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Cocaine-induced release of CXCL10 from pericytes
regulates monocyte transmigration into the CNS

Fang Niu'®, Ke Liao!, Guoku Hu'@®, Susmita Sill, Shannon Callen!®, Ming-lei Guo’, Lu Yang? and Shilpa Buch'®

Cocaine is known to facilitate the transmigration of inflammatory leukocytes into the brain, an important mechanism
underlying neuroinflammation. Pericytes are well-recognized as important constituents of the blood-brain barrier (BBB),
playing a key role in maintaining barrier integrity. In the present study, we demonstrate for the first time that exposure of
human brain vascular pericytes to cocaine results in enhanced secretion of CXCL10, leading, in turn, to increased monocyte
transmigration across the BBB both in vitro and in vivo. This process involved translocation of 6-1 receptor (o-1R) and
interaction of 6-1R with c-Src kinase, leading to activation of the Src-PDGFR-B-NF-kB pathway. These findings imply a
novel role for pericytes as a source of CXCL10 in the pericyte-monocyte cross talk in cocaine-mediated neuroinflammation,
underpinning their role as active components of the innate immune responses.

Introduction

Cocaine use and its consequences continue to be a global epi-
demic. According to the World Drug Report, the number of co-
caine users worldwide increased to 18.8 million in 2014 (United
Nations Office on Drugs and Crime, 2016). Cocaine-related visits
to hospital emergency departments remain a significant health
care burden and accounted for ~40.3% of all illegal drug-related
emergency department visits in 2011 (Substance Abuse and
Mental Health Services Administration, Center for Behavioral
Health Statistics and Quality, 2013). Case reports indicate that co-
caine use is often associated with seizures, cognitive impairment,
depression, and an increased risk of stroke, all of which are
major contributors to emergency department visits (Mendoza
et al., 1992; Majlesi et al., 2010; Bodmer et al., 2014). Although
the mechanisms underlying cocaine-associated central nervous
system (CNS) disorders remain largely unknown, a variety of
studies have implicated proinflammatory central immune sig-
naling comprising both neuroexcitatory and neurotoxic effects
as crucial factors in cocaine exposure/abuse (Rhoney, 2010; Fox
etal., 2012; Li, 2016; Liao et al., 2016).

Monocytes are a subset of circulating white blood cells that
can migrate across the blood-brain barrier (BBB) in pathological
conditions and are implicated in the progression of many CNS
neurodegenerative diseases, such as Alzheimer’s disease, multi-
ple sclerosis, Parkinson’s disease, and human immunodeficiency
virus (HIV)-associated neurocognitive disorders (Filion et al.,
2003; Yao et al., 2010; Napuri et al., 2013; Grozdanov et al., 2014;

Thériault et al., 2015). Intriguingly, cocaine has not only been
found to enhance HIV-1 infectivity of monocyte-derived den-
dritic cells and macrophages (Dhillon et al., 2007), but also been
shown to facilitate monocyte trafficking across the BBB, leading,
in turn, to enhanced HIV disease progression and increased neu-
ropathology (Yao et al., 2010, 2011b; Napuri et al., 2013; Dahal et
al., 2015; Dash et al., 2015). The mechanisms by which cocaine
elicits these responses, however, remain poorly understood.
Interstitial migration of monocytes is a dynamic, multistep
process guided primarily by the local chemokine gradients
that are formed by factors such as the C-C motif chemokine li-
gand 2 (CCL2), C-X3-C motif chemokine ligand 1, and C-X-C
motif chemokine 10 (CXCL10; Taub et al., 1993; Yao et al., 2010;
Pirvulescu etal., 2014). While CCL2 and C-X3-C motif chemokine
ligand 1 have been widely linked with monocyte transmigration
(Park et al., 2001; Butoi et al., 2011; Pirvulescu et al., 2014), stud-
ies of the role of CXCL10 in monocyte transmigration are limited.
CXCL10, a proinflammatory chemokine produced by a variety of
cell types including glia, dendritic cells, leukocytes, and endo-
thelial cells (Taub et al., 1993; Vargas-Inchaustegui et al., 2010;
Ioannidis et al., 2016), belongs to the CXCR3 (CD183) signaling
family, including CXCL9/MIG (monokine-induced by y-IFN),
CXCL10/IP-10 (interferon inducible 10-kD protein) and CXCL11/
I-TAC (inducible T cell-a chemoattractant). Elevated levels of
CXCL10 have been associated with a variety of CNS diseases and
viral infections such as tick-borne encephalitis, neuroborreliosis,
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Alzheimer’s disease, multiple sclerosis, and HIV-associated neu-
rocognitive disorders (Lepej et al., 2007; Zajkowska et al., 2011;
Mehla et al., 2012; Simmons et al., 2013; Krauthausen et al., 2015).
One study demonstrated increased plasma levels of CXCL10 in
HIV-infected cocaine abusers compared with nonusers, thereby
underscoring its role as a biomarker (Kamat et al., 2012). CXCL10
is a critical chemokine that is dramatically up-regulated in
HIV-associated neuropathogenesis (Lane et al., 2003; Cinque et
al., 2005) and other neurodegenerative diseases (Sgrensen et al.,
2001; Correéa et al., 2011). In this study, we sought to inquire if
cells in proximity to the BBB played a role in contributing to the
increased CXCLI10.

Pericytes are fundamental components of the microvascular
vessel wall and play a vital role in the development and regu-
lation of the BBB and vascular function; however, their role in
neuroinflammation (Hall et al., 2014) has not been explored.
The aim of the present study was to identify the role of peri-
cytes in cocaine-mediated monocyte transmigration, and the
molecular mechanisms by which cocaine induces secretion of
CXCLI10 from human brain pericytes. Understanding the regu-
lation of CXCL10 expression by cocaine could provide insights
into the development of therapeutic targets for cocaine-mediated
neuroinflammation.

Results

Increased number of CD68* macrophages proximal to CXCL10
overexpressing pericytes in the brains of cocaine abusers

In this study, we sought to assess the frontal cortices of postmor-
tem brain tissues from no-cocaine controls and cocaine abusers
for the presence of CD68* (macrophage marker)/TMEM119- (res-
ident microglial marker) cells in proximity of Desmin* pericytes.
We found an increased number of CD68*/TMEM119- cells accu-
mulated around Desmin* pericytes in brains of cocaine abusers
compared with no-cocaine controls (Fig. 1 A). There was an in-
creased number of CD68*/TMEM119- cells in proximity to De-
smin* pericytes (Fig. 1 B). To understand the role of CXCL10 in
pericyte-monocyte cross talk, we next sought to examine the
expression of CXCL10 in the microvessels (MIVs) isolated from
the frontal cortices of postmortem brain tissues from no-cocaine
controls as well as cocaine abusers. MIVs were costained with
anti-CXCL10 and the pericyte markers PDGF receptor- (PDGFR-
B), NG2, Desmin, or TBX18 as well as the endothelial cell marker
CD31. There was increased CXCL10 expression in the pericyte
marker PDGFR-B-positive cells in the MIVs isolated from cocaine
abusers compared with no-cocaine controls (Fig. 1 C). Quantifica-
tion of CXCL10 fluorescent intensity in PDGFR-B* cells is shown
in Fig. 1D. Increased expression of CXCL10 was also observed in
NG2*, Desmin*, and TBX18* pericytes in MIVs of cocaine abusers,
compared with no-cocaine controls (Fig. 1, E-J).

Cocaine-mediated enhanced expression and mRNA stability of
CXCL10 in human brain vascular pericytes (HBVPs)

Based on the findings that in the brains of cocaine abusers, in-
creased expression of CXCL10 was closely associated with en-
hanced monocyte transmigration, we next sought to determine
the effect of cocaine exposure on the expression of CXCL10 in
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HBVPs. We first assessed dose and time course of CXCL10 ex-
pression following exposure of HBVPs to cocaine. For the dose
curve, HBVPs were treated with varying concentrations (107,
1077, 107¢, 1075, and 10* M) of cocaine for 1 h, followed by as-
sessment of CXCL10 mRNA by real-time PCR. In HBVPs, cocaine
up-regulated expression of CXCL10 in a dose-dependent manner
with a maximal response at 10-> M (10 uM; 2.9-fold, P = 0.0049;
Fig.2 A). This concentration of cocaine was therefore used for all
further experiments; physiologically relevant concentrations of
cocaine found in the plasma of human cocaine addicts range from
0.4-13 uM (Stephens et al., 2004). All the cocaine concentrations
tested failed to exert any toxicity on HBVPs, as determined by a
cell viability assay (Fig. S1C).

For the time-course study, HBVPs were exposed to cocaine
(10 uM) for various time periods (1-24 h) followed by assessment
of CXCL10 mRNA by real-time PCR. In HBVPs exposed to 10 pM
cocaine, there was maximal induction of CXCL10 expression at
1 h (2.6-fold, P < 0.0001) with a drop in expression thereafter
that persisted up to 3 h (Fig. 2 B). To validate the specificity of
cocaine-mediated induction of CXCL10 in pericytes, we also
assessed the effect of cocaine in another unrelated cell line—
HEK293 cells. HEK293 cells were exposed to cocaine (10 M) for
various time periods (1-24 h) and assessed for the expression of
CXCL10 mRNA by real-time PCR. As shown in Fig. S2 A and un-
like the pericytes, cocaine exposure failed to up-regulate CXCL10
mRNA expression in HEK293 cells.

