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Mitotic regulators TPX2 and Aurora A protect DNA
forks during replication stress by counteracting

53BP1 function

Andrea K. Byrum™ @®, Denisse Carvajal-Maldonado?*, Miranda C. Mudge?, David Valle-Garcia®**@, Mona C. Majid, Romil Patel!, Mathew E. Sowa®,
Steven P. Gygi?, ). Wade Harper3®, Yang Shi*4, Alessandro Vindigni%, and Nima Mosammaparast'!@

53BP1is a chromatin-associated protein that regulates the DNA damage response. In this study, we identify the TPX2/Aurora
A heterodimer, nominally considered a mitotic kinase complex, as a novel binding partner of 53BP1. We find that TPX2/Aurora
A plays a previously unrecognized role in DNA damage repair and replication fork stability by counteracting 53BP1 function.
Loss of TPX2 or Aurora A compromises DNA end resection, BRCA1 and Rad51 recruitment, and homologous recombination.
Furthermore, loss of TPX2 or Aurora A causes deprotection of stalled replication forks upon replication stress induction. This
fork protection pathway counteracts MRE11 nuclease activity but functions in parallel to BRCAL. Strikingly, concurrent loss
of 53BP1rescues not only BRCA1/Rad51 recruitment but also the fork instability induced upon TPX2 loss. Our work suggests
the presence of a feedback mechanism by which 53BP1 is regulated by a novel binding partner and uncovers a unique role for

53BP1in replication fork stability.

Introduction

DNA double-stranded breaks (DSBs) pose a substantial threat to
genome integrity. Two primary mechanisms, nonhomologous
end joining and homologous recombination (HR), repair DSBs
(Chapman et al., 2012). HR is promoted by the tumor suppressor
BRCAL, which recruits CtIP and Rad51, facilitating end resection
and strand invasion of the sister chromatid. Conversely, 53BP1
promotes nonhomologous end joining through its downstream
effectors RIF1, PTIP, and the REV7-shieldin complex, which block
DNA end resection and the recruitment of HR proteins (Callen et
al., 2013; Feng et al., 2013; Noordermeer et al., 2018).

Recent studies using single-molecule DNA fiber assays show
that another function of BRCAL is to protect stalled replication
forks from degradation by MRE11 (Schlacher et al., 2012). Loss of
PTIP prevents MRE11 accumulation at stalled forks and rescues
nascent DNA shortening in BRCAl-deficient cells, conferring
chemoresistance despite sustaining defects in HR. This suggests
that protection of the replication fork is a key mechanism by
which BRCA-deficient cancers survive (Ray Chaudhuri et al.,
2016). Interestingly, unlike PTIP, loss of 53BP1 does not rescue
shortened DNA tracks in BRCA1l-deficient cells (Ray Chaudhuri et
al., 2016). However, 53BP1 is enriched at stalled replication forks

and forms nuclear bodies in G1 that sequester chromosomal le-
sions caused by replication stress during the previous cell cycle
(Lukas etal., 2011; Dungrawala et al., 2015). Thus, although 53BP1
is primed to function in response to replication stress, its role in
this context is still unclear.

Here, through a proteomic interaction screen, we identify
TPX2 as a direct 53BP1 interactor, which in turn recruits the
Aurora A kinase. TPX2 and Aurora A canonically play critical
roles in orchestrating mitotic spindle events (Neumayer et al.,
2014). Our work uncovers two novel nonmitotic functions of the
TPX2/Aurora A heterodimer in regulating HR and replication
fork stability and implicates a feedback mechanism modulating
53BP1 function.

Results and discussion

To gain a better understanding of 53BP1 function, we stably ex-
pressed and purified 53BP1 from HeLa-S cells by tandem affin-
ity purification (TAP), as previously described (Nakatani and
Ogryzko, 2003). Mass spectrometry (MS) analysis identified
known 53BP1 interactors, including RIF1, MDC1, and USP28
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(Fig. 1, A and B; and Table S1; Zimmermann and de Lange, 2014).
By MS, we also copurified TPX2 and its kinase partner Aurora A, a
heterodimer involved in mitotic progression and spindle assem-
bly (Fig. 1, A and B; Neumayer et al., 2014). Immunoprecipitation
of endogenous TPX2 confirmed its association with 53BP1 with
or without y-irradiation (Fig. 1 C). Next, we demonstrated that
recombinant 53BP1 and TPX2 physically interact by in vitro pull-
down assays (Figs. 1, D-H; and S1 A). Deletion analysis of 53BP1
revealed that the TPX2-binding region overlaps with the Tudor
and BRCT domains, which are critical for 53BP1 localization to
chromatin (Fig. 1, D and E). We did not observe TPX2 recruit-
ment to sites of DNA damage induced by y-irradiation or laser
microirradiation (Fig. S1 B), suggesting that the interaction may
occur primarily off the chromatin template. Furthermore, TPX2
residues 150-394 were important for the interaction with 53BP1
(Fig. 1, F-H). We next assessed the interaction between recombi-
nant 53BP1and Aurora A and found that, unlike TPX2, 53BP1 does
not directly bind to Aurora A in vitro (Fig. 1I). However, upon
the addition of recombinant TPX2, 53BP1 bound immobilized
His-Aurora A. This interaction was significantly reduced when
TPX2-A150-394 was substituted for WT TPX2 (Fig. 11), suggesting
that TPX2 mediates the interaction between 53BP1 and Aurora A
using this region. Using phosphorylation of histone H3 serine
10 as a measure of Aurora A catalytic activity, we found that the
TPX2-A150-394 53BPl-interaction mutant (hereafter referred
to as TPX2-BP1-IM) activated Aurora A similarly to WT TPX2 in
vitro, suggesting that this key mitotic function is maintained in
this mutant protein (Fig. S1 C; Crosio et al., 2002).

