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Epigenetic mechanisms are crucial for sustaining cell type-specific transcription programs. Among the distinct factors,
Polycomb group (PcG) proteins are major negative regulators of gene expression in mammals. These proteins play key roles
in regulating the proliferation, self-renewal, and differentiation of stem cells. During hematopoietic differentiation, many
PcG proteins are fundamental for proper lineage commitment, as highlighted by the fact that a lack of distinct PcG proteins
results in embryonic lethality accompanied by differentiation biases. Correspondingly, proteins of these complexes are
frequently dysregulated in hematological diseases. In this review, we present an overview of the role of PcG proteins in
normal and malignant hematopoiesis, focusing on the compositional complexity of PcG complexes, and we briefly discuss

the ongoing clinical trials for drugs targeting these factors.

Introduction

Adult blood cell production is a hierarchical process that takes
place in the bone marrow, where low proliferating hematopoietic
stem cells (HSCs) both self-renew and differentiate into every
mature blood cell type. Based on reconstitution ability, HSCs can
be subgrouped into a small fraction of quiescent, long-term (LT)-
HSCs and a more active group of short-term (ST)-HSCs (Smith
et al., 1991; Osawa et al., 1996; Yang et al., 2005). According to
a classical hematopoietic lineage differentiation model, these
populations give rise to multipotent progenitors (MPPs) that lack
self-renewal ability, enter the cell cycle more frequently, and are
primed for differentiation (Morrison et al., 1997). Either common
lymphoid or common myeloid progenitors (CLPs and CMPs, re-
spectively) arise from the commitment of MPPs. CLPs further
differentiate to produce T and B cells as well as natural killer and
dendritic cells. CMPs produce megakaryocytes and erythrocytes
(with a common progenitor, megakaryocyte-erythroid progeni-
tor [MEP]) along with granulocytes and macrophages (from the
granulocyte-monocyte progenitor cell [GMP]; Kondo et al., 1997;
Akashi et al., 2000; Na Nakorn et al., 2002). However, a large
body of evidence is now challenging this classical view of differ-
entiation (Woolthuis and Park, 2016).

The entire differentiation process is highly regulated by
both extrinsic and intrinsic factors, the latter being mainly rep-
resented by epigenetic regulators of gene expression. Indeed,
genome-wide sequencing approaches show that epigenetic reg-
ulators are frequently mutated in hematological malignancies

(Plass et al., 2013), making it important that we obtain a better
understanding of their roles in both physiological and malig-
nant hematopoiesis. Numerous proteins of the Polycomb (Pc)
and Trithorax (Trx) complexes have been identified among these
epigenetic factors. These two complexes play crucial roles in gene
expression regulation in mammals. The Pc repressive complexes1
and 2 (PRC1 and PRC2) enforce gene silencing through chromatin
compaction and repressive histone posttranslational modifica-
tions (Schuettengruber et al., 2017). Their activity is counter-
acted by the Trx complexes, which deposit activating histone
marks and thus allow high levels of transcription (see text box).

In this review, we discuss the importance of the Pc complexes
in normal hematopoiesis, with a particular focus on the specific
subunits and complexes involved in the distinct differentiation
steps. We also review the roles played by gain-of-function (GOF)
and loss-of-function (LOF) mutations of Pc group (PcG) proteins
responsible for altered epigenetic landscapes in hematological
disorders. Finally, we focus on drugs designed to target PcG pro-
teins, with the aim of counteracting aberrant epigenetic regula-
tion in hematological disorders.

Composition and function of Pc complexes

Mutations in Drosophila that are associated with sex comb de-
velopment were first isolated in the 1940s and termed extra sex
combs (esc) and Pc (Slifer, 1942; Lewis and Mislove, 1947). More
than 30 yrlater, escand Pc gene products were identified as neg-
ative regulators of the homeotic gene Ultrabithorax (Ubx; Lewis,
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Trx group (TrxG) proteins