We next sought to determine whether cocaine-mediated
induction of CXCL10 was regulated transcriptionally. For this
we used six CXCL10 promoter-luciferase constructs reported
previously by Dr. David Proud (University of Calgary, Calgary,
Alberta, Canada; Koetzler et al., 2009)—the 972-bp full-length
CXCL10 promoter (IFN-y-inducible protein of pGL4), the 376-
bp truncated CXCL10 promoter, and the CXCL10 promoter with
point mutations in the activator protein-1 (AP-1), NF-«B1 (xB1),
NF-kB2 («B2), and IFN-stimulated response element (ISRE) rec-
ognition elements in the 972-bp full-length promoter. Herein,
HBVPs were cotransfected with each of the indicated promoter
plasmids described above, as well as with a Renilla luciferase-
expressing plasmid. Following transfection, HBVPs were treated
with cocaine, and promoter activity was assessed by monitoring
relative luciferase activities using the Dual-Luciferase reporter
1000 assay system. Cocaine exposure resulted in significant acti-
vation of both full-length and truncated promoter luciferase con-
structs, with similar induction of luciferase activity by both the
constructs (Fig. 2 C; 1.33-fold, P = 0.0446; 1.37-fold, P = 0.0408).
Based on this result, it was inferred that the key promoter ele-
ments crucial for cocaine-mediated induction of CXCL10 tran-
scription were contained within the 376-bp promoter, including
AP-1, kBl1, kB2, and ISRE recognition elements. To dissect the
potential transcription factor binding sites engaged by cocaine
on the CXCL10 promoter, the next step was to assess the abil-
ity of cocaine to induce/abrogate CXCLIO transcription in cells
transfected with constructs containing various point mutations
(AP-1, kB1, kB2, and ISRE recognition elements) in the full-length
CXCL10 promoter. Mutations in the AP-1 site had no significant
effect on the ability of cocaine to induce promoter activation
(Fig. 2 C); however, mutations in the kB1, kB2, and ISRE sites all
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Figure 1. Increased numbers of CD68* macrophages proximal to CXCL10 overexpressing pericytes in the brains of cocaine abusers. (A) Represen-
tative immunostaining of the frontal cortex region from the postmortem brain tissues of no-cocaine controls or cocaine users stained with anti-CD68 (mac-
rophage marker, red), anti-Desmin (pericyte marker, green), and anti-TMEM119 (resident microglial marker, white) antibodies. n = 4 per group; bar, 50 um.
Arrows: CD68*/TMEM119- cells. (B) Quantification of CD68*/TMEM119- cells in the frontal cortex region of no-cocaine controls or cocaine users. Two-tailed
Student’s t test. (C) Representative images of MIVs isolated from the frontal cortices of no-cocaine controls or cocaine abusers that were stained with anti-
CXCL10, anti-PDGFR-B, and anti-CD31 antibodies. n = 4 per group; bar, 50 um. (D) Quantification of fluorescent intensities of CXCL10 staining in PDGFR-B*
cells. Two-tailed Student’s t test. (E) Representative images of MIVs isolated from the frontal cortices of no-cocaine controls or cocaine abusers that were
stained with anti-CXCL10, anti-NG2, and anti-CD31 antibodies. n = 4 per group; bar, 50 um. (F) Quantification of fluorescent intensities of CXCL10 staining
in NG2* cells. Two-tailed Student’s t test. (G) Representative images of MIVs isolated from the frontal cortices of no-cocaine controls or cocaine abusers
that were stained with anti-CXCL10, anti-Desmin, and anti-CD31 antibodies. n = 4 per group; bar, 50 um. (H) Quantification of fluorescent intensities of
CXCL10 staining in Desmin® cells. Two-tailed Student’s t test. (I) Representative images of MIVs isolated from the frontal cortices of no-cocaine controls
or cocaine abusers that were stained with anti-CXCL10, anti-TBX18, and anti-CD31 antibodies. n = 4 per group; bar, 50 um. (J) Quantification of fluorescent
intensities of CXCL10 staining in TBX18* cells. All data are presented as means + SD of three or four individual experiments (biological replicates). **, P < 0.01,
***, P < 0.001 versus control group.
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Figure 2. Cocaine enhanced mRNA stability
and expression of CXCL10 in HBVPs. (A) Real-
time PCR analysis of CXCL10 mRNA expression
in HBVPs exposed to varying concentrations of
cocaine (10°8,1077,107¢,10-% and 10-* M). One-
way ANOVA followed by Bonferroni’s post hoc
test was used to determine the statistical sig-
nificance among multiple groups. (B) Real-time
PCR analysis of CXCL10 mRNA expression in
HBVPs exposed to cocaine (10 uM) for various
time points. One-way ANOVA followed by Bon-
ferroni’s post hoc test was used to determine the
statistical significance among multiple groups.
(C) HBVPs were transfected with luciferase
reporter gene constructs containing either full-
length or truncated CXCL10 promoter for 24 h
followed by stimulation with cocaine for an addi-
tional 4 h. Two-tailed Student’s t test. (D) Kinet-
ics of CXCL10 mRNA expression by real-time PCR
in both control and cocaine-stimulated HBVPs in
the presence of Act D. (E) Heatmap represent-
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led to significant abrogation of cocaine-induced luciferase activ-
ity, thereby underscoring the role of these transcription factor
binding sites in cocaine-mediated induction of CXCL10.

Since CXCL10 mRNA expression following cocaine exposure
increased 2.9-fold in HBVPs, whereas the transcriptional activa-
tion only increased 1.33-fold, we hypothesized that the induction
of CXCL10 mRNA by cocaine could be mediated, in part, by an
increase in CXCL10 mRNA stability. To assess this, HBVPs were
treated with actinomycin D (Act D; 10 pg/ml) in the presence or
absence of cocaine for various time periods (30-180 min) to block
the de novo mRNA synthesis, followed by assessment of CXCL10
mRNA levels by quantitative PCR. Cocaine exposure resulted in
an increased half-life of CXCL10 mRNA (f;,, = 120 min) compared
with the control group (t,/, = 77 min; Fig. 2 D).

To confirm whether increased CXCL10 mRNA levels man-
ifested as increased protein translation, HBVPs were treated
with 10 uM cocaine for 24 h followed by collection of superna-
tants that were assessed for a panel of cytokines/chemokines
using the Luminex platform. As shown in the heatmap (Fig. 2 E),
protein expression of CXCL10, VEGF, and CCL2 was signifi-
cantly induced by cocaine in HBVPs compared with the unex-
posed controls (CXCL10: 5.19-fold, P = 0.000985; VEGF: 1.63-fold,
P = 0.0289; CCL2: 1.46-fold, P = 0.0430); moreover, CXCL10 was
the most prominently expressed chemokine among all 23 detect-
able chemokines. Out of a panel of 29 cytokines/chemokines, we
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Time after ActD treatment (min)

ing expression levels of cytokines/chemokines in
the supernatant of control and cocaine exposed
HBVPs. (F) CXCL10 was assayed by ELISA in
supernatants of HBVPs cultured for 24 h in the
absence or presence of cocaine. One-way ANOVA
followed by Bonferroni’s post hoc test was used
Fkk to determine the statistical significance among
multiple groups. All data are presented as
means + SD or SEM of three or four individual
experiments (biological replicates). *, P < 0.05,
**,P<0.01, ***, P < 0.001 versus control group.
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were able to detect 23 cytokines/chemokines in our system. To
validate our Luminex assay findings, HBVPs were treated with
cocaine at varying concentrations (1078, 1077, 1075, 10-%, and
10* M) for 24 h, followed by collection of supernatants that
were assessed for expression of secreted CXCL10 using the ELISA
assay. Similar to our Luminex results, cocaine induced CXCL10
release from HBVPs in a concentration-dependent manner with
maximal response at 10-° M (10 pM; 1,151 pg/ml, P < 0.0001) as
determined by ELISA (Fig. 2 F). Taken together, these findings
suggest that in HBVPs, cocaine mediated induction and release
of CXCLI10 by increasing the transcriptional activity, as well as
mRNA stability of CXCL10 mRNA.

Engagement of 6-1 receptor (o-1R) is critical for cocaine-
mediated induction of CXCL10 expression in HBVPs

Since o-1R is known to bind to a plethora of psychotropic drugs
including cocaine (Hayashi and Su, 2003), we next sought to
determine whether o-1R was involved in cocaine-mediated in-
duction of CXCLI1O0 release from HBVPs. The first step was to ex-
amine the endogenous expression of o-1R in HBVPs by RT-PCR.
Basal expression level of -1R in HBVPs was lower compared with
human brain microvascular endothelial cells (HBMECs; Fig. 3 A).
Next, we sought to determine whether activation of o-1R by co-
caine involved translocation of these receptors from the ER lipid
droplets to the plasma membrane. For this, we first isolated lipid
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Figure 3. Engagement of o-1R is critical for cocaine-induced CXCL10 expression in HBVPs. (A) Comparative expression of 6-1R mRNA levels by RT-PCR
analysis in both HBVPs and HBMECs. (B) Representative Western blot of o-1R and GM1 in the lipid raft fractions (4-6) isolated from confluent HBVPs either
unexposed or exposed to cocaine using sucrose gradient ultracentrifugation. (C) Representative fluorescence images of HBVPs transfected with o-1R-RFP
plasmid (red fluorescence) and stained with CT-B conjugates Alexa Fluor 488 specific for ganglioside GM1-lipid raft marker (green fluorescence). Bar, 10 um.
Overlay and magnified (mag) images are shown; bar, 5 pm. (D) Quantification of colocalization of o-1R and CT-B. Two-tailed Student’s t test. (E) CXCL10
was assayed by ELISA assay in the supernatants collected from HBVPs pretreated with o-1R inhibitor BD1047 (10 uM) for 1 h, followed by cocaine exposure
for an additional 24 h. One-way ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical significance among multiple groups.
(F) Representative Western blot of silencing of o-1R in HBVPs transfected with si-o-1R. CXCL10 was assayed by ELISA assay in the supernatants collected
from HBVPs transfected with si-o-1R and nonsense si-Con followed by cocaine exposure. One-way ANOVA followed by Bonferroni’s post hoc test was used to
determine the statistical significance among multiple groups. All data are presented as means + SD of three or four individual experiments (biological replicates).
*, P<0.05 **, P<0.01, *** P < 0.001 versus control group. ###, P < 0.001 versus cocaine-exposed group.

rafts from HBVPs by sucrose gradient centrifugation and exam-
ined each fraction for the expression of o-1R and GM1 by Western
blot (Fig. 3 B). o-1Rs were primarily present in fractions 8-10,
while GM1 gangliosides were primarily present in fractions 4 and
5. Next, HBVPs were exposed to cocaine (10 uM) for 20 min, fol-
lowed by lipid raft isolation and assessment of ¢-1R and GM1 in
fractions 4-6 by Western blot. Following cocaine exposure, there
was a significantincrease in o-1R expression in the lipid raft frac-
tions from HBVPs compared with controls (Fig. 3; expression of
o-1R in all the 10 fractions is shown in Fig. S2 B).
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These findings were also validated by immunostaining of
HBVP cells transfected with the o-1R RFP plasmid. HBVPs were
transfected with the o-1R RFP plasmid for 24 h, exposed to co-
caine for 15 min, followed by GM1 staining with Alexa-conjugated
cholera toxin subunit B (CT-B), and assessed by fluorescence
microscopy. In untreated control HBVPs, o-1R (red) was mainly
expressed in the cytoplasm and failed to colocalize with the lipid
raft microdomains (Fig. 3 C, green). After cocaine exposure,
however, there was colocalization of ¢-1R within the lipid raft
domains as evidenced by merging of green and red staining. This
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Figure 4. Involvement of c-Src kinase in cocaine-mediated CXCL10 expression. (A) Representative Western blot and quantification of p-Src and c-Src in
the lysates isolated from HBVPs exposed to cocaine for various time points (5 min to 3 h). One-way ANOVA followed by Bonferroni’s post hoc test was used
to determine the statistical significance among multiple groups. (B) Representative Western blot and quantification of p-Src and c-Src in the lysates isolated
from HBVPs pretreated with Src tyrosine kinase inhibitor PP2 (1 uM) or its inactive analogue PP3 (1 uM) for 1 h, followed by cocaine exposure for an additional
15 min. One-way ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical significance among multiple groups. (C) CXCL10 was
assayed by ELISA assay in the supernatants collected from HBVPs pretreated with either the Src tyrosine kinase inhibitor PP2 or its inactive analogue PP3
for 1 h, followed by cocaine exposure for an additional 24 h. One-way ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical
significance among multiple groups. All data are presented as means + SD of four or five individual experiments (biological replicates). *, P < 0.05, **, P < 0.01,
*** P < 0.001 versus control group. #, P < 0.05, ##, P < 0.01 versus cocaine-treated group.

observation was quantified using Pearson’s correlation coeffi-
cient (Fig. 3 D).