Given that the TPX2 binding region on 53BP1 includes the
Tudor domains, we next asked whether TPX2 interferes with
53BP1 localization to DSBs. We depleted TPX2 from U20S cells
using shRNAs and analyzed 53BP1 irradiation-induced foci by
immunofluorescence (Figs. 2 A and S1D). 53BP1 foci were largely
unaffected by loss of TPX2. Similarly, TPX2 loss did not have a
significant effect on Rifl foci formation, suggesting that TPX2
does not contribute to the recruitment of 53BP1 or its effectors
(Figs. 2 A and S1E).

Since 53BP1 protects DNA ends from resection and subse-
quent repair by HR, we used flow cytometry to measure chro-
matin-bound RPA levels in S/G2 cells as a proxy for DNA end
resection. Strikingly, we saw a considerable decrease in RPA
binding in response to TPX2 loss after damage with camptoth-
ecin (Figs. 2 B and S1 F). To functionally assess HR, we used the
DR-GFP reporter system and found that loss of TPX2 reduces
HR efficiency (Fig. 2 C). Seeing that BRCAL1 facilitates DNA end
resection and HR, we used immunofluorescence to visualize
BRCAL1 foci following depletion of TPX2 or Aurora A. Remarkably,
knockdown of either protein resulted in a significant decrease
in BRCAI irradiation-induced foci (Figs. 2, D and E; and S1 D).
While TPX2- or Aurora A-depleted cells did exhibit a reduction
in S/G2 phase compared with control cells, it was not sufficient to
explain the magnitude of BRCA1 foci loss (Fig. S1 G). Additionally,
using a U20S-FUCCI cell cycle indicator cell line (Sakaue-Sawano
etal.,2008), we found that TPX2 or Aurora A depletion decreased
BRCAL foci formation in S/G2 cells, further suggesting that cell
cycle defects alone could not explain this phenotype (Figs. 2 Fand
S1H). The loss of BRCAL1 foci in TPX2-depleted cells could also be
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rescued by reexpression of TPX2 (Fig. S1, I and J). Furthermore,
BRCALI promotes HR by initiating Rad51 recruitment, and con-
sistently, knockdown of TPX2 or Aurora A resulted in decreased
Rad51 foci (Fig. 2, G and H; Prakash et al., 2015). Together, our
data suggest that TPX2 regulates BRCA1 recruitment to sites of
DSBs as well as its role in repair by HR.

In addition to its function in end resection, BRCA1 has been
shown to protect stalled replication forks from degradation by
MREI1 upon replication stress induction (Schlacher et al., 2012).
Therefore, we investigated whether TPX2 and Aurora A are also
needed to carry out this additional function via genome-wide
single-molecule DNA fiber analysis. TPX2- or Aurora A-depleted
U20S cells were labeled with the first thymidine analogue
5-iodo-2'-deoxyuridine (IdU; red) followed by treatment with
hydroxyurea (HU) and concomitant labeling with the second
thymidine analogue, 5-chloro-2'-deoxyuridine (CldU; green).
Shortening of the IdU (red) tract was measured as a readout
of degradation, as described (Lemacon et al., 2017). Control,
TPX2-depleted, and Aurora A-depleted cells produced nearly
identical IdU-labeled DNA track lengths in the absence of HU,
indicating that replication fork speed was unaffected (Fig. S2
A). Notably, when treated with HU, the IdU tracks of both the
TPX2-depleted and Aurora A-depleted cells were significantly
shorter compared with control cells (Fig. 3, A and B). Further-
more, this track-shortening phenotype was rescued upon the ad-
dition of Mirin, an MREI1-specific inhibitor. Track shortening
due to TPX2 depletion could also be rescued by exogenous TPX2
expression (Fig. 3 C). Strikingly, replication fork stability was not
rescued by a catalytically inactive Aurora A (D274N; Bayliss etal.,
2003), nor was it rescued by an Aurora A mutant that does not
interact with TPX2 (S155R; Bibby et al., 2009; Figs. 3 D and S2, B
and C). These data suggest that Aurora A kinase activity as well
as its interaction with TPX2 are critical for its role in replication
fork stability.