In Drosophila melanogaster, Pc-mediated repression of the Hox gene cluster is counteracted by the activity of the Trx gene and TrxG proteins. The mixed-lineage
leukemia (MLL) gene is a mammalian homologue of Trx and was first identified as frequently involved in chromatin rearrangements in infant leukemia patients
(Ziemin-van der Poel et al., 1991; Rowley, 1993; Mbangkollo et al., 1995). MLL has seven paralogues in mammals (MLL1-5 and SETd1A/B). Analogous to PRC1/2,
MLL assembles distinct complexes around the set of evolutionarily conserved core subunits WDR5, RbBP5, ASH2L, and DPY30 (WRAD; Nakamura et al., 2002).
These proteins are necessary to enhance MLL histone methyltransferase activity and to regulate MLL complex recruitment to chromatin (Bochyriska et al., 2018).
Association of additional subunits such as the histone demethylase UTX (specific for H3K27) extends the catalytic repertoire of the complex by simultaneously
providing erasing of H3K27me3 repressive marks deposited by EZH2 and deposition of the H3K4me3 activating mark by MLL (Agger et al., 2007; Lan et al., 2007).

In hematopoiesis, MLL is necessary for self-renewal in adult (but not fetal) hematopoietic stem/progenitor cells (HSPCs; Jude et al., 2007; McMahon et
al., 2007; Gan et al,, 2010) as well as for proliferation and lymphopoiesis by maintaining proper expression of HOX genes (Yu et al., 1995; Yagi et al., 1998; Ayton
etal, 2001; Ernst et al.,, 2004). However, the catalytic activity of MLL seems to be dispensable (Terranova et al., 2006; Mishra et al., 2014). Heterozygous trans-
locations involving the MLL gene are found in a very high percentage of infant leukemia patients affected by either acute myeloid leukemia (AML; >35%) or acute
lymphoblastic leukemia (ALL; >70%). In >90% of the cases, the breakpoint region is localized between exon 9 and intron 11 (Meyer et al., 2018), resulting in the
production of chimeric gain-of-function (GOF) proteins containing an N-terminal truncated form of MLL. To date, 135 distinct translocation partner genes (TPGs)
have been described. The five most common TPGs (AF4, AF9, ENL, AF10, and ELL) account for ~80% of the translocations (Meyer et al., 2018). All of these gene
products belong to multiprotein complexes involved in transcription elongation either in the super elongation complex (SEC), the DOTIL complex (DotCom), or
both (Okada et al., 2005; Lin et al., 2010; Mohan et al., 2010). Molecular mechanisms behind MLL chimera-mediated leukemogenesis are not yet fully under-
stood; however, this process seems to involve the aberrant expression of the HOXA9 and MEISI genes, two master regulators of myeloid lineage. Both of these
genes are targeted by SEC and DotCom (Okada et al., 2005; Lin et al., 2010) as well as by WT MLL and MLL chimeras in leukemic cells (Milne et al., 2005; Faber
et al.,, 2009). HOXA9 and MEIS1 expression is necessary for survival of leukemic cells, and their overexpression in normal HSPCs is sufficient to induce leukemic
transformation (Kroon et al., 1998; Zeisig et al., 2004; Faber et al., 2009). In line with a GOF scenario, most of the proteins involved in physiological regulation of
these loci are necessary for MLL chimera-mediated leukemogenesis, including WT MLL, its interactor menin (Yokoyama et al., 2005), and the SEC subunits pTEFb
and DOTIL (Okada et al., 2005; Krivtsov et al., 2008). Indeed, drugs targeting the WRAD-MLL interaction (Karatas et al., 2013; Senisterra et al., 2013; Cao et al.,
2014) or the menin-MLL interaction (Grembecka et al., 2012; Shi et al., 2012; Borkin et al., 2015) or that inhibit the DOT1L H3K79 methyltransferase activity (Cai
et al., 2015) have been shown to be effective in arresting proliferation of leukemic cells.

MLL2 and -3 appear to play an oncogenic role in AML (Chen et al., 2014, 2017; Santos et al., 2014). Conversely, these proteins seem to act as tumor sup-
pressors in B cells and derived lymphomas (Ortega-Molina et al., 2015; Zhang et al., 2015). In line with this, loss-of-function (LOF) mutations of MLL2 and -3 are
found at relatively high frequencies in diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), and ALL (Morin et al., 2011; Lohr et al., 2012; Zhang et al.,
2013; Green et al., 2015; Lindqvist et al., 2015; Neumann et al., 2015). UTX, another important accessory factor, is also found mutated in various types of leukemia
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(van Haaften et al., 2009; Jankowska et al., 2011; Mar et al., 2012).

