as a clinical tool for anti–PD-L1
antibodies to more robustly recognize PD-L1 and enhance
treatment of breast cancer (Lee et al., 2019). Two recent toolkits
have been developed in order to specifically manipulate the
composition and structure of the glycocalyx. The first is a
comprehensive toolkit for manipulating the characteristics of
the O-glycome on cancer cells at both the glycan and protein
backbone levels (Shurer et al., 2018). This toolkit has allowed
them to elegantly quantify the biophysics of the glycocalyx and
manipulate its shape and function (Shurer et al., 2019). The
second toolkit allows for the elegant quantification of the rela-
tive function of specific glycan classes (Stolfa et al., 2016). The
knockdown of MGAT1, COSMC, and UGCG to specifically trun-
cate complex and hybrid N-linked glycoproteins, O-linked gly-
coproteins, and glycolipids can precisely quantity the relative
function of each type of glycan (Fig. 4 D). Although this was
applied in the context of leukocyte recruitment to the sites of
inflammation (Stolfa et al., 2016), this toolkit holds great po-
tential in a wide variety of settings, most notably in determining
the critical glycans regulating the size and bulk of the glycocalyx,
and in turn the mechanics, in cancer.

Conclusions and future outlook
To summarize, the tumor cell glycocalyx is critical in regulating
tumor cell–ECM mechanosensing as it acts as a buffer for in-
teractions between the cell surface receptors and surrounding
tissues. The glycocalyx composition affects all aspects of tumor
cell progression including cellular tension, integrin signaling,
migration, metastasis, and immune recognition and also drives a
feedback loop to increase the height and bulk of the glycocalyx
and sustain the pro-cancer phenotype. While de-bulking the
glycocalyx through the use of synthetic mucins can disrupt this
cancer feedback loop by attenuating mechanical signaling, bet-
ter tools are needed to prune the glycocalyx in a more precise
manner. Being able to quantify the relative contribution of the
N-linked, O-linked, and glycolipid components of the glycocalyx
represents a significant step forward in attributing a specific
glycan moiety to regulation of the tension-feedback loop. With
this said, in order to truly unlock the potential of controlling the
glycocalyx-integrin mechanosensing feedback loop to halt can-
cer progression, tools must developed to prune the glycans at a
single-sugar level.
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