Like BRCAI, TPX2 and Aurora A appear to play a critical role
in preventing extensive MRE11-mediated degradation of stalled
replication intermediates. Consistent with this, we found that
TPX2 and Aurora A are present at nascent DNA using the accel-
erated native isolation of proteins on nascent DNA (aniPOND)
assay (Fig. 3 E; Leungetal., 2013). Importantly, a thymidine chase
reduced the abundance of these proteins on nascent DNA, sug-
gesting that they are associated with the replication fork.

As TPX2/Aurora A loss impairs DNA-end resection and
BRCAL foci formation and also compromises replication fork
stability, we next asked whether TPX2 and BRCALI function in a
common fork protection pathway. We depleted TPX2 from both
BRCAI1-deficient UWBI cells and from UWBI cells complemented
with BRCA1 (UWB1 + BRCAL1) and performed DNA fiber analysis
(Figs. 3 F and S2, D and E). As expected, in the presence of HU,
BRCAI-deficient UWBI cells produced significantly shorter IdU
track lengths in comparison to the UWB1 + BRCALI cells. Com-
parably shortened tracks were also observed upon HU treat-
ment in TPX2-depleted UWBL + BRCAL cells (Fig. 3 F). However,
TPX2-depleted UWBI cells produced even shorter IdU tracks than
cells deficient for either BRCA1 or TPX2 alone, suggesting that
TPX2 and BRCAL1 function in separate pathways to protect stalled
forks. These phenotypes were also observed in BRCA-deficient
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Figure 1. ldentification of TPX2/Aurora A as 53BP1 effectors. (A) Flag-HA-53BP1 and associated proteins were isolated from HelLa-S nuclear extract using
sequential Flag and HA immunoaffinity purification. The final eluted material was analyzed by SDS-PAGE and silver staining. (B) The 53BP1 complex from A
was analyzed by MS/MS twice, and the total/unique peptide numbers for each protein are shown for each run. (C) Nuclear extracts from Hela-S cells were
immunoprecipitated with control IgG or TPX2 antibody and Western blotted as shown. (D) GST, or the indicated GST-53BP1 fragments, were immobilized
on glutathione-Sepharose, and binding with full-length recombinant His-TPX2 was tested. Bound material was analyzed by Western blot or Coomassie Blue
staining. (E) Schematic of 53BP1 and summary of TPX2 binding data. (F) GST, GST-TPX2, or the indicated GST-TPX2 fragments were immobilized on glutathi-
one-Sepharose and assessed for binding to full-length Flag-53BP1, as in D. (G) Schematic of TPX2 and summary of 53BP1 binding data. (H) GST, and increasing
equimolaramounts of GST-TPX2 or GST- TPX2-A150-394, were tested for 53BP1 binding as done in F. (I) Recombinant His-Aurora A was immobilized on Ni-NTA
and incubated with GST, GST-TPX2, or GST- TPX2-A150-394. Bound material was washed, subsequently incubated with Flag-53BP1, washed again, and analyzed
for binding by Western blot or Coomassie Blue staining.
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Figure 2. TPX2 and Aurora A regulate BRCA1 recruitment and function. (A) U20S cells expressing the indicated shRNAs were irradiated (5 Gy) and ana-
lyzed for 53BP1 and pH2A.X foci formation. Percentage of cells with =10 53BP1 foci + SD is shown on the right. Scale bar, 10 um. Foci were quantitated from
three biological replicates with n > 200 cells per experiment. Statistics: Student’s two-tailed t test; *, P < 0.05. (B) U20S cells expressing the indicated shRNAs
were treated with camptothecin (CPT) as shown, and chromatin-bound RPA was quantified by flow cytometry. Bar graph indicates the percentage of S/G2
cells that are RPA positive, as determined by 7-AAD staining from four biological replicates. Error bars represent + SD. Statistics: Student’s two-tailed t test; ¥,
P < 0.05. (C) Quantitation of HR efficiency of DR-GFP U20S cells treated with the indicated shRNA and with or without the Flag-1Sce expression vector. Cells
were analyzed for GFP positivity via flow cytometry in three biological replicates as described in Materials and methods. Error bars indicate + SD. Statistics:
Student’s two-tailed ttest; *, P < 0.05. (D and E) U20S cells expressing the indicated shRNAs were irradiated (5 Gy) and analyzed for BRCA1 and p.H2A X foci
formation. Percentage of cells with >10 BRCA1 foci + SD is shown on the right. Scale bar, 10 um. Foci were quantitated from three biological replicates with n
> 250 cells per experiment. Statistics: Student’s two-tailed t test; *, P < 0.05. (F) Schematic of FUCCI cell cycle indicator expression pattern of mK02-Cdt (red;
G1) and mAG-Geminin (green; S/G2/M; left). U20S-FUCCI cells were treated with the indicated shRNAs, and S/G2-phase cells (yellow or green cells; indicated
by white arrows) were analyzed for BRCA1 foci formation (right). Percentage of S/G2 cells with >10 BRCA1 foci + SD is shown on the right. Scale bar, 10 um.
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HCC1937 cells, confirming that the observed effect is not cell type
specific (Fig. S2, Fand G).