Having determined that cocaine activated o-1R via its trans-
location into the lipid domains of plasma membrane, we next
sought to examine the role of ¢-1R in cocaine-mediated induc-
tion of CXCL10 in HBVPs. Cocaine-mediated induction of CXCL10
expression was significantly attenuated in HBVPs pretreated
with the o-1R antagonist BD1047 (10 uM; Fig. 3 E). To further
validate the involvement of ¢-1R in cocaine-induced regulation
of CXCL10 expression, we used a genetic knockdown approach
by transfecting HBVPs with o-1R siRNA (si-o-1R). Transfection
of HBVPs with si-o-1R resulted in efficient knockdown of o-1R
expression (Fig. 3 F). In cells transfected with si-o-IR, cocaine
failed to up-regulate the expression of CXCL10 compared with
cells transfected with scrambled siRNA. These findings thus
underscore the role of o-1R in cocaine-mediated induction of
CXCL10 in HBVPs.

Involvement of c-Src kinase in cocaine-mediated induction of
CXCL10 in HBVPs

We next sought to examine whether cocaine-mediated induc-
tion of CXCLI10 involved activation of c-Src. Exposure of HBVPs
to cocaine resulted in a time-dependent increase in phosphor-
ylation of c-Src, with activation as early as 5 min following ex-
posure (Fig. 4 A). The specificity of Src signaling pathway was
subsequently assessed using a pharmacological approach. Pre-
treatment of cells with the Src tyrosine kinase inhibitor PP2 re-
sulted in abrogation of cocaine-induced phosphorylation of c-Src
(Fig. 4 B). As expected, pretreatment of cells with the inactive an-
alogue PP3 failed to abrogate cocaine-induced phosphorylation
of c-Src. To examine the functional role of c-Src in cocaine-me-
diated induction of CXCL10 expression, HBVPs were pretreated
with PP2 or PP3 for 1 h, followed by exposure of cells to cocaine
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for 24 h, followed by assessment of CXCL10 secretion by ELISA.
Pretreatment of cells with PP2, not with PP3, significantly inhib-
ited cocaine-mediated induction of CXCL10 secretion (Fig. 4 C).

Physical interaction of o-1R with Src kinase

Since o-1R translocated to the lipid raft domain in the membrane
following exposure to cocaine, we sought to determine the pres-
ence of any protein-protein interactions between o-1R and c-Src
kinase. First, a series of coimmunoprecipitation assays was per-
formed using lysates from cocaine-treated/nontreated HBVPs.
In HBVPs, the amount of -1R in the c-Src-immunoprecipitated
protein complex was increased following cocaine exposure, while
the amount of total c-Src remained unchanged (Fig. 5 A). These
findings allude to a possible interaction between ¢-1R and c-Src
kinase following cocaine exposure. For additional validation
of this interaction, o-1R was immunoprecipitated from HBVP
lysates and assessed for expression of c-Src by Western blot.
Similar to the c-Src immunoprecipitated complex, the amount
of c-Src in the o-1R-immunoprecipitated protein complex was
increased following cocaine exposure, while the amount of total
0-1R remained unchanged.

The protein-protein interaction between o-1R and c-Src was
further validated by confocal microscopy. HEK293 cells were
cotransfected with c-Src-GFP and o-1R-RFP and assessed for
colocalization of c-Src and o-1R by confocal microscopy. As ex-
pected, c-Src and o-1R were found in the cytoplasm of HEK293
cells with strong colocalization (yellow) of green and red fluores-
cence observed within the cells, demonstrating an interaction of
c-Src with o-1R (Fig. 5 B).

Since p-Src is the active form of c-Src (Rutledge et al., 2014),
we next examined the interaction of p-Src with o-1R in HBVPs.
HBVPs were treated with cocaine (10 pM) for 15 min followed by
assessment of p-Src (green color) and o-1R (red color) by double
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Figure 5. Physicalinteraction of 6-1R with c-Src kinase. (A) Cocaine mediated an interaction between ¢-1R and c-Src, as determined by coimmunoprecip-
itation assay. (B) HEK293 cells were transfected with GFP-tagged c-Src and o-1R-RFP. Overlay images are shown. Bar, 10 um. (C) Representative fluorescence
images of HBVPs stained with anti-p-Src (green) and o-1R (red). Bars, 10 um. (D) Quantification of colocalization of 6-1R and p-Src. Two-tailed Student’s t
test. (E) Representative Western blot and quantification of p-Src and c-Src in the lysates isolated from HBVPs pretreated with o-1R inhibitor BD1047 (10 pM)
for 1h, followed by cocaine exposure for an additional 15 min. One-way ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical
significance among multiple groups. (F) Representative Western blot and quantification of p-Src and c-Src in the lysates isolated from HBVPs transfection with
si-0-1R and si-Con followed by cocaine exposure for 15 min. One-way ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical
significance among multiple groups. All data are presented as means + SD or SEM of four or five individual experiments (biological replicates). *, P < 0.05,
**, P < 0.01 versus control group. #, P < 0.05 versus cocaine-treated group.

immunostaining. The intensity of p-Src fluorescence and the
colocalization of p-Src and o-1R were both dramatically induced
following cocaine exposure in HBVPs compared with control cells
(Fig. 5 C). This finding was quantified using Pearson’s correlation
coefficient and shown in Fig. 5 D.

We next wanted to investigate whether activation of o-1R
was critical for cocaine-mediated phosphorylation of c-Src.
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Cocaine-mediated phosphorylation of c-Src was significantly
attenuated in HBVPs pretreated with the o-1R antagonist BD1047
(10 uM; Fig. 5 E). Similarly, transfection of HBVPs with o-1R
siRNA further validated the involvement of o¢-IR in cocaine-
induced phosphorylation of c¢-Src. In cells transfected with o-1R
siRNA, cocaine failed to mediate phosphorylation of c-Src, un-
like the cells transfected with scrambled siRNA (Fig. 5 F). These
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Figure 6. Involvement of PDGFR-B in cocaine-mediated induction of CXCL10 expression. (A) Phosphorylation of PDGFR-B induced by cocaine in HBVPs.
One-way ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical significance among multiple groups. (B) CXCL10 was assayed
by ELISA assay in the supernatants collected from HBVPs pretreated with the tyrosine kinase inhibitor STI571 (10 uM) for 1 h, followed by cocaine exposure
for an additional 24 h. One-way ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical significance among multiple groups.
(C) Representative Western blot of silencing of PDGFR-B in HBVPs transfected with si-PDGFR-B. CXCL10 was assayed by ELISA assay in the supernatants col-
lected from HBVPs transfected with si-PDGFR-B and control siRNA followed by cocaine (10 um) exposure for 24 h. One-way ANOVA followed by Bonferroni’s
post hoc test was used to determine the statistical significance among multiple groups. (D) Representative Western blot and quantification of p-Src and c-Src
in the lysates isolated from HBVPs pretreated with the tyrosine kinase inhibitor STI571 for 1 h, followed by cocaine exposure for an additional 15 min. One-way
ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical significance among multiple groups. (E) Representative Western blot
and quantification of p-PDGFR-B/PDGFR-f in the lysates isolated from HBVPs pretreated with Src tyrosine kinase inhibitor PP2 or its inactive analogue PP3
for 1 h, followed by cocaine exposure for an additional 15 min. One-way ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical
significance among multiple groups. All data are presented as means + SD of four or five individual experiments (biological replicates). *, P < 0.05, **, P < 0.01,
***, P < 0.001 versus control group. ##, P < 0.01 versus cocaine-treated group.

findings thus demonstrate that cocaine-mediated activation of  of cells to cocaine and assessment of CXCL10 release by ELISA.

o-1R is upstream of phosphorylation of c-Src. Pretreatment of cells with STI571 resulted in significant ame-

lioration of cocaine-mediated release of CXCL10 from HBVPs
Involvement of PDGFR-B in cocaine-mediated induction of (Fig. 6 B). Further validation of the involvement of PDGFR-B in
CXCL10 expression cocaine-mediated CXCL10 release from HBVPs was performed

Based on the premise that the activation of o-1R and c-Src plays  in cells transfected with the siRNA for PDGFR-f, followed by
a role in cocaine-mediated induction of CXCL10, and the fact assessment of CXCL10 release by ELISA assay. Transfection of
that Src kinases are important for PDGFR-B signaling transduc-  HBVPs with PDGFR-B siRNA (si-PDGFR-p) resulted in efficient
tion, the next step was to elucidate whether cocaine-mediated knockdown of PDGFR-P expression (Fig. 6 C). In these cells,
CXCL10 expression involved PDGFR-P signaling. For this, HBVPs  cocaine failed to up-regulate CXCLI10 release from HBVPs com-
were exposed to cocaine for various time periods (between 5 pared with HBVPs transfected with scrambled siRNA (si-Con),
min and 3 h) followed by assessment of the cell lysates for phos- ~ wherein, as expected, cocaine exposure up-regulated the expres-
phorylation of PDGFR-f by immunoprecipitation assay using the  sion of CXCL10.

anti-phosphotyrosine antibody (clone 4G10). In HBVPs, cocaine The next step was to elucidate the role of c-Src in cocaine-
exposure resulted in phosphorylation of PDGFR-f as early as 5 mediated phosphorylation of PDGFR-B in HBVPs. Briefly, before
min (Fig. 6 A). We next sought to elucidate whether PDGFR-Bac-  cocaine exposure, HBVPs were pretreated with the tyrosine kinase
tivation played a role in cocaine-mediated induction of CXCL10  inhibitor STI571 (10 pM) followed by assessment of phosphoryla-
expression. To address this, HBVPs were pretreated with a ty-  tion of c-Src by Western blot. In cells pretreated with STI571, co-
rosine kinase inhibitor, STI571 (10 pM), followed by exposure  caine was able to induce phosphorylation of c-Src, demonstrating
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thereby that c-Src was upstream of PDGFR- signaling (Fig. 6 D).
Reciprocally, HBVPs were also pretreated with the Src tyrosine ki-
nase inhibitor PP2 or its inactive analogue PP3, followed by cocaine
exposure and assessment of phosphorylation of PDGFR-p. In cells
pretreated with PP2 but not PP3, cocaine-mediated phosphoryla-
tion of PDGFR- was abrogated, thereby suggesting that c-Src lies
upstream of PDGFR-B phosphorylation (Fig. 6 E).

Involvement of NF-kB in cocaine-mediated induction of
CXCL10 expression

For further validation of the role of NF-kB, we next sought to
examine the cocaine-mediated translocation of NF-«B p65 into
the nucleus in HBVPs. Briefly, HBVPs were exposed to cocaine
for various periods of time (5-180 min) and assessed for trans-
location of the p65 subunit of NF-«B into the nucleus. Exposure
of HBVPs to cocaine resulted in a time-dependent increase in
translocation of the NF-kB p65 subunit in the nucleus with a
concomitant decrease in its expression in the cytosol (Fig. 7, A
and B). Additional confirmation of these findings by immunos-
taining also revealed enhanced translocation of NF-«B into the
nucleus in HBVPs at 15 min after cocaine (10 pM) exposure. Im-
ages were captured by fluorescence microscopy, using a (63x/1.4)
objective lens. Cocaine exposure resulted in a significant increase
in the intensity of NF-«B fluorescence in the nucleus with a con-
comitant decrease in the cytoplasm (Fig. 7 C). Quantification of
NF-«B nuclear translocation is shown in Fig. 7 D. We next sought
to examine whether NF-«B was involved in secretion of CXCL10.
For this, HBVPs were pretreated with SC514, a selective IxB ki-
nase-2 (IKK-2) inhibitor, to specifically suppress the transcrip-
tion of NF-kB, followed by exposure to cocaine and assessment
of CXCL10 release by ELISA. Pretreatment of cells with SC514
resulted in significant amelioration of cocaine-mediated CXCL10
release from HBVPs (Fig. 7E).