1978; Struhl, 1981). Genes whose mutations give rise to develop-
mental defects resembling those of esc and Pc were thereafter
termed PcG genes (Jiirgens, 1985). The proteins encoded by PcG
genes were described as part of two distinct multiprotein com-
plexes, PRC1 and PRC2 (Shao et al., 1999; Kuzmichev et al., 2002),
which are highly conserved in mammals (Kuzmichev et al., 2002;
Levine et al., 2002). Gene silencing by these complexes is associ-
ated with their ability to catalyze posttranslational modifications
of histone tails, namely histone H2A monoubiquitylation for
PRCI and histone H3 lysine 27 methylation for PRC2 (Cao et al.,
2002; Wang et al., 2004a). In both cases, the enzymatic activity
is endowed in the core subunits, around which different sets of
accessory factors assemble to modulate catalysis and to regulate
PRC1 and -2 recruitment to chromatin. The six subtypes of PRC1
(PRCL.1-6) are specified by the incorporation of one of the six
PcG ring finger (PCGF) proteins: NSPC1/PCGF1, MEL-18/PCGF2,
PCGF3, BMI-1/PCGF4, PCGF5, or MBLR/PCGF6 (Fig. 1A; Gaoet
al., 2012). PRC2 has two main configurations, PRC2.1 and PRC2.2
(Fig. 1 B; Beringer et al., 2016). A list of PcG proteins along with
their reported function is shown in Table 1 (see also Aranda et al.,
2015; Holoch and Margueron, 2017; Schuettengruber et al., 2017).

In the classical model of recruitment for these two complexes,
the H3K27me3 mark is deposited by PRC2, which is in turn rec-
ognized by chromobox homolog (CBX) proteins contained in
PRC1.2/4 (also termed canonical PRC1 [cPRC1]; Wang et al.,
2004b). However, noncanonical PRC1s (PRCL.1, 3, 5,and 6), which
contain RINGI- and YY1-binding protein (RYBP), rely on an alter-
native, H3K27me3-independent mode of recruitment (Tavares
etal., 2012). Moreover, PRC2.2 is able to recognize ubiquitylated
H2A (H2Aub; Cooper et al., 2016), suggesting that there is more
than a single way of crosstalk between PcG proteins.

Di Carlo et al.
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PRCl and -2 are responsible for repressing pluripotency genes
during embryonic stem cell (ESC) differentiation in both mouse
and human (Boyer et al., 2006). For both complexes, changes in
the expression and arrangement of the different subunits occur
along the differentiation pathways, suggesting that their dy-
namic expression is relevant for committing cells to a specific
fate (Morey etal., 2012, 2015; Kloet et al., 2016). Notably, however,
the influence of PcG is not limited to early developmental stages
but extends to various subtypes of adult stem cells (Aloia et al.,
2013; Schuettengruber et al., 2017).

PcG proteins in hematopoiesis

Canonical PRC1

The B cell-specific Moloney murine leukemia virus integra-
tion site 1 (BMI-1/PCGF4) was first identified as an oncogene
in MYC-mediated lymphomagenesis (Haupt et al., 1991; van
Lohuizen et al., 1991) and has since been thoroughly studied in
both normal and malignant hematopoiesis. PRC1 containing
BMI-1 (PRCL.4) appears to be responsible for both the commit-
ment of mesoderm layer to primitive HSC formation and the
maintenance of LT-HSC self-renewal and proliferation capac-
ities. Specifically, BMI-1 overexpression in ESCs leads to en-
hanced proliferation of embryoid body-derived primitive HSCs
(Ding et al., 2012). Moreover, HSCs that overexpress BMI-1 dis-
play increased proliferation and self-renewal rates both in mouse
models and human cell models (Iwama et al., 2004; Rizo et al.,
2008). In accordance with this, BMI-1-depleted mice show de-
fects in self-renewal and increased apoptosis of HSCs (Park et
al., 2003; Iwama et al., 2004; Oguro et al., 2006; Liu et al., 2009;
Rizoetal.,2009). In particular, PRC1.4 enables HSCs to overcome
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A canonical PRC1

non-canonical PRC1

Figure 1. Mammalian PRC1/2 compositional
complexity. (A) PcG proteins RINGIA/B and

cPRC1

CBX2,4,6:8)

PCGF2/4

ncPRC1

M ncPRCA
@ (PRC1.3, PRC1.5)