Due to the biochemical interaction between 53BP1 and TPX2,
we next investigated how 53BP1 may impact TPX2/Aurora A
function in DSB repair and replication fork stability. Strikingly,
we found that 53BP1 deficiency prevented the loss of BRCAI and
Rad51 foci formation upon TPX2 knockdown (Figs. 4, A-D; and
S2H). In addition, our aniPOND analysis demonstrated that, like
TPX2 and Aurora A, 53BP1localizes to replication forks (Fig. 3 E).
Thus, we tested whether concurrent loss of 53BP1 may also pre-
vent stalled replication fork degradation due to TPX2 depletion.
Indeed, knockout of 53BP1 partially rescued IdU track shorten-
ing in TPX2-depleted U20S cells, while a complete rescue was
observed in mouse embryonic fibroblasts (MEFs; Figs. 4, E and
F; and S2, H-]). The interaction between TPX2 and 53BP1 was
apparently important for the function of TPX2 in replication
fork stability, as TPX2-BP1-IM failed to rescue TPX2 fork degra-
dation (Figs. 4 G and S3, A and B). Importantly, this mutant form
of TPX2 localized to mitotic spindles similar to WT TPX2 (Fig.
S3 C). This supports the notion that its functions in mitosis are
preserved, consistent with its ability to activate Aurora A kinase
(Fig. S1 C). Furthermore, using aniPOND, we found that TPX2
depletion caused a moderate increase in 53BP1 binding to newly
replicated DNA, and this effect appeared augmented when cells
were treated with HU to stall replication forks (Fig. S3 D). To-
gether, our data suggest that TPX2/Aurora A promote DSB repair
and replication fork stability by negatively regulating 53BP1.

In contrast to TPX2 depletion, loss of 53BP1 failed to prevent
1dU track shortening in BRCAl-depleted U20S cells, consistent
with previous reports (Fig. S3, E-G; Ray Chaudhuri et al., 2016).
This further substantiates our finding that TPX2 and BRCAI pro-
tect stalled replication forks via separate pathways. As a positive
control for these experiments, we also depleted TPX2 and BRCA1
from PTIP-knockout U20S cells, as PTIP is required for MRE11
localization at stalled replication forks. As expected, loss of PTIP
restored IdU track length in both BRCAl- and TPX2-depleted
U20S cells (Figs. 4 E, S2 H, and S3, E-G).

Given our evidence that TPX2/Aurora A are important for
replication fork stability, we tested whether loss of Aurora A in-
creased sensitivity to HU. Indeed, U20S cells deficient for Au-
rora A were significantly more sensitive to HU (Figs. 4 H and S3
H). Strikingly, loss of 53BP1 significantly reduced HU sensitivity
upon Aurora A depletion (Fig. 4 H). Thus, our data demonstrate
that the functions of TPX2/Aurora A in maintaining replication
fork stability depend on 53BP1.

This work uncovers a previously unappreciated function of
TPX2 and Aurora A in promoting DNA end resection at DSBs and
replication fork stability by negatively regulating 53BP1 function.
We propose a model in which TPX2/Aurora A regulate DSB repair
and replication fork stability via two distinct mechanisms that
are both dependent on 53BP1 (Fig. 5). TPX2/Aurora A appear to
regulate 53BP1 function during DSB repair, preventing BRCA1

£ JCB

antagonism and thus allowing for DNA end resection and HR
to take place (Fig. 5 A). This is reminiscent of the TIRR protein,
which similarly antagonizes 53BP1 by binding to its Tudor do-
mains (Drané et al., 2017; Dai et al., 2018). In the context of rep-
lication stress, TPX2/Aurora A promote the protection of stalled
replication intermediates from extensive degradation by MREI1l,
again by inhibiting 53BP1, through a mechanism dependent on
Aurora A kinase activity (Fig. 5 B). Therefore, our model suggests
anovel role for 53BP1 in counteracting replication fork stability,
but in a manner that is distinct from BRCAL. Finally, our model
provides a rationale for targeting Aurora A kinase for improved
chemosensitization, particularly in BRCAl-deficient tumors.

Materials and methods

Cell culture

U20S, Hela, Hela-S, 293T cells, and MEFs were cultured in
DMEM (Invitrogen), supplemented with 10% FBS (Atlanta Bio-
logicals) and 100 U/ml penicillin-streptomycin (Gibco) at 37°C
and 5% CO,. BRCAl mutant ovarian cancer cell line UWB1.289
(UWBL) and its complemented derivative expressing WT BRCAL
(UWBL + BRCAL; DelloRusso et al., 2007) cells were grown in 50%
RPMI medium, 50% mammary epithelial cell growth medium
bullet kit (Lonza CC-3150) completed with 3% FBS, 100 U/ml pen-
icillin, and 100 pg/ml streptomycin at 37°C in 5% CO,. Human
triple-negative breast cancer cells HCC 1937 (Tassone et al., 2003,
2005) were cultured in RPMI complemented with 10% FBS, 100
U/ml penicillin, and 100 pg/ml streptomycin at 37°C in 5% CO,.
Sf9 cells were grown in suspension in Sf-900 II serum-free me-
dium (Gibco), supplemented with 100 U/ml penicillin-strepto-
mycin (Gibco) at 27°C.