To assess if there was a link that could tie together the ac-
tivation of o-1R-c-Src-PDGFR-P signaling with NF-«B, HBVPs
were transfected with either nontarget siRNA control or si-c-1R
followed by exposure of transfected cells to cocaine for 15 min
and assessment of NF-«B expression in the nuclear fraction. As
expected, in HBVPs transfected with si-o-1R, cocaine exposure
failed to increase the nuclear translocation of NF-«B compared
with cells transfected with the nontarget siRNA control, wherein
cocaine exposure mediated increased translocation of NF-kB
(Fig. 7 F). To examine the role of c-Src in cocaine-mediated nu-
clear translocation of NF-kB, HBVPs were pretreated with either
the Src tyrosine kinase inhibitor PP2 or its inactive analogue
PP3, followed by cocaine exposure. Pretreatment with PP2, but
not with PP3, resulted in abrogation of cocaine-mediated nuclear
translocation of NF-«B (Fig. 7 G). Having demonstrated the o-1R
and c-Src were involved in cocaine-mediated nuclear transloca-
tion of NF-«B, we next sought to examine the role of PDGFR-f3
in cocaine-induced NF-kB nuclear translocation. HBVPs were
transfected with either nontarget siRNA control or si-PDGFR-f3,
followed by exposure of transfected cells to cocaine for 15 min,
and assessed for expression of NF-«B in the nuclear fractions.
Cocaine mediated an increase in translocation of NF-«B in cells
transfected with the nontarget siRNA control but not in cells
transfected with si-PDGFR-B (Fig. 7 H). These findings thus
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underpin the involvement of o-1R-c-Src-PDGFR-f signaling in
cocaine-mediated activation of NF-«B in HBVPs.

The next step was to examine a link between NF-kB activa-
tion and the upstream signaling pathways in cocaine-mediated
up-regulation of CXCL10 expression in HBVPs. We thus first
sought to assess whether pharmacological inhibition of NF-«xB
would affect cocaine-mediated translocation of o-1R. For this,
HBVPs were pretreated with SC514 for 1 h, then exposed to co-
caine for an additional 15 min and assessed for translocation of
o-1R. In cells pretreated with SC514, cocaine was still able to in-
duce translocation of 6-1R to the lipid rafts (Fig. S3, A and B).
Next, we sought to examine whether inhibition of NF-«B could
affect cocaine-mediated phosphorylation of c-Src. Briefly, HBVPs
were pretreated with SC514 (10 M) followed by assessing phos-
phorylation of c-Src by Western blots. In the presence of SC514,
cocaine continued to mediate phosphorylation of c-Src (Fig.
S3 C). We next assessed cocaine-mediated phosphorylation of
PDGFR-B in the presence of SC514. HBVPs were pretreated with
SC514, followed by cocaine exposure, and assessed for phosphor-
ylation of PDGFR-P. In the presence of SC514, cocaine-mediated
phosphorylation of PDGFR-B continued to persist (Fig. S3 D).

Cocaine-mediated release of CXCL10 from HBVPs facilitated
monocyte transmigration in an in vitro BBB model

We next sought to determine whether cocaine-mediated up-
regulation of released CXCL10 in HBVPs could induce monocyte
transmigration. We used an in vitro BBB model to assess mono-
cyte transmigration (Fig. 8 A). Briefly, HBMECs (4 x 10%/well)
were seeded onto a Transwell (Corning) until confluence was
reached. Subsequently, green fluorescence cell tracker-labeled
monocytes were added to the upper side of the Transwell, and
pericyte-conditioned medium (PCM) from either the control or
cocaine-exposed HBVPs was added to the lower chamber. Con-
trol PCM (without the cells) was incubated with 10 pM cocaine
for 24 h and used as a negative control (CM-Cocaine) to elim-
inate any direct effect of cocaine on monocyte transmigration.
Varying concentrations (25-100%) of conditioned medium
incubated with cocaine were also added to the lower chamber
of the Transwell and compared with conditioned medium col-
lected from cocaine-treated and -untreated cultured pericytes.
A dramatic increase in monocyte transmigration was observed
in the presence of cocaine-treated PCM (PCM-cocaine) at all the
concentrations tested compared with the PCM-Con (Fig. 8 B).
Furthermore, we also sought to examine the transendothelial
electrical resistance (TEER) and FITC Dextran-4 permeability of
HBMECs following exposure to PCM-cocaine/PCM-Con/CM-co-
caine. PCM-cocaine and PCM-Con at 50% concentration failed to
exert any significant effect on TEER as well as permeability (Fig.
S4, A and B). It was only at 100% concertation that PCM-cocaine
showed significantly decreased TEER and increased permeability
in the in vitro BBB model (Fig. S4, A and B).

Based on our findings that cocaine dose dependently in-
creased CXCL10 expression in the culture medium of HBVPs
(Fig. 2 G), we next sought to examine whether cocaine could also
dose-dependently enhance monocyte transmigration across the
BBB model. To address this, PCM was collected from HBVPs ex-
posed to varying concentrations of cocaine (1, 10, and 100 pM)
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Figure 7. Involvement of NF-kB in cocaine-mediated induction of CXCL10 release from HBVPs. (A) Representative Western blot and quantification of
NF-kB in the nuclear lysates isolated from HBVPs exposed to cocaine for various time points (5 min to 3 h). One-way ANOVA followed by Bonferroni’s post hoc
test was used to determine the statistical significance among multiple groups. (B) Representative Western blot and quantification of NF-kB in the cytoplasmic
lysates isolated from HBVPs exposed to cocaine for various time points (5 min to 3 h). One-way ANOVA followed by Bonferroni’s post hoc test was used to
determine the statistical significance among multiple groups. (C) HBVPs were exposed to cocaine, followed by immunostaining with antibodies specific for
NF-kB. Bars, 10 pm. White arrows, NF-kB nuclear translocated cells. (D) Quantification of NF-kB nuclear translocation. Two-tailed Student’s t test. (E) CXCL10
was assayed by ELISA assay in the supernatants collected from HBVPs pretreated with IKK-2 inhibitor SC514 (10 uM) for 1 h, followed by cocaine exposure
for an additional 24 h. One-way ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical significance among multiple groups.
(F) Representative Western blot and quantification of NF-kB in the nuclear lysates isolated from HBVPs transfected with si-o-1R and si-Con followed by cocaine
exposure. Two-tailed Student’s t test. (G) Representative Western blot and quantification of NF-kB in the nuclear lysates isolated from HBVPs pretreated
with Src tyrosine kinase inhibitor PP2 or its inactive analogue PP3 for 1 h, followed by cocaine exposure for an additional 15 min. Two-tailed Student’s t test.
(H) Representative Western blot and quantification of NF-kB in the nuclear lysates isolated from HBVPs transfected with si-PDGFR-B and si-Con followed by
cocaine exposure. Two-tailed Student’s t test. All data are presented as means = SD of three or four individual experiments (biological replicates). *, P < 0.05,
**, P < 0.01, ***, P < 0.001 versus control group. #, P < 0.05 versus cocaine-treated group.

and assessed for its effect on monocyte transmigration across an
in vitro BBB model. Control pericyte medium (without the cells)
was incubated with 10 uM cocaine for 24 h and used as a nega-
tive control to eliminate any direct effect of cocaine on mono-
cyte transmigration. Although control medium incubated with
cocaine (10 M) had the ability to induce a low level of monocyte
transmigration, a more dramatic increase in monocyte transmi-

Niu et al.
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gration was observed in the presence of PCM-cocaine, and this
effect was dependent on the concentration of cocaine, with the
maximal effect observed in PCM-cocaine (10 pM; Fig. 8 C). These
findings thus demonstrate that PCM-cocaine enhanced mono-
cyte transmigration compared with PCM-Con.

We next sought to examine whether CXCL10 released from
HBVPs following cocaine exposure was a critical chemokine
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for enhanced monocyte transmigration. To answer this, PCM-
Con and PCM-cocaine were incubated with either neutraliz-
ing anti-CXCL10 antibody or normal IgG antibody (2.0 pg/ml),
followed by assessment of monocyte transmigration to these
respective PCMs. PCM-cocaine incubated with neutralizing
CXCL10 antibody failed to induce monocyte transmigration
compared with PCM-cocaine incubated with the control IgG
antibody, which resulted in enhanced monocyte transmigration
(Fig. 8 D). To further confirm the effect of CXCL10 on monocyte
transmigration, monocytes were pretreated with the CXCL10 re-
ceptor (CXCR3) antagonist AMG487 (1 uM) for 1 h and assessed as
described before for transmigration across the BBB to either con-
trol or PCM-cocaine. Pretreatment of monocytes with AMG487
resulted in significant amelioration of PCM-cocaine to mediate
monocyte transmigration. Control monocytes, not treated with
the antagonist, exhibited increased migration to PCM-cocaine,
as expected (Fig. 8 E).

Further validation of the involvement of ¢-IR in PCM-co-
caine-mediated transmigration of monocytes was performed
in HBVPs transfected with the siRNA for o-1R. Briefly, HBVPs
were transfected with either ¢-1R or nonsense (control) siRNA
for 24 h followed by exposure of cells to cocaine for another
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24 h, after which the PCM was collected and added to the bottom
chamber of the Transwell. PCM-cocaine collected from HBVPs
transfected with si-o-IR failed to augment monocyte transmi-
gration (Fig. 8 F). On the other hand, as expected, PCM-cocaine
collected from HBVPs transfected with the nontarget siRNA con-
trol mediated an increase in monocyte transmigration. Next, we
sought to examine the involvement of PDGFR-3 in PCM-cocaine-
mediated transmigration of monocytes by transfecting HBVPs
with either control or si-PDGFR-f. HBVPs were transfected with
either the PDGFR-P or nonsense (control) siRNA for 24 h followed
by exposure of cells to cocaine for another 24 h, after which the
PCM was collected and added to the bottom chamber of the Tran-
swell for transmigration assays. PCM-cocaine collected from
HBVPs transfected with si-PDGFR-p failed to augment monocyte
transmigration, while, as expected, PCM-cocaine collected from
HBVPs transfected with the nontarget siRNA control mediated an
increase in monocyte transmigration (Fig. 8 G).

CXCL10 released from brain pericytes promoted monocyte
transmigration in cocaine-treated mice

To further validate cocaine-mediated up-regulation of CXCL10
expression in pericytes in vivo, C57BL/6N mice (male, n = 4) were
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injected with cocaine (20 mg/kg) or saline i.p. for 7 d, followed
by assessment of the expression of CXCL10 in brain capillaries
isolated from cocaine- versus saline-treated mice. MIVs were co-
immunostained for pericyte marker (NG2, PDGFR-B, Desmin, or
TBX18; red color) and CXCL10 (green color) and assessed by fluo-
rescence microscopy. There was increased expression of CXCL10
in NG2* cells in MIVs isolated from cocaine-treated versus sa-
line-treated mice (Fig. 9, Aand B). Similar findings were observed
in PDGFR-B*, Desmin* or TBX18* cells in the MIVs (Fig. S5).