PCGF1-6 compose a core around which acces-
sory subunits associate. cPRC1 incorporates one
PHC and one CBX protein. Noncanonical PRC1
(ncPRC1) complexes incorporate RYBP/YAF2
along with specific sets of additional proteins.

ncPRC1 (B) PRC2 shares a similar organization, with a
Eels) el tetrameric core composed of EZH1/2, SUZ12,
EED, and RBBP4/7. Association with PCL proteins

defines a PRC2.1 subtype that can associate with

either EPOP or PALI1/2 (PRC2.1a/b). Conversely,

ncPRCH association with AEBP2 and JARID2 defines a

(E2F6.com, PRC1.6) PRC2.2 subtype.

PRC2.2

<

PRC2.1a {
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senescence and apoptosis by repressing the Ink4a/Arf (CdknZ2a)
locus as well as by preventing DNA damage (Fig. 2).

In addition to its role in HSCs, PRC1.4 seems to have a fun-
damental function in regulating lymphoid specification by pre-
venting B cell lineage commitment. Specifically, RING1B and
BMI-1 are localized at the bivalent promoters of B-lineage mas-
ter regulators Ebfl and Pax5, and their depletion in T cells leads
to accelerated activation of these transcription factors, resulting
in T-to-B cell conversion (Oguro et al., 2010; Ikawa et al., 2016).
Notably, MEL-18/PCGF2 seems to play an opposite role, which
is however limited to adult hematopoiesis: mice lacking MEL-
18 show no defects in fetal liver cell proliferation (Iwama et al.,
2004) but display spleen and thymus hypoplasia at birth as well
as perinatal lethality, which are associated with defects in B cell
production (Akasaka et al., 1997; Tetsu et al., 1998). Moreover,
HSCs from Mel-187/~ mice are more quiescent and less prolif-
erative than those from WT mice. These studies point to com-
plementary functions for PRCI.2 and PRC1.4 in regulating HSC
self-renewal and proliferation as well as in maintaining the bal-
ance between B and T cells in lymphoid lineage (Fig. 2).

Along with the BMI-1/MEL-18 duality, cPRCI activity in he-
matopoiesis is modulated by incorporation of alternative CBX
proteins. In particular, LT-HSCs seem to preferentially express
and incorporate CBX7; in mice models, CBX7 overexpression
results in an enhanced self-renewal ability and overprolifera-
tion of HSCs, eventually leading to T cell leukemia/lymphoma
in transplanted mice, while its depletion has the opposite effect
(Scott et al., 2007; Klauke et al., 2013). In HSCs, PRC1 that con-

Di Carlo et al.

PcG proteins in normal and malignant hematopoiesis

tains CBX?7 is located on genes that are progressively up-regu-
lated during the HSC-to-progenitor transition, consistent with
the rapid down-regulation of CBX7 during this phase (Klauke et
al., 2013). Indeed, concomitant posttranscriptional up-regulation
of CBX8 at the progenitor stage results in retargeting PRCI to my-
eloid-specific genes (Klauke et al., 2013), suggesting that CBX8
plays a specific role at the level of MPPs and during lymphoid
differentiation. This dynamics resembles that observed in ESCs:
CBX7, which is responsible for maintaining the pluripotent state,
is progressively down-regulated and then replaced with CBX2/4
during differentiation (Morey et al., 2012). In contrast, CBX8
appears dispensable for HSC activity. Recent evidence points to
a fundamental function for the CBX8-containing PRCI, which
works together with PRC2 to determine B cell germ cell forma-
tion (Béguelin et al., 2013, 2016, 2017; Caganova et al., 2013), sug-
gesting that it is functional more for lineage commitment than
for HSC maintenance (Tan et al., 2011). CBX2 impairs HSC and
progenitor proliferation by regulating p21 expression in human
cells (van den Boom et al., 2013). CBX2 also has a specific role in
committing cells toward B-lymphoid lineage as irradiated mice
transplanted with HSCs overexpressing CBX2 are only able to
reconstitute B cells (Coré et al., 1997; Klauke et al., 2013). Analo-
gously, CBX4 seems to play a role in differentiation rather than
in maintaining pluripotency: depletion of this protein results
in arrest of T cell development shortly after birth as a result of
impaired thymic epithelial cell proliferation (Liu et al., 2013).
Altogether, these studies reveal nonredundant roles for CBX
proteins, with CBX7 sustaining LT- and ST-HSC proliferation
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Table 1. PcG proteins and their molecular functions