Plasmids

53BP1 and TPX2 cDNAs were isolated from total human RNA and
cloned into pOZ-Flag-HA, pENTR-3C, or pENTR4. I-Scel cDNA (a
kind gift from Maria Jasin, Sloan Kettering Institute, New York,
NY) was subcloned into pENTR-3C by PCR. For mammalian
cell expression, cDNAs were subcloned into pHAGE-CMV-Flag,
pMSCV-Flag-HA, or untagged pMSCV as needed by Gateway re-
combination (Sowa et al., 2009). For expression in insect cells,
53BP1 cDNA was subcloned into pDEST-BB-Flag by Gateway re-
combination. For bacterial expression, cDNAs were subcloned
by PCR into pGEX-4T1 or pET-28a-Flag. All constructs derived by
PCR, including deletions and point mutations, were confirmed
by Sanger sequencing.

Transfection, virus production, and transduction

Retrovirus (pMSCV vectors) and lentivirus (pHAGE or pLKO.1
vectors) were produced by cotransfection of 293T with the ap-
propriate packaging vectors (retrovirus: pVSV-G and pGag-Pol;
lentivirus: pHDM-VSV-G, pHDM-tatlb, pHDM-Hg-PM2, and
pRC-CMV-Rall; Mulligan et al., 2008). Viral supernatant was col-

Foci were quantitated from three biological replicates with n > 250 cells per experiment. Statistics: Student’s two-tailed ttest; *, P < 0.05. (G and H) U20S cells
expressing the indicated shRNAs were irradiated (5 Gy) and analyzed for Rad51 foci. Percentage of cells with four or greater Rad51 foci + SD is shown on the right.
Scale bar, 10 pm. Foci were quantitated from three biological replicates with n = 250 cells per experiment. Statistics: Student’s two-tailed t test; *, P < 0.05.
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Sigma (control shRNA: SHC002) and GE Dharmacon (clone Id:
TPX2-1, TRCN0000074533, 5'-TTAAAGGAAGTAACTACATGG-3’
(antisense); TPX2-2, TRCN0O000074536, 5-AAGATTAGCCTTTCT
CAAAGG-3' (antisense); TPX2-1 (mouse), TRCNO000120812, 5'-
AAATAACTACAAGAAGTCTGG-3' (antisense); TPX2-2 (mouse),
TRCN0000120813, 5-AATTCTAGGATCAAGTTCCCG-3' (an-
tisense); Aurora A-1, TRCNO000000655, 5-TATAAGTAGCAC
AATTCTCGT-3' (antisense); Aurora A-2, TRCNO000000656,
5-TTCGAATGACAGTAAGACAGG-3' (antisense); and BRCAI,
TRCN0000009823, 5-ATTCATGCCAGAGGTCTTATA-3' (antisense).
TPX2-1 and Aurora A-1 shRNAs were used for experiments in
which only one knockdown is shown. For TPX2 and Aurora A
rescue experiments, cells were infected with the pMSCV-TPX2
retroviral vector and selected with blasticidin (10 pg/ml) for 72 h
before shRNA infection.

Antibodies
All antibodies used in this study are listed in Table S2.

Purification of TAP-53BP1 complex and MS/MS analysis
Purification of 53BP1 was performed using an established tan-
dem immunoaffinity method (Nakatani and Ogryzko, 2003).
Flag-HA-53BP1 was stably expressed after transduction of pOZ-
Flag-HA-53BPI1 retrovirus into HeLa-S cells. Cells were harvested
and resuspended in a 5x volume of hypotonic buffer (10 mM Tris,
pH 7.3,10 mM KCl, 1.5 mM MgCl,, 0.2 mM PMSF, 10 mM B-mer-
captoethanol, and protease inhibitors; Pierce). Cells were pelleted
by spinning at 2,500 rpm, resuspended in 1x pellet volume of hy-
potonic buffer, and homogenized using a Dounce tissue grinder
(Wheaton). Nuclear material was pelleted, resuspended in 0.5x
pellet volume of low-salt buffer (20 mM Tris, pH 7.3, 20 mM KCl,
1.5 mM MgCl,, 0.2 mM EDTA, 25% glycerol, 0.2 mM PMSF, 10 mM
B-mercaptoethanol, and protease inhibitors), and Dounced
again. 0.5x pellet volume of high-salt buffer (20 mM Tris, pH 7.3,
1.2M KCl, 1.5 mM MgCl,, 0.2 mM EDTA, 25% glycerol, 0.2 mM
PMSEF, 10 mM B-mercaptoethanol, and protease inhibitors) was
slowly added to nuclear extract, which was subsequently stirred
for 30-45 min. Extract was spun down at 14,000 rpm for 30 min,
and the soluble material was dialyzed in BC100 buffer (20 mM
Tris, pH 7.3, 100 mM KCl, 0.2 mM EDTA, 20% glycerol, 0.2 mM
PMSF, and 1 mM B-mercaptoethanol).