Based on the premise that pericyte coverage and vascular
permeability are both important indicators of MIV functioning
(Proebstl et al., 2012), we next sought to assess pericyte cov-
erage and vascular permeability in MIVs from cocaine-treated
mice. Brain sections from cocaine or saline-treated mice were
costained with the pericyte markers (PDGFR-B or Desmin;
red) and an endothelial cell marker (CD31; green). There was
significantly decreased pericyte coverage in MIVs of mice ad-
ministered cocaine compared with the saline group (Fig. S6).
Brain sections from mice administered saline or cocaine were
costained for fibrinogen, as well as the pericyte marker (De-
smin) and endothelial cell marker (CD31), and quantified for
perivascular fibrinogen leak. There was significantly increased
fibrinogen leak in the brains of mice administered cocaine ver-
sus saline (Fig. S4 C).

Since CXCLI10 expression was increased in cocaine-treated
mice, we next wanted to validate the role of CXCL10 in mono-
cyte transmigration in vivo. For this, C57BL/6N mice (male,
n = 4) were administered either saline or CXCL10 (200 pg/ml,
4 pl) stereotactically at the coordinates +1.34 mm behind the
bregma, +1.25 mm lateral from the sagittal midline at the depth
of -4.0 mm to skull surface, followed 24 h later by tail vein in-
jection of mouse bone marrow-derived monocytes (BMMs) iso-
lated from CX3CR1-GFP mice. After an additional 24 h, animals
were euthanized and brain sections stained with anti-GFP and
anti-F4/80 antibodies. The cortex, hippocampus, thalamus, and
striatal regions were assessed for distribution of F4/80* and
GFP*/F4/80* cells. Increased numbers of both F4/80* and GFP*
and F4/80* cells were found in the hippocampi of mice admin-
istrated CXCL10 compared with the saline group (Fig. 9, C and
D); similar findings were observed in the thalamus, cortex, and
striatum of cocaine-treated mice (Fig. S7).

To validate the role of the monocyte CXCL10 receptor, CXCR3,
in mediating monocyte transmigration, mice were injected with
either saline or cocaine (20 mg/kg) for 7 d followed by tail vein
injection of mouse BMMs isolated from CX3CR1-GFP mice pre-
treated with or without the CXCR3 antagonist AMG487. 24 h after
the cell infusion, animals were euthanized, and brain sections
were stained with anti-GFP, anti-F4/80, and anti-PDGFR-f an-
tibodies. F4/80* as well as double-positive GFP*/F4/80* cells in
the cortex, hippocampus, thalamus, and striatum were quanti-
fied. In the presence of cocaine there were increased numbers
of F4/80* as well as double-positive GFP*/F4/80* cells in all the
brain regions examined compared with the saline group (Fig. 9,
E-L). In animals infused with BMMs isolated from CX3CR1-GFP
mice that were pretreated with AMG487, cocaine failed to induce
double-positive GFP*/F4/80* cells, but not F4/80* cells, in all the
brain regions examined.
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Discussion
Cocaine abuse is closely linked with HIV infection (Dahal et al.,
2015; Dash et al.,, 2015). Many studies have demonstrated an
elevated risk of HIV acquisition and an enhanced progression
to neurological HIV in cocaine abusers (Anthony et al., 1991;
Chiasson et al., 1991; Doherty et al., 2000). Both cell culture and
animal studies demonstrate that cocaine not only facilitates HIV
replication in various cell types (Roth et al., 2002; Steele et al.,
2003) but also results in glial cell activation, neurotoxicity, and
BBB breakdown (Fiala et al., 1998; Gekker et al., 2006; Kousik
et al., 2012). Cocaine has a detrimental effect on most cell types
of the CNS, including the endothelium (Brailoiu et al., 2016),
neurons (Mills et al., 2017), microglia (Liao et al., 2016), and
astrocytes (Yang et al., 2010), likely underpinning the link be-
tween cocaine and HIV-associated neurocognitive impairment.
Our findings add yet another novel role of pericytes in cocaine-
mediated increased monocyte transmigration across the BBB.
Here, we demonstrate a novel molecular mechanism underlying
cocaine-mediated induction of CXCL10 expression in HBVPs,
involving sequential activation and translocation of o-1R, with
subsequent interaction with c-Sre, which in turn resulted in
phosphorylation of PDGFR- and nuclear translocation of NF-B,
leading ultimately to enhanced expression of CXCL10 (Fig. 10).

Pericytes are mural cells that are essential components of
the microvascular vessels in direct contact with the endothelial
cells (Sweeney et al., 2016). The integral role of pericytes in the
development and maintenance of the cerebrovascular unit has
been well recognized (Bergers and Song, 2005; Bell et al., 2010;
Armulik et al., 2011), including regulation of the cerebral blood
flow and neurovascular coupling (Kisler et al., 2017). Additionally,
it has been reported that reduced coverage of pericytes on the
endothelium can lead to MIV dysfunction and leakage (Sagare et
al., 2013; Villasefior et al., 2017). Whether these cells participate
in inflammatory processes, however, remains poorly understood,
especially in the context of cocaine-mediated brain inflamma-
tion. Herein, we provided evidence that in pericytes, cocaine me-
diates induction of the proinflammatory chemokine CXCL10 at
both the transcriptional and post-transcriptional levels. CXCL10
belongs to the C-X-C chemokine family that binds to the G pro-
tein-coupled receptor CXCR3, and plays an important role in the
chemotaxis of immune cells including T cells, monocytes, and NK
cells (Taub et al., 1993). Increased expression of various chemok-
ines in the CNS has been implicated in HIV-associated dementia
(Sanders et al., 1998). Specifically, CXCL10 has been detected in
the cerebrospinal fluid and brains of HIV-1-infected individuals
(McArthur et al., 1993; Kolson and Pomerantz, 1996; Sanders et
al., 1998; Kolb et al., 1999). In line with these findings, CXCL10 has
also been identified as a plasma inflammatory biomarker signa-
ture of immune activation in HIV patients on antiretroviral ther-
apy (Kamat et al., 2012). In the current study, we demonstrate
that in HBVPs, cocaine exposure resulted in enhanced transcrip-
tional regulation and stability of CXCL10 mRNA. We also showed
that release of CXCL10 from cocaine-exposed pericytes was crit-
ical for transmigration of monocytes across the brain endothe-
lium in both in vitro and in vivo model systems.

o-1R is an intracellular molecular chaperone (28 kD) that is
predominantly located in the ER membrane (Nguyen et al., 2015)
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Figure 9. CXCL1O released from pericytes promoted monocyte transmigration in mice administered cocaine. (A) Double immunostaining of CXCL10
and pericyte marker NG2 in MIVs isolated from cocaine- or saline-treated mice. CXCL10, green; NG2, red; nucleus, blue; n = 4 per group; bar, 50 pum.
(B) Quantification of the fluorescence intensity of CXCL10 in NG2* cells. Two-tailed Student’s t test. (C) Representative images of F4/80* and GFP*/F4/80*
cells in the hippocampus of mice administrated saline or CXCL10. n = 4 per group. Arrow: GFP*/F4/80" cells; bar, 50 um; magnified images (mag), bar, 20 pum.
(D) Quantification of F4/80* and double-positive GFP*/F4/80* cells in the hippocampus of mice administrated saline or CXCL10. Two-tailed Student’s t test.
(E) Representative images of F4/80* and GFP*/F4/80" cells in the hippocampus of mice administrated saline or cocaine that were costained with the pericyte
marker PDGFR-B. AMG, AMG487. n = 4 per group. Arrow: GFP*/F4/80* cells; bar, 50 um. (F) Quantification of F4/80* and double-positive GFP*/F4/80" cells
in the hippocampi of mice administrated saline or cocaine. One-way ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical
significance among multiple groups. (G) Representative images of F4/80* and GFP*/F4/80* cells in the thalamus of mice administrated saline or cocaine that
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and has been shown to bind to cocaine. It has also been impli-
cated in cocaine addiction and toxicity (Yasui and Su, 2016). In-
triguingly, as a target receptor for cocaine, several studies have
also explored it as a therapeutic target for the treatment of co-
caine-mediated neuropathology (Yasui and Su, 2016). Previous
studies have shown that cocaine exacerbated neuroinflammation
viaactivation of o-1R in endothelial cells, astrocytes, and microg-
lia (Yao et al., 2010, 2011b; Yang et al., 2015). Based on our previ-
ous findings, cocaine-mediated translocation of ¢-1R increased
the permeability of BBB (Yao et al., 2011b), induced chemokine
monocyte chemotactic protein-1 (CCL2) in microglia (Yao et al.,
2010), provoked transcription of GFAP (Yang et al., 2010), and
exacerbated neurotoxicity mediated by HIV viral proteins (Yao
etal.,2009). In the current study, we demonstrated that o-1R was
also present in the cytoplasm of pericytes and, in the presence
of cocaine, it was found to translocate from the ER lipid droplets
to the plasma membrane. Moreover, we observed that o-1R ac-
tivation was critical for cocaine-mediated induction of CXCL10
expression since pretreatment of HBVPs with the o-1R antago-
nist BD1047 or in cells transfected with si-o-1R, cocaine failed to
induce induction of CXCL10.

Further dissection of the signaling pathways involved in co-
caine-mediated induction of CXCL10 using pharmacological
approaches revealed sequential activation of c-Src kinase, a find-
ing that is consistent with previous reports on the effects of co-
caine in HBMECs (Yao et al., 2011b). Herein, for the first time, we
provide evidence that in HBVPs, cocaine mediates a direct physical
interaction between o-1R and c-Src. An interaction of o-1R with
c-Src was further confirmed by cotransfection of GFP-tagged c-Src
and RFP-tagged 6-1R (o-1R-RFP) plasmid constructs in HEK293
cells. Additionally, an interaction was validated by assessing en-
dogenous levels of p-Src and o-1R following cocaine stimulation
in HBVPs by double immunostaining. Modulation of MAPKs by
6-1R has been reported by various investigators (Hayashi and Su,
2005; Yao et al., 2011b; Du et al., 2017). In the current study, using
both pharmacological and genetic approaches, we demonstrated
the role of 0-1R in cocaine-mediated phosphorylation of c-Src.

Our findings also suggest that drugs of abuse such as cocaine
could directly phosphorylate cellular receptors such as PDGFR-f3
as early as 5 min. Further evaluation of the functional role of
activated PDGFR-P was conducted using both pharmacological
and genetic approaches. Pretreatment of HBVPs with either a re-
ceptor tyrosine kinase antagonist, such as STI571 or si-PDGFR-f,
resulted in abrogation of cocaine-mediated induction of CXCL10
release from HBVDPs, thereby implicating the role of PDGF sig-
naling in this process. In this study, we found that cocaine-
mediated phosphorylation of PDGFR-f was dependent on

£ JCB

upstream activation of c-Src, since inhibition of Src kinase
significantly blocked cocaine-mediated phosphorylation of
PDGFR-P. Interestingly, inhibiting PDGFR- had no effect on co-
caine-induced activation of c-Src.