Complex Protein Function
Core PRC1 RING1A/B H2A monoubiquitylation and nucleosome binding
PCGF1-6 Stimulation of enzymatic activity
PRC1.2,4 CBX2,4,6-8 H3K9/K27me3 binding
PHC1-3 Oligomerization and chromatin compaction
SCMH1/L2 Histone methyl-lysine binding and RNA binding
PRC1.1,3,5,6 RYBP/YAF2 DNA binding (unspecific) and interaction with YY1
PRC1.1 BCOR/BCORL1 Scaffold
KDM2B H3K36 demethylation and DNA binding (unmethylated CpG islands)
SKP1 Ubiquitin ligase and interaction with CUL1
UsP7 Stimulation of enzymatic activity
PRC1.3,5 DCAF7 Scaffold
CK2 Inhibition of enzymatic activity
AUTS2/FBRS/FBSL Transcription activation
PRC1.6 WDR5 Scaffold
L3MBTL2 Histone methyl-lysine binding and chromatin compaction
HP1y/CBX3 H3K9me3 binding
JARID1C H3K4me2/3 demethylase
G9a H3K9 methyltransferase
HDAC1/2 Histone deacetylase
DP-1 DNA binding (E2F recognition site)
E2F6 DNA binding (E2F recognition site)
MAX DNA binding (E-boxes)
MGA DNA binding (E-boxes)
Core PRC2 EZH1/2 H3K27 methyltransferase
SuUZ12 DNA/RNA binding
EED H3K27me3 binding
RBBP4/7 Histones binding
PRC2.1 PCL1/PHF1 H3K36me2/3 binding, DNA binding (unspecific), and stimulation of enzymatic activity
PCL2/MTF2 H3K36me2/3 binding and DNA binding (unmethylated CpG islands)
PCL3/PHF19 H3K36me2/3 binding
EPOP Inhibition of enzymatic activity and interaction with Elongin B and C
PALI1/2 Stimulation of enzymatic activity
PRC2.2 JARID2 DNA/RNA binding, H2Aub binding, and stimulation of enzymatic activity
AEBP2 DNA binding, H2Aub binding, and stimulation of enzymatic activity

and self-renewal, and CBX2, -4, and -8 mainly playing specific
roles during hematopoietic lineage commitment but unable to
functionally compensate for each other. These differences could
be explained by differential recruitment mechanisms; however,
mechanistic insights that could support this hypothesis are still
missing (Fig. 2).

PHC1 is essential for PRCI1 functioning in hematopoiesis, and
in particular in B cell development. Knockout (KO) of Phcl in
mice results in impaired B cell development and perinatal le-
thality (Takihara et al., 1997; Tokimasa et al., 2001). Defects in B
cell maturation are also visible in Phcl heterozygous mice. More-

Di Carlo et al.
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over, Phcl-deficient HSCs are not able to reconstitute blood in
transplanted irradiated mice (Ohta et al., 2002; Kim et al., 2004).
Although mechanistic insight is still lacking about the role of this
protein (as well as its paralogues PHC2/3) in hematopoiesis, ev-
idence suggests a role for PRC1.2/4 in regulating lymphopoiesis.

Noncanonical PRC1

PCGFl-containing noncanonical PRC1 (PRCL.1) seems to be in-
volved in allowing hematopoietic progenitor cells to escape from
pluripotency. Thus, PCGF1 is necessary for shutting down the
HSC pluripotency program by repressing HoxA genes, thereby
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priming them for further commitment by the master regulator
RUNXI1 (Ross et al., 2012). Upon PCGF1 depletion, HSCs are biased
toward the myeloid lineage (van den Boom et al., 2013). Ectopic
overexpression of the H3K36me2 demethylase KDM2B (also in
PRCL1.1) increases T-lymphoid commitment in a way that is de-
pendent on its demethylase activity, while KDM2B depletion re-
sults in myeloid skewing; this is comparable with that observed
for PCGF1 (Andricovich et al., 2016). Similarly, overexpression
of BCL6 corepressor (BCOR; another PRCL.1 member) in my-
eloid-committed cells impairs proliferation by repressing HoxA
genes, while mutations in BCOR give a proliferative advantage
for this lineage (Cao et al., 2016). In patients with X-linked oculo-
facio-cardio-dental (OFCD) syndrome, 90-100% of white blood
cells undergo inactivation of the X chromosome containing the
BCOR-mutated allele, indicating that BCOR-expressing cells have
a proliferative disadvantage and cannot fully contribute to he-
matopoiesis; this was confirmed in a chimeric mouse model (Ng
etal., 2004; Wamstad et al., 2008). These observations reinforce
the notion that PRC1.1 activity is specifically needed to commit
progenitors toward lymphopoiesis (Fig. 2).