53BP1 complex was purified from the nuclear extract using an-
ti-Flag (M2) resin (Sigma), followed by purification using anti-HA
(F-7) resin (Santa Cruz) in TAP buffer (50 mM Tris-HCI, pH 7.9,
100 mMKCl, 5 mM MgCl,, 10% glycerol, 0.1% NP-40, 1l mM DTT, and
protease inhibitors). For both Flag and HA purifications, nuclear
extract was rotated with resin for 4 h, washed extensively with
TAP buffer, and eluted with 0.4 mg/ml Flag or HA peptide (Sigma).
After elution, the complex was TCA precipitated, and associated
proteins were identified by liquid chromatography-MS/MS using
an LTQ Orbitrap Velos Pro ion-trap mass spectrometer (Thermo
Fisher Scientific) and Sequest software (Sowa et al., 2009).

2JCB

Endogenous immunoprecipitation

HeLa-S cells were mock treated or irradiated (5 Gy) using an XCE
LL 50 x-ray (Kubtec), and nuclear extract was prepared following
a 1-h recovery period at 37°C as described above (Nakatani and
Ogryzko, 2003). The nuclear extract was precleared with protein
A/G-agarose (Santa Cruz) and then incubated overnight at 4°C
with 3 pg antibody. The extract was then incubated with fresh
protein A/G-agarose for 1 h at 4°C, centrifuged, and washed five
times with TAP buffer. Bound material was eluted using Laemmli
buffer and analyzed by Western blotting.

Recombinant protein purification

Recombinant GST-tagged TPX2 proteins were purified from
Rosetta (DE3) using an AKTA-pure FPLC (GE Healthcare). Cells
were resuspended in GST-lysis buffer (50 mM Tris-HCl, pH 7.3,
250 mM Nacl, 0.05% Triton X-100, 3 mM -ME 20, and pro-
tease inhibitors) and lysed by sonication. After centrifugation
and filtration, the extract was loaded onto a GSTrap HP col-
umn (GE Healthcare). After washing with 20 column volumes
of lysis buffer, the protein was eluted using lysis buffer con-
taining 10 mM glutathione. The eluted proteins were dialyzed
into TAP buffer.

Flag-53BP1 was purified from Sf9 cells infected with pDEST-
BB-Flag-53BP1 recombinant baculovirus. Cells were resuspended
in lysis buffer (20 mM Tris, pH 7.3, 150 mM NaCl, 8% glycerol,
0.2% NP-40, 0.1% Triton X-100, 2 mM BME, and protease inhibi-
tors) and sonicated to complete lysis. After centrifugation, the cell
extract was incubated with anti-Flag (M2) beads (Sigma) for 3 h.
The bound material was eluted using lysis buffer containing 0.4
mg/ml Flag peptide (Sigma) and dialyzed into TAP wash buffer.

GST-tagged protein pull-down assays

All binding assays were performed in TAP buffer with 1% BSA
in a total volume of 100 pl, using 10 pl glutathione-Sepharose
beads (GE Healthcare) per reaction. The beads were preblocked
with 3% BSA in TAP buffer. Each reaction contained ~5 pg GST-
tagged protein and ~250 ng Flag-53BP1. Binding reactions were
incubated at 4°C for 1 h with rotation. Beads were then washed
extensively in TAP buffer, and a final wash was performed with
1x PBS. Bound material was eluted with SDS loading buffer, ana-
lyzed by SDS-PAGE, and stained with Coomassie Blue or Western
blotted as indicated.

Aurora A kinase assay

His-Flag-Aurora A was incubated with GST, GST-TPX2, or GST-
TPX2-BP1-IM in TAP buffer for 30 min at 4°C with rotation.
Recombinant human histone H3.1 (1 pg; NEB) and ATP (10 mM
final concentration) were subsequently added to each reaction
for a total volume of 30 pl. Kinase reactions were incubated at
room temperature for 30 min and stopped with the addition of
30 pl Laemmli buffer. Phospho-H3 (S10) levels were measured
by Western blot.

300 tracks scored for each dataset. Bars represent median. Statistics: Mann-Whitney; ****, P < 0.0001; n.s., not significant. (H) U20S WT or 53BP1-knockout
cells were treated with the indicated shRNAs and subsequently treated with HU, as described in Materials and methods. Cell viability after 48 h of drug expo-
sure was measured by MTS assay. Graph is a representative of three biological replicate experiments. Error bars indicate +SD with n = 5 technical replicates.
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AniPOND