The transcription factor NF-«B has emerged as a major reg-
ulatory transcription factor for a number of genes, including
cytokines such as CXCLI0 (Fitzgerald et al., 2003; Krinninger et
al., 2011). Our findings demonstrated a time-dependent translo-
cation of NF-kB in HBVPs following cocaine stimulation. Further
dissection of NF-«B regulation using both the pharmacological
and genetic approaches revealed that NF-kB nuclear transloca-
tion was dependent on sequential activation of o-1R, c-Src, and
PDGFR-f signaling. It is likely that NF-«B, the downstream effec-
tor of the o-1R-c-Src-PDGFR-f signaling, could also via feedback
regulation mediate translocation of o-1R as well as phosphory-
lation of downstream mediators such as c-Src and PDGFR-B.
To investigate, we pretreated the cells with the IKK-2 inhibitor
SC514 to block NF-«B nuclear translocation and demonstrated
that NF-«B did not regulate the upstream o-1R-c-Src-PDGFR-f3
signaling via the feedback regulation.

In the present study, we report an interaction of pericyte-
released CXCL10 with monocytes, leading to increased trans-
migration of these latter cells in both in vitro as well as in vivo
model systems. Our findings demonstrate that PCM derived from
cocaine-treated HBVPs (PCM-cocaine) induced monocyte trans-
migration in a concentration-dependent manner. The direct
effect of cocaine on monocyte transmigration was eliminated
by using a negative control conditioned medium (without the
HBVPs) incubated with cocaine (CM-cocaine). It was found that
CM-cocaine induced monocyte transmigration only at 100% con-
centration, indicating thereby that cocaine itself had an effect on
monocyte transmigration. PCM-cocaine, on the other hand, in-
duced monocyte transmigration at all the concentrations tested
(even as low as 25% concentration), demonstrating thereby that
the chemokines released from cocaine-stimulated HBVPs had
a stronger effect on monocyte transmigration. Additionally, we
assessed TEER as well as BBB permeability in the in vitro model.
PCM-cocaine as well as CM-cocaine were found to increase
TEER while also decreasing the permeability of the in vitro BBB
model, albeit only at 100% concentration. At lower concentra-
tions (25-75%), however, only PCM-cocaine was able to induce
monocyte transmigration. Intriguingly, there was not change in
either TEER or BBB permeability in the presence of PCM-cocaine,
demonstrating thereby that PCM-cocaine-mediated monocyte
transmigration was unrelated to change in permeability. To
attribute the specificity of CXCL1O in the PCM-cocaine as con-
tributing to enhanced monocyte transmigration, PCM-cocaine

were costained with the pericyte marker PDGFR-B; n = 4 per group. Bar, 50 um. (H) Quantification of F4/80* and GFP*/F4/80" cells in the thalamus of mice
administrated saline or cocaine. One-way ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical significance among multiple
groups. (I) Representative images of F4/80* and GFP*/F4/80" cells in the cortex of mice administrated saline or cocaine that were costained with the pericyte
marker PDGFR-B. n= 4 per group. Bar, 50 um. (J) Quantification of F4/80* and GFP*/F4/80* cells in the cortex of mice administrated saline or cocaine. One-way
ANOVA followed by Bonferroni’s post hoc test was used to determine the statistical significance among multiple groups. (K) Representative images of F4/80*
and double-positive GFP*/F4/80* cells in the striatum of mice administrated saline or cocaine that were costained with the pericyte marker PDGFR-B. n = 4
per group. Bar, 50 um. (L) Quantification of F4/80* and GFP*/F4/80* cells in the striatum of mice administrated saline or cocaine. One-way ANOVA followed
by Bonferroni’s post hoc test was used to determine the statistical significance among multiple groups. *, P < 0.05, **, P < 0.01, ***, P < 0.001 versus saline

group. #, P < 0.05, ##, P < 0.01, ###, P < 0.001 versus cocaine-treated group.
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Figure 10. Schematic diagram demonstrating signaling pathways involved in cocaine-mediated induction of CXCL10 expression in HBVPs.
(A) Cocaine-stimulated pericytes induce the expression and release of CXCL10, which in turn leads to enhanced monocyte transmigration across the BBB.
(B) Cocaine-mediated o-1R activation results in o-1R translocation from ER to the plasma membrane with its subsequent interaction with c-Src. Activation
of ¢-Src results in phosphorylation of PDGFR-B, leading, in turn, to nuclear translocation of NF-kB and subsequent CXCL10 expression. Increased CXCL10
ultimately leads to increased CXCR3-positive monocyte transmigration into the brain.

was treated with CXCL10 neutralizing antibody and assessed for
monocyte migration. PCM-cocaine with was specifically able to
block monocyte transmigration. Further validation of the role of
CXCL10 and its signaling mediators in PCM-cocaine-mediated
induction of monocyte transmigration was also determined by
pharmacological and genetic approaches targeted at inactivation
of o-1R, PDGFR-, and CXCR3 pathways.

To further unravel the effect of cocaine on CXCL10 induc-
tion in pericytes, MIVs from cocaine- or saline-treated mice
were isolated and examined for expression of CXCLIO in peri-
cytes. We observed increased localization of CXCLI10 in NG2*/
PDGFR-f*/Desmin*/TBX18* pericytes in the MIVs isolated from
cocaine-treated mice compared with vessels isolated form saline
controls. Of note, four different pericyte markers were chosen
to validate our findings. It should be mentioned that out of these
markers, TBX18 is expressed in pericytes as well as vascular
smooth muscle cells (Guimaraes-Camboa et al., 2017). Further-
more, in vivo validation of these findings also demonstrated
that cocaine administration increased monocyte transmigration
within the brain, and that this effect could be blocked in mice
administered monocytes pretreated with the CXCR3 antago-
nist AMG487. These findings thus lend credence to a novel role
of pericytes in cocaine-induced neuroinflammation mediated
by CXCL10. Furthermore, we found increased fibrinogen leak
and decreased pericyte coverage around the MIVs of mice ad-
ministrated cocaine for 7 d, demonstrating thereby that cocaine
increased the permeability of MIVs in vivo. Our findings are in
agreement with previous reports describing the role of cocaine in
mediating BBB breach (Sharma etal., 2009; Yao etal., 2011a). The
interaction of pericytes with peripheral monocytes has ramifi-
cations for yet another novel mechanism by which cocaine abuse
can exacerbate neuroinflammation specifically under conditions

Niu et al.
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of HIV infection that are associated with BBB breach (Fiala et al.,
1998; Napuri et al., 2013; Dahal et al., 2015).

In summary, our findings have delineated a detailed mo-
lecular pathway for cocaine-mediated induction of CXCL10 in
pericytes with its ensuing effects causing exacerbation of neu-
roinflammation. Briefly, we have shown that cocaine-mediated
induction of CXCL10 expression in HBVPs involves sequential
activation and translocation of o-1R with subsequent interaction
of o-1R with c-Src. Subsequent activation of c-Src leads to phos-
phorylation and activation of PDGFR-f, with downstream acti-
vation and nuclear translocation of NF-«B, leading ultimately to
enhanced expression and release of CXCL10. Increased secretion
of CXCLI10, in turn, facilitates increased transmigration of mono-
cytes across the BBB, thereby promoting enhanced inflammation
in the brain. Strategies aimed at blocking cocaine-mediated sig-
naling pathway could be developed as therapeutics to dampen
cocaine-mediated neuroinflammation, with applications for
other neurodegenerative disorders.

Materials and methods

Animals

C57BL/6 mice (male, 6-8 wk) were purchased from Charles River
Laboratories, Inc. CX3CR1-GFP homozygous mice were obtained
from the Jackson Laboratory and have a targeted deletion of
CXB3CRI that is replaced by a GFP reporter insertion. All animals
were housed under conditions of constant temperature and hu-
midity on a 12-h light/12-h dark cycle, with lights on at 7:00 a.m.
Food and water were available ad libitum. All animal procedures
were performed according to the protocols approved by the In-
stitutional Animal Care and Use Committee at the University of
Nebraska Medical Center.
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Cell culture

Primary HBVPs were purchased from ScienCell and cultured in
the pericyte medium (ScienCell). HBVPs were isolated from fetal
human brain and were positive for the pericyte markers PDGFR-f3,
NG2, Desmin, and TBX18. Pericytes had negligible staining for aSM
as well as the endothelial cell marker CD31 (>98% purification; Fig.
S1, Aand B). Cell culture dishes were coated with poly-L-lysine (2
pg/cm?; ScienCell), and cells were used in passages 2-5.

Primary HBMECs obtained from Dr. Monique Stins (Johns
Hopkins University, Baltimore, MD) were cultured in RPMI 1640
medium (GE Healthcare Life Sciences) containing 10% heat-inac-
tivated FBS (Atlanta Biologicals), 10% Nu-Serum (BD Biosciences),
2 mM L-glutamine (Invitrogen), 1 mM pyruvate (GE Healthcare
Life Sciences), penicillin (100 U/ml), streptomycin (100 pg/
ml; Gibco), essential amino acids (HyClone), and MEM vitamin
solution (HyClone). Purified HBMECs were positive for endo-
thelial makers Dil-AcLDL, ZO-1, and B-catenin and were found
to be >99% pure after exclusion of staining for nonendothelial
cell type markers (GFAP, smooth muscle actin, cytokeratin, and
macrophage antigens), as described previously (Wen et al., 2011).

Monocyte isolation

Human monocytes were obtained from HIV-1, HIV-2, and hepati-
tis B seronegative donorleukopacks and separated by countercur-
rent centrifugal elutriation, as previously described (Gendelman
et al., 1988). Freshly elutriated monocytes were cultured in
DMEM (Gibco) containing 10% heat-inactivated human serum
(Thermo Fisher Scientific), 2 mM r-glutamine (Invitrogen), 100
mg/ml gentamicin, and 10 mg/ml ciprofloxacin (Sigma-Aldrich).
Human monocytes were used for the in vitro study, while BMMs
isolated from mice were used for the in vivo study.

BMM isolation and cultivation

CX3CR1-GFP homozygous mice (Jackson Laboratory), 6-8 wk of
age, were used as BMM donors. Briefly, the femur was removed,
and bone marrow cells were dissociated into single-cell suspen-
sions and were cultured for 5 d supplemented with 1,000 U/ml
of macrophage colony-stimulating factor.

Reagents

Cocaine, o-1R antagonist BD1047, IKK-2 inhibitor SC514, and
FITC Dextran-4 were purchased from Sigma-Aldrich. Tyrosine
kinase inhibitor STI571 was obtained from Novartis. Src kinase
inhibitor (PP2) and its inactive orthologue (PP3) were purchased
from Calbiochem. CXCR3 antagonist AMG487 was obtained from
Tocris Bioscience. The concentrations of these inhibitors were
based on the concentration curve study and our previous reports
(Niu et al., 2014).

Cell Tracker Green 5-chloromethylfluorescein diacetate was
purchased from Invitrogen. The human CXCL10/IP-10 DuoSet
Kit was obtained from R&D Systems. CT-B conjugated to Alexa
Fluor 488 was purchased from Invitrogen. Neutralizing human
CXCL10/IP-10 antibody was purchased from R&D Systems.