The roles played by remaining PRCI complexes (PRC1.3/5/6)
in hematopoiesis still have not been fully addressed. However,
results for PCGF5 and PCGF6 suggest that PRCL.5 and -1.6, respec-
tively, do not play a major role in hematopoiesis (van den Boom
etal., 2013; Si et al., 2016).

PRC2

The PRC2 components EZH2 and SUZ12 are highly expressed in
both fetal and adult bone marrow, while EZH1 is preferentially
expressed in adult HSCs (Lessard et al., 1998, 1999; Mochizuki-
Kashioetal., 2011; Xie et al., 2014). Consistent with these patterns
of expression, EZH1 KO mice do not display defects in primitive
HSCs, while adults show impaired B cell development (Hidalgo et
al., 2012). Conversely, EZH2 KO mice display embryonic lethality,
while EZH2 inactivation at the adult stage produces defects in
B cell maturation. This suggests that EZHI can compensate for
EZH2 loss, thereby maintaining self-renewal capacity, only at the
HSC stage (Su et al., 2003; Mochizuki-Kashio et al., 2011); similar
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— (Wnt, Gata2, Fli1,
Myb and Stat5b)

results have been observed for other types of stem cells (Fig. 2;
Shen et al., 2008; Ezhkova et al., 2009, 2011).

As depletion of EZH2 (or of any PRC2 core component) leads
to early embryonic lethality (Faust et al., 1995; O'Carroll et al.,
2001; Su et al., 2003; Pasini et al., 2004; Mochizuki-Kashio et
al.,, 2011), the roles of these proteins in hematopoiesis were ad-
dressed using lineage-specific KOs and heterozygous models.
Heterozygous depletion of EZH2, SUZ12, or embryonic ectoderm
development (EED) increases hematopoietic stem/progenitor
cell (HSPC) activity, suggesting that PRC2 has an antiprolifera-
tive effect on HSPCs and thus an opposite role with respect to
BMI-1-PRC1 (Lessard et al., 1999; Majewski et al., 2008, 2010).
Nonetheless, more recent studies have shown that hematopoie-
sis-specific KO of either SUZ12 or EED results in HSC exhaustion
at the fetal or adult stage (likely depending on the developmental
stage at which the KO is induced) rather than hyperproliferation,
arguing for a dosage-dependent effect of PRC2 on HSC activity
(Xie et al., 2014; Lee et al., 2015; Yu et al., 2017). PRC2 also plays
a key role in the lymphoid branch: lineage-specific dissection
revealed that SUZ12 is essential for T and B cell maturation but
dispensable for proper myelopoiesis (Lee et al., 2015). Moreover,
EZH2 is needed to prevent aberrant activation of naive T cells
toward Th1/2 by repressing crucial regulators (e.g., 1110, Ifng,
and Gata3; Zhang et al., 2014). In B cells, EZH2 is necessary for
Igh rearrangement (Su et al., 2003) and germinal center (GC)
formation by silencing p21/p27 and BlimplI loci (Béguelin et al.,
2013, 2016, 2017; Caganova et al., 2013). Indeed, the GC reaction
isaccompanied by a marked up-regulation of all PRC2 core com-
ponents as well as of PHF19, suggesting a possible role for this
accessory subunit in modulating PRC2 activity in this process
(Béguelin et al., 2016; Ning et al., 2018). For PRC2 accessory fac-
tors, JARID2 knockdown in HSPCs phenocopies that of SUZ12,
resulting in higher repopulating capacity in competitive trans-
plants. Accordingly, JARID2 chromatin localization in HSPCs
largely overlaps that of SUZ12 and H3K27me3 on genes associated
with self-renewal in fetal HSCs. Conversely, depletion of PHF],
MTF2, or PHF19 does not affect HSPC proliferation (Kinkel et al.,
2015), suggesting that HSPCs mainly rely on PRC2.2 activity. In
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the myeloid lineage, MTF2 is necessary for proper PRC2.1 target-
ing at master regulators of erythrocyte maturation such as the
Wnt signaling pathway and its downstream targets Gata2, Flil,
Myb, and Stat5b (Fig. 2; Rothberg et al., 2018). Altogether, these
studies prove that PRC2 is necessary for long-term maintenance
of hematopoiesis and maturation of lymphoid lineage as well as
for erythropoiesis, and they point toward functional roles of spe-
cific accessory subunits in recruiting PRC2 to specific genomic
targets at each differentiation step.