aniPOND assays were performed as previously described with
some modifications (Leung et al., 2013; Wiest and Tomkinson,
2017). Cells were pulse labeled with 10 pM EdU in DMEM for
15 min, washed with PBS, and then incubated in medium with
10 uM thymidine for 1h or with 4 mM HU for 2 h. Medium was re-
moved, and cells were immediately lysed and harvested with nu-
clei extraction buffer (20 mM Hepes, pH 7.2, 40 mM NaCl, 3 mM
MgCl,, 300 mM sucrose, and 0.5% NP-40). Nuclei pellets were
washed with PBS and then resuspended in click reaction mix
(in order of addition: 25 mM biotin picolyl azide [Click Chem-
istry Tools], 10 mM (+)-sodium L-ascorbate, and 2 mM CuSO,)
and rotated at 4°C for 1 h. Samples were then washed with PBS,
and pellets were resuspended in 500 pul Buffer BI (25 mM Nacl,
2 mM EDTA, 50 mM Tris-HCl, pH 8.0, 1% NP-40, and protease
inhibitors). Samples were rotated for 30 min at 4°C, spun down
at maximum speed for 10 min at 4°C, resuspended again in 500 pl
Buffer Bl, and rotated for an additional 30 min at 4°C. Nuclei were
again pelleted and resuspended in 500 pl Buffer Bl. Samples were
then sonicated using a Model 50 Sonic Dismembrator (Thermo
Fisher Scientific) 12 x 10 s at 20 amplitude to solubilize DNA-
bound proteins. Samples were spun down at maximum speed
for 10 min, and the supernatant was collected. 500 pl Buffer B2
(150 mM NaCl, 2 mM EDTA, 50 mM Tris-HCI, pH 8.0, 0.5% NP-
40, and protease inhibitors) was added to the supernatant to
bring the total sample size to ~1 ml. Samples were rotated over-
night (16-20 h) with streptavidin-coated beads (Thermo Fisher
Scientific). A chromatin input sample was collected immediately
before streptavidin capture. Beads were washed extensively with
Buffer B2 and boiled in Laemmli buffer to elute bound material. A
small amount of material was then analyzed for H3 via Western
blotting, and densitometry of the bands was performed using
Image] (National Institutes of Health). Loading adjustments
were made based on these measurements, and the proteins of
interest were then run on an SDS-PAGE gel and analyzed by
Western blotting.

CRISPR/Cas9-mediated knockouts

U208 knockout cells were created using CRISPR/Cas9 genome
editing at the Genome Engineering and iPSC Center at Wash-
ington University School of Medicine (St. Louis, MO). All clones
used for this study were confirmed by deep sequencing. The
53BP1 knockout clone was further confirmed by Western blot
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analysis. The guide RNA sequences used to generate the knock-
out cell line were as follows: 53BP1, 5'-GATACAGCTCAACACAGA
CA-3’; and PTIP, 5'-ATTTCTTATTGAGGGTTAGC-3".

Immunofluorescence microscopy

U208 cells were seeded onto microscope coverslips and irradiated
using an XCELL 50 x-ray (Kubtec). Cells were incubated for 1 or
6 h at 37°C, as indicated, for recovery. The cells were extracted
with 1x PBS containing 0.2% Triton X-100 and protease inhibi-
tors (Pierce) for 10 min on ice and fixed with 3.2% PFA in 1x PBS.
The cells were then washed extensively with IF Wash Buffer (1x
PBS, 0.5% NP-40, and 0.02% NaN3) and blocked with IF Blocking
Buffer (IF Wash Buffer plus 10% FBS) for at least 30 min. Cells
were incubated with primary antibodies diluted in IF Blocking
Buffer for 1 h to overnight at 4°C. Primary antibodies used were
as follows: mouse anti-53BP1 (1:1,000; BD Biosciences; 612522),
rabbit anti-pH2AX (1:1,000; Abcam; 26350), rabbit anti-Rifl
(1:1,000; Bethyl; A300-569A), mouse anti-BRCAL1 (1:1,000; Santa
Cruz; 6954), rabbit anti-Rad51 (1:1,000; Santa Cruz; 8349), and
mouse anti-HA (1:1,000; BioLegend; 901501). Cells were stained
with secondary antibodies (conjugated with 1:1,000 diluted
Alexa Fluor 488, 594, or Pacific Blue; Invitrogen) and Hoechst
33342 (Sigma) and mounted using Prolong Gold mounting me-
dium (Invitrogen). Epifluorescence microscopy was performed
on an Olympus fluorescence microscope (BX-53) using an ApoN
60x/1.49 NA, UPlanS-Apo 60x/1.35, or an UPlanS-Apo 100x/1.4
oil-immersion lens with immersion oil from Millipore (104699).
Images were obtained at room temperature using an Olympus
XM10 monochrome camera and cellSens Dimension software.
Raw images were exported into Adobe Photoshop, and for any
adjustments in image contrast or brightness, the levels function
was applied. For foci quantitation, at least 200 cells were ana-
lyzed in triplicate, and a Student’s two-tailed t test was used to
determine statistical significance.