RT-PCT and real-time PCR
The conditions for RT- and real-time PCR assays have been de-
scribed previously (Niu et al., 2014). Real-time PCR primers for

Niu et al.
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human CXCL10 and 18S were obtained from SA Biosciences. Total
RNA was extracted with Trizol reagent (Invitrogen) according
to the manufacturer’s instructions. Quantitative analyses of
mRNA were conducted using the ABI 7500 Fast Real-Time PCR
system (Applied Biosystems). Real-time PCR amplifications were
performed for 40 cycles (denaturation: 30 s at 95°C; annealing:
1 min at 60°C) and RT-PCR for 28 cycles (denaturation: 30 s at
94°C; annealing: 30 s at 55°C; extension: 30 s at 72°C). Primers
were as follows: o-1R, forward primer: 5'-CCCATGGGAACAAAT
GAGACA-3’; reverse primer: 5'-CCAGATGGGTGTGAGTGCAT-3’;
GAPDH (real-time PCR), forward primer: 5'-CTGTGGGCAAGG
TCATCCCTG-3'; reverse primer: 5-AGACGGCAGGTCAGGTCC
ACC-3'; GAPDH (RT-PCR), forward primer: 5-CGTGGAAGGACT
CATGACCA-3’; reverse primer: 5'-GCCTGCTTCACCACCTTCTT-3'.

Collection of pericyte conditioned media

HBVPs at passages 3 and 4 were used for collection of PCM. For
serum starvation, HBVP medium was replaced with FBS-free
pericyte medium followed by overnight starvation and exposure
to cocaine (10 M). After 24-h incubation, PCM from PCM-Con-
and PCM-cocaine-exposed groups were collected and centri-
fuged at 1,000 rpm for 5 min to remove cell debris. Collected
supernatant was stored at -80°C until ready for use in trans-
migration assays.

Cytokine and chemokine analysis by Luminex

Supernatants were collected from HBVPs after 24 h of cocaine
exposure, and the expression of cytokines/chemokines in super-
natants was measured using the Milliplex MAP kit human Cyto-
kine/Chemokine Magnetic Bead Panel Immunoassay (Millipore),
which contains 29 different kinds of cytokines/chemokines as
per the manufacturer’s instructions. Briefly, this is a bead-based
suspension array using the Luminex MAP technology in which
fluorescent-coded beads have cytokine capture antibodies on the
bead surface to bind the proteins. The heatmap was created by
R version 3.2.3 software. Data represent results obtained from
three biological replicates.

CXCL10 protein analysis by ELISA

Culture supernatants were collected from HBVPs exposed to
cocaine or from untreated cells and assessed for expression of
CXCL10 protein using a Human CXCL10/IP-10 DuoSet Kit (R&D
Systems). Samples were analyzed for CXCL10 expression with
three biological replicates, and each biological replicate had three
or four technical replicates.

siRNA and plasmid transfection

HBVPs were transfected with siRNA of si-Con, si-o-1R, or si-PDG
FR-B (Thermo Fisher Scientific). The knockdown efficiency of
siRNAs was determined by Western blot 1 d after transfection.
HEK293 cells were cultured in the coverslip and cotransfected
with plasmid constructs containing GFP-tagged c-Src and plas-
mid constructs containing o-1R-RFP for 24 h followed by as-
sessment of colocalization of GFP-tagged c-Src and o-1R-RFP
using an inverted LSM 700 confocal microscope with a 40x oil
objective (Zeiss). Images were processed with the Zeiss Zen mi-
croscope software.
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Luciferase assay

The 972-bp full-length CXCL10 promoter construct, the 376-bp
truncated CXCL10 promoter construct (sequence from -279 to
+97), and point mutations in the putative AP-1, kB1, kB2, and ISRE
recognition elements in the 972-bp full-length CXCL10 promoter
were provided by Dr. David Proud.

HBVPs were transfected with the following luciferase re-
porter plasmids: full-length CXCLIO, truncated CXCL10, AP-1
mut, kBl mut, kB2 mut, or ISRE mut CXCL10 promoter plasmids.
For normalization of transfection efficiencies, cells were also
cotransfected with pRL-TK plasmid DNA containing the Renilla
luciferase gene. 24 h after transfection, cells were treated with or
without cocaine for 4 h, followed by assessed the luciferase activ-
ity using the Dual-Luciferase Reporter Assay System (Promega)
according to the manufacturer’s instructions. Data represent re-
sults obtained from three biological replicates, and each biologi-
cal replicate comprised three technical replicates.

mRNA stability assays

For mRNA stability assays, 10 pg/ml Act D (Sigma-Aldrich) was
added to HBVPs cultured in the presence or absence of cocaine
(10 uM) for 30, 60, 90, 120, and 180 min. At selected times follow-
ing Act D treatment, total RNA was harvested, and CXCL10 mRNA
expression was detected by real-time RT-PCR. The fold change
in gene expression determined from the RT-PCR assay was then
used to calculate the percentage of mRNA remaining following
Act D treatment. Data represent results obtained from three bio-
logical replicates, and each biological replicate comprised three
technical replicates.

Lipid raft isolation and analysis

Lipid rafts were isolated from confluent HBVPs treated with or
without cocaine according to a previous study (Yao et al., 2011b).
Briefly, lysates were mixed with 1 ml of 85% (wt/vol) sucrose and
overlaid with 2 ml of 42.5% sucrose, 6 ml of 35% sucrose, and
6 ml and 5 ml of 5% sucrose. The gradient was centrifuged for
24 h at 39,000 rpm (SW 41 rotor; Beckman) at 4°C. 12 fractions
were harvested from top to bottom (900 pl-1 ml per fraction)
and frozen at -80°C until analysis. The concentration of protein
in each fraction was analyzed with a bicinchoninic acid protein
assay kit (Pierce).

Labeling of the lipid rafts

CT-B conjugated to Alexa Fluor 488, which binds the ganglioside
GM1 (a lipid raft marker), was used to label the lipid rafts. It has
been known that CT-B colocalizes with flotillin, a protein that
is known to be located in lipid rafts and ceramide. HBVPs were
cultured onto coverslips and transfected with o-1R-RFP plasmid
for 24 h, followed by exposure to cocaine (10 uM) for 30 min at
37°C. CT-B conjugated to Alexa Fluor 488 (1 ng/ml) was added
to the HBVPs during the last 10 min of incubation. The covers-
lips were then washed three times with ice-cold PBS, fixed with
ice-cold 4% paraformaldehyde, and mounted with mounting
medium (Prolong Gold Anti-fade Reagent; Invitrogen). Fluor-
escent images were acquired at RT on a Zeiss Observer using a
Z1 inverted microscope with a 63x/1.4 oil-immersion objective.
Images were processed using the AxioVs 40 Version 4.8.0.0 soft-
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ware (Zeiss). Data represent results obtained from three bio-
logical replicates, and each biological replicate comprised three
technical replicates.

Western blot

Treated cells or isolated MIVs were lysed using the Mammalian
Cell Lysis kit (Sigma-Aldrich), as described previously (Niu et
al., 2014). Equal amounts of protein were electrophoresed in a
SDS-polyacrylamide gel under reducing conditions followed by
transfer to PVDF membranes. Blots were blocked with 5% BSA
in TBS-Tween, and Western blots were probed with antibodies
specific for o-1R (15168-1-AP; Proteintech Group), Src (2108;
Cell Signaling), p-PDGFR-B (3161; Cell Signaling), NG2 antibod-
ies (ab129051; Abcam), TBX18 (ab115262; Abcam), aSM (A5228;
Sigma-Aldrich), and histone H3 (9715; Cell Signaling) at 1:1,000
dilution; NF-«B (ab16502; Abcam) at 1:2,000 dilution; gangli-
oside GM1 (bs-2367R; One World Lab) at 1:500 dilution; and
p-Src (ab32078; Abcam), PDGFR-B (ab32570; Abcam), Desmin
(ab32362; Abcam), and B-actin (A5316; Sigma-Aldrich) at 1:5,000
dilution. Secondary antibodies were alkaline phosphatase con-
jugated to goat anti-mouse/rabbit IgG, or rabbit anti-goat IgG
(1:10,000; Jackson ImmunoResearch Labs). Signals were detected
by SuperSignal West Dura Extended Duration or Pico PLUS Che-
miluminescent Substrate (Thermo Fisher Scientific). All exper-
iments had at least four biological replicates, and representative
blots are presented in the figures.

Immunoprecipitation

To investigate the interaction between c-Src with o-1R, HBVPs
were treated with cocaine (10 uM) for different time periods (5,
15, and 30 min) and then lysed in RIPA buffer (50 mM Tris, pH
7.4,150 mM NaCl, 5 mM EDTA, pH 8.0, 0.1% SDS, 1.0% NP-40,
and 0.5% sodium deoxycholate) containing proteinase and phos-
phatase inhibitors. Cellular protein (500 pg) was incubated with
c-Src antibody (1:100; 2108; Cell Signaling) overnight at 4°C and
precipitated with protein A/G beads (Santa Cruz Biotechnology).
The mixture was then centrifuged at 12,000 rpm for 1 min, and
the cell pellets were rinsed twice with the lysis buffer (1.0% NP-
40, 0.5% sodium deoxycholate, 0.1% SDS, 150 mM NacCl, 9.1 mM
Na,HPO,, and 1.7 mM NaH,P0,) containing proteinase and phos-
phatase inhibitors. Finally, 30 ul of 2x Western blot loading buffer
was added and boiled for 5 min. The protein complexes were de-
tected using o-1R antibody, while the input protein (without anti-
body addition) served as a control to show that equal amounts of
total protein were used. To confirm the interaction of these two
proteins, the 6-1R antibody (2 pg/150 pg total protein; sc-13705;
Santa Cruz Biotechnology) was used to pull down the protein,
and c-Src antibody was used to detect the signal.

To investigate the phosphorylation of PDGFR-B, HBVPs were
treated with cocaine (10 pM) for various times and then lysed
using RIPA buffer. For each sample, 150 ug of protein was used
for immunoprecipitation. Cell lysates were incubated with 1 pl
of anti-4G10 antibody (05-1050; Millipore) overnight at 4°C fol-
lowed by the same procedure, as described above. Finally, 30 pl
of 2x Western blot loading buffer was added and boiled for 5 min.
After spinning at 12,000 rpm for 1 min, the supernatants were
subjected to Western blot analysis and detected by p-PDGFR-3
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antibody, while the input protein (without antibody addition)
served as a control to show that equal amounts of total protein
were used. Data represent results obtained from three biological
replicates, and representative blots are presented in the figures.

Monocyte transmigration assay in vitro

Boyden chambers (Corning Costar) were used to determine the
transmigration of monocytes in vitro. Briefly, primary HBMECs
were seeded (4 x 10* cells/well) onto 6.5-mm polyester Transwell
inserts (3-pm pore size) and grown for 5 d to achieve conflu-
ence. Human monocytes were fluorescently labeled with 10 uM
cell tracker green for 10 min at 37°C. Labeled cells (10° cells/ml)
were added to the upper compartment of Transwell inserts in
serum-free medium, while PCM was added to the basal side of
the chamber. The Transwell plates were incubated for 18 h at
37°C, followed by quantification of monocyte transmigration
by measuring the number of cells migrating across the insert
with a Synergy Mx fluorescence plate reader (BioTek Instru-
ments). Data represent results obtained from three biological
replicates, and each biological replicate comprised two or three
technical replicates.