Oncogenic functions of PcG proteins

PRC1

Numerous PcG proteins have been linked to hematological dis-
eases (Table S1). Early on, BMI-1 was identified as a protoonco-
gene that cooperates with MYC in repressing the Ink4a/Arfgene
locus (Haupt et al., 1991; van Lohuizen et al., 1991; Jacobs et al.,
1999). Ectopic expression of BMI-1in the lymphoid compartment
is also sufficient to perturb normal lymphogenesis, giving rise to
B and T cell lymphomas in mice (Alkema et al., 1997). A role for
BMI-1 has also been proposed in leukemia in which LOF of the
gene in mice delays the onset of primary leukemia and blocks
the development of secondary leukemia, probably due to cancer
stem cell exhaustion (Jacobs et al., 1999; Park et al., 2003; Rizo
et al., 2009). In pediatric acute lymphoblastic leukemia (ALL),
Bmi-1 mRNA is expressed at high levels and correlates with poor
prognosis, while it is significantly decreased in patients in com-
plete remission (Peng et al., 2017). Indeed, BMI-1 expression has
been proposed as a molecular marker to follow disease progres-
sion in B cell lymphomas (Raaphorst et al., 2000; Bea et al., 2001;
van Kemenade et al., 2001; van Galen et al., 2007), myelodysplas-
tic syndromes (MDSs), and leukemia; in all cases, its expression
correlates with reduced survival and poor prognosis (Sawa et al.,
2005; Mihara et al., 2006; Chowdhury et al., 2007; Mohty et al.,
2007; Saudy et al., 2014; Peng et al., 2017).

Another PRC1 component associated with cell transforma-
tion and lymphomas is CBX7 (Klauke et al., 2013). Under normal
conditions, CBX?7 is highly expressed in HSCs and GCs, where
B cells proliferate and maturate. However, in vivo experiments
have demonstrated a role for CBX7 in initiating T cell ymphomas
and, in cooperation with MYGC, in accelerating aggressive B cell
lymphomagenesis through the regulation of the Ink4a/Arflocus
(similar to BMI-1; Scott et al., 2007; Klauke et al., 2013).

PRC2

Together with BMI-1, EZH2 is the most studied PcG protein that
has been determined to have a strong link with cancer. EZH2
is overexpressed or amplified in several distinct hematological
disorders as well as in solid tumors (Piunti and Pasini, 2011).
EZH2 plays a pivotal role in controlling the correct formation of
GCs. While its deletion suppresses GC formation, expression of
mutant EZH2 with hypermethylation activity causes GC hyper-
plasia, due at least in part to a greater repression of PRC2 target
genes such as p21 (Cdknla) and Ink4a/Arf/Ink4b (Béguelin et al.,
2013; Caganova et al., 2013). Additionally, EZH2 cooperates with
BCL6, a transcriptional repressor involved in the GC reaction, to
recruit a PRC1-BCOR-CBX8 complex to repress gene expression,
thus regulating GC formation and lymphomagenesis (Hatzi and
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Melnick, 2014; Béguelin et al., 2016). These roles are in line with
evidence linking high levels of EZH2 expression with poor prog-
nosis and survival outcome, both of which are dependent on its
enzymatic activity in B cell lymphomas (Raaphorst et al., 2000;
van Kemenade et al., 2001; Visser et al., 2001; Sneeringer et al.,
2010; Okosun et al., 2014).

EZH2 GOF mutations have also been identified in non-Hod-
gkinlymphomas (NHLs) and solid tumors. Mutations of the tyro-
sine 641 (Y641F/N/S/H/C) are found in 22% of GC B cells and DLB