For laser microirradiation experiments, cells were cultured
for 24 h before irradiation with 1 .M BrdU (Sigma; cat #B9285).
UVA laser (50 mW) striping was conducted using an inverted
microscope (Eclipse Ti; Nikon) with a Palm MicroBeam laser
microdissection workstation. After irradiation, cells were incu-
bated at 37°C for 15 min, and then processed for immunofluo-
rescence as stated above. Primary antibodies used were rabbit
anti-TPX2 (1:500, Bethyl; A300-429A) and mouse anti-Aurora A
(1:200; Abcam; 13824).

Flow cytometry

All flow cytometry experiments were performed on a BD FAC
SCalibur three-color flow cytometer and analyzed using FlowJo
software. To measure chromatin-bound RPA, U20S cells were
treated with 1 pM camptothecin for 1 h before collection. Cells
were washed with PBS + 2% FBS and fixed for 15 min in BD Cy-
tofix/Cytoperm (BD Biosciences) at room temperature. Cells
were then washed with Perm/Wash buffer (BD Biosciences) and
stained with rat anti-RPA (1:200; Cell Signaling, 2208S). Cells
were washed and stained with Alexa Fluor 488 goat anti-rat sec-
ondary (1:1,000; Invitrogen, A11006). Cells were again washed
with Perm/Wash buffer and resuspended in PBS + 2% FBS con-
taining 7-AAD for analysis (Forment et al., 2012). For quantifi-
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cation of HR, U20S-DR-GFP cells (a gift from Maria Jasin) were
infected with lentiviral shRNAs and subsequently infected 24 h
later with pHAGE-Flag-ISce-I. 72 h after IScel infection, cells
were collected and resuspended in PBS, and GFP* cells were
measured via flow cytometry. Both RPA and DR-GFP assays were
performed in triplicate, and 30,000 events were measured per
experiment. To obtain cell cycle profiles of TPX2- and Aurora
A-depleted cells, cells were collected 64 h after shRNA infection
and fixed in 70% ethanol at -20°C overnight. Cells were washed
in PBS with 1% BSA, treated with 100 pg/ml RNase, and stained
with 50 pg/ml propidium iodide (Sigma). 10,000 events were
measured per experiment. A Student’s two-tailed t test was
used to determine statistical significance for all flow cytome-
try experiments.

DNA fiber analysis

DNA fiber analysis was performed as described previously
(Quinet et al., 2017). Briefly, asynchronously growing cells
were labeled with two thymidine analogues: 20 uM IdU
(Sigma) followed by 200 uM CldU (Sigma) for the indicated
times according to the labeling scheme used. For untreated
conditions, we labeled first with IdU for 20 min, followed by
three washes with 1x PBS, and then CldU for an additional 20
min. For the experiments with HU, cells were labeled first with
1dU for 20 min, followed by three washes with 1x PBS, and then
CldU plus 4 mM HU for an additional 2 h. After labeling, the
cells were harvested and resuspended in PBS at 150,000 cells/
ml. Cells were lysed and spread on positively coated slides
and stained according to the protocol previously described
(Prakash et al., 2015). Images of the fibers were sequentially
acquired (for double label) with LAS AF software using TCS
SP5 confocal microscope (Leica). A 63x/1.4 oil-immersion ob-
jective was used. A minimum of 300 tracks were measured
for each sample using Image], and for the DNA track lengths,
the pixel length values were converted into micrometers using
the scale bars created by the microscope. Data were plotted on
a scatter dot graph plot. DNA fiber experiments were done in
biological duplicate unless stated otherwise in the figure leg-
end. Statistical significance was assessed using unpaired non-
parametric Mann-Whitney compared ranks t test. Differences
in fiberlength <15% are not considered significant. Additional
information on the minimal number of tracts that should be
measured for a reliable estimation of changes in fork speed
within a given sample has been previously described (Técher
etal., 2013; Thangavel et al., 2015).

MTS survival assay

Cells were treated with either control or Aurora A lentiviral
shRNAs for 48 h and then seeded in 96-well plates at a concen-
tration of 5,000 cells per well. The following day, cells were
treated with the indicated dose of HU and incubated at 37°C
and 5% CO, for an additional 48 h. At that time, the medium
was replaced with fresh medium containing the CellTiter MTS
reagent (Promega). Cell viability was assessed by measuring the
absorbance of each well at 490 nM using an Epoch Microplate
Spectrophotometer (BioTek). All MTS assays were performed
in quintuplicate.
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Online supplemental material

Table S1 shows the total and unique peptides for each identified
protein in the MS analysis of Flag-HA-53BP1. Table S2 lists all an-
tibodies used in this study. Fig. S1 shows supporting data for Figs.
1 and 2, which demonstrate that TPX2/Aurora A impair BRCA1
foci formation and DNA end resection in S/G2 but do notlocalize
to DSBs. Fig. S2 contains supporting data for Figs. 3 and 4, show-
ing that loss of TPX2/Aurora A results in replication fork depro-
tection but does not affect replication fork speed. Fig. S3 shows
additional data for Fig. 4, demonstrating that TPX2/Aurora A pro-
tects stalled replication forks in a manner that is independent of
its mitotic functions, but through a direct interaction with 53BP1.
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