Cell permeability assay

Primary HBMECs were seeded (4 x 10* cells/well) onto 6.5-mm
polyester Transwell inserts (3-pum pore size) and grown for 5d to
achieve confluence. HBMEC monolayers were exposed to vary-
ing concentrations (50%-100%) of PCM-Con or PCM-cocaine for
18 h. FITC Dextran-4 (100 ng/ml) was then added to the upper
chamber of the inserts and incubated for an additional 2 h. Al-
iquots (100 pl) were then collected from the lower chamber for
measurement of fluorescence at 480 and 530 nm wavelengths for
excitation and emission, respectively (BioTek Instruments). Per-
meability changes were expressed as fluorescence intensity of
FITC-Dextran transported across the BBB into the lower chamber
compared with PCM-Con. Data represent results obtained from
three biological replicates, and each biological replicate com-
prised two or three technical replicates.

Isolation of brain MIVs

Brain MIVs were isolated as described previously (Niu et al.,
2014). Briefly, the brains were removed and immediately im-
mersed in ice-cold isolation buffer A (103 mM NaCl, 4.7 mM KCI,
2.5 mM CaCl,, 1.2 mM KH,PO,, 1.2 mM MgSO,, and 15 mM Hepes,
pH 7.4). The choroid plexus, meninges, cerebellum, and brain
stem were removed followed by homogenization of the brain
in 2.5 ml of isolation buffer B (25 mM NaHCO;, 10 mM glucose,
1mM Na* pyruvate, and 10 g/liter dextran, pH 7.4) with complete
protease inhibitors. 6 ml of Dextran (26%) was then added to the
homogenates followed by centrifugation at 5,800 g for 20 min.
Cell pellets were resuspended in isolation buffer B and filtered
through a 70-pum mesh filter (Becton Dickinson). Filtered homog-
enates were repelleted by centrifugation, and part of it was used
for staining by smearing on glass slides.

Immunofluorescence staining
Brain MIVs smeared on glass slides and HBVP cultured on cov-
erslips were fixed with 4% formaldehyde in PBS for 20 min at
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RT. The slides or coverslips were washed three times with PBS,
permeabilized with 0.3% Triton X-100 for 30 min, rewashed
three times, and blocked in 10% goat serum in PBS for 2 h at RT.
The following antibodies were used for immunostaining: p-Src
(1:100; ab32078; Abcam), o-1R (1:100; sc-137075; Santa Cruz
Biotechnology), NF-«B (1:100; ab16502; Abcam), CXCL10 (1:50;
ab8098; Abcam), NG2 (1:200; ab129051; Abcam), PDGFR-f (1:100;
ab32570; Abcam), Desmin (1:50; ab32362; Abcam), TBX18 (1:100;
ab115262; Abcam), and CD31 (1:500; NB600-1475; Novus). The
slides or coverslips were washed with PBS and incubated with
Alexa Fluor 594-conjugated anti-mouse or anti-rabbit, Alexa
Fluor 488-conjugated anti-rabbit or anti-mouse, Alexa Fluor
488-conjugated anti-mouse, or Alexa Fluor 594-conjugated
anti-rabbit immunoglobulin G (Invitrogen) for 1 h at RT. After
a final washing with PBS, the slides or coverslips were mounted
with mounting medium (Prolong Gold Antifade Reagent; Invit-
rogen). Fluorescent images were acquired at RT on a Zeiss Ob-
server, using a Z1 inverted microscope with a 40x/1.3 or 63x/1.4
oil-immersion objective. Images were processed with the AxioVs
40 Version 4.8.0.0 software (Zeiss). Photographs were acquired
with an AxioCam MRm digital camera and were analyzed with
Image]J software.

Tissue source and Immunofluorescence staining

Formalin-fixed, paraffin-embedded sections (5 um) of frontal
cortex from normal individuals or cocaine abusers were obtained
from the Douglas-Bell Canada Brain Bank (see Table S1 for clin-
ical data) and stained with antibodies specific for CD68 (1:100;
ab955; Abcam), TMEM119 (1:100; ab185333; Abcam), and Desmin
(10 pg/ml; AF3844; R&D Systems) overnight at 4°C. Frozen fron-
tal cortex tissues with the same identification number were also
obtained from the Douglas-Bell Canada Brain Bank and used for
MIV isolations. Isolated MIVs were costained with anti-CXCL10
(1:50; ab8098; Abcam) and antibodies specific for pericyte mark-
ers (PDGFR-B [1:100; ab32570; Abcam], NG2 [1:200; ab129051;
Abcam], Desmin [1:50; ab32362; Abcam], or TBX18 [1:100;
ab115262; Abcam]) and CD31 (1:500; NB600-1475; Novus) over-
night at 4°C. Brain sections or isolated MIVs were washed three
times in PBS followed by incubation in Alexa Fluor 594-conju-
gated anti-mouse or anti-rabbit, Alexa Fluor 488-conjugated
anti-rabbit or anti-mouse, and Alexa Fluor 647-conjugated anti-
goat or anti-rat immunoglobulin G (Invitrogen) for 2 h at RT.
After a final washing with PBS, sections were mounted with the
mounting medium. Fluorescent images were acquired at RT on a
Zeiss Observer using a Z1 inverted microscope with a 40x/1.3 or
63x/1.4 oil-immersion objective. Z-stacks were generated from
images taken at 0.50-0.8-um intervals. Images were processed
using the AxioVs 40 Version 4.8.0.0 software (Zeiss). Photographs
were acquired with an AxioCam MRm digital camera and were
analyzed with Image] software. CD68*/TMEM119- cells proximal
to Desmin* MIVs were counted. For MIVs, only those with a di-
ameter <6 um were used for quantification (Halliday et al., 2016).

Stereotaxic injection

8-wk-old C57BL/6N mice (male, n = 4) were microinjected with
either saline (200 ng/pl) or CXCL10 (4 pl) into the brain using
the microinjection parameters (coordinates +1.34 mm behind the
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bregma, +1.25 mm lateral from the sagittal midline at the depth
of -4.0 mm to skull surface; flow rate: 0.5 pl/min). After 1 h, an-
imals were injected with BMMs isolated from CX3CR1-GFP mice
at a concentration of 107 cells/100 ul through the tail vein. 24 h
after cell infusion, the animals were euthanized and subjected
to transcranial perfusion with saline to remove CX3CR1-GFP*
monocytes from tissue blood vessels. Brain tissues were removed
and frozen at -80°C until cryosection. Sections were then stained
with anti-GFP (1:500; ab13970; Abcam) and anti-F4/80 (1:100;
ab6640; Abcam) antibodies and subjected to immunostaining as
described above. Using four animals per group, different regions
of the mouse brains were then quantified for double-positive
cellsin the cortex, hippocampus, thalamus, and striatum regions.
For MIVs, only those with a diameter <6 pm were used for quan-
tification (Halliday et al., 2016).

In vivo monocyte transmigration assay

Assay of monocyte transmigration into the brain was performed
in C57BL/6 mice. Animals were divided into three groups (n =
4): (1) saline, (2) cocaine, and (3) cocaine plus AMG487 (1 uM).
Cocaine was injected once daily at a dose of 20 mg/kg intraper-
itoneally for 7 d. On the eighth day, animals were injected with
BMMs isolated from CX3CR1-GFP mice with or without pretreat-
ment of AMG487 at a concentration of 107 cells/100 ul through
the tail vein. 24 h after cell infusion, the animals were euthanized
and subjected to transcranial perfusion with saline to remove
CX3CR1-GFP* monocytes from tissue blood vessels. Brain tissues
were removed and frozen at -80°C until cryosection. Brain sec-
tions were then stained with GFP (1:500; ab13970; Abcam), F4/80
(1:100; ab6640; Abcam), and PDGFR-B (1:100; ab32570; Abcam),
following the immunostaining protocol described above. Labeled
cells were then quantified in the different regions including cor-
tex, hippocampus, thalamus, and striatum. Only vessels with a
diameter <6 pm were considered as MIVs (Halliday et al., 2016).

Pericyte coverage and fibrinogen leakage

C57BL/6 mice were divided into two groups (n =4): (1) saline and
(2) cocaine. Cocaine was injected once daily at a dose of 20 mg/kg
intraperitoneally for 7 d, and then animals were euthanized and
subjected to transcranial perfusion with saline to remove blood
from tissue blood vessels. Brain tissues were removed and fro-
zen at -80°C until cryosection. Brain sections were stained with
anti-fibrinogen (1:50; ab34269; Abcam) and/or antibodies spe-
cific for pericyte markers (PDGFR-B [1:100; ab32570; Abcam] or
Desmin [1:100; ab8976; Abcam] and CD31 [1:500; NB600-1475;
Novus]) overnight at 4°C. Brain sections were washed three times
in PBS followed by incubation with Alexa Fluor 594-conjugated
anti-mouse or anti-rabbit, Alexa Fluor 488-conjugated anti-
rabbit or anti-rat, or Alexa Fluor 647-conjugated anti-rat im-
munoglobulin G (Invitrogen) for 2 h at RT. After a final washing
with PBS, sections were mounted with the mounting medium.
Fluorescent images were acquired at RT on a Zeiss Observer by
a Z1 inverted microscope with a 40x/1.3 or 20x/0.8 oil-immer-
sion objective. Z-stacks were generated from images taken at
0.50-0.8-pm intervals. Images were processed using the AxioVs
40 Version 4.8.0.0 software (Zeiss). Photographs were acquired
with an AxioCam MRm digital camera and were analyzed with
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Image] software. For MIVs, only those with a diameter <6 pm
were used for quantification for both pericyte coverage and fi-
brinogen leakage, which were described previously (Mehlaetal.,
2012; Nikolakopoulou et al., 2017). Briefly, for pericyte coverage,
the percentage of Desmin- or PDGFR-B-positive surface area cov-
ering CD31" capillary surface area was quantified. For fibrinogen
leakage, the perivascular fibrinogen signals on the abluminal
side of MIVs were analyzed.

Statistical analysis

Statistical analysis was performed using a two-tailed Student’s t
test for comparison of the two groups and one-way ANOVA with
a Bonferroni’s post hoc test for multiple comparisons. For com-
parison between the two groups, an F test was used to determine
the equality of variances between groups. For comparison among
multiple groups, a Brown-Forsythe test was used to determine
the equality of variances among groups. Results were judged sta-
tistically significantif P < 0.05 by ANOVA for both Student’s ttest
and one-way ANOVA test. Data distribution was assumed to be
normal, but this was not formally tested.

Online supplemental material

Table S1 shows clinical data for human brain tissue samples. Fig.
S1 shows immunostaining of different cell markers in HBVPs
and MTS assay of cell viability of HBVPs. Fig. S2 shows CXCL10
mRNA expression levels in HEK293 cells and representative
Western blots of ¢-1R in 10 lipid raft isolation fractions. Fig. S3
shows pretreatment of HBVPs with the IKK-2/NF-«B inhibitor
SC514 failed to abrogate cocaine-mediated lipid raft translocation
of o-1R, Src phosphorylation, and PDGFR-f phosphorylation. Fig.
S4 shows the effect of cocaine on permeability of BBB in vitro
and in vivo. Fig. S5 shows CXCLIO expression levels in pericytes
of MIVs isolated from brains of mice administrated either saline
or cocaine. Fig. S6 shows pericyte coverage in MIVs from brains
of mice administrated either saline or cocaine. Fig. S7 shows
CX3CRI1-GFP* BMMs transmigration in the brain of mice admin-
istrated CXCL10.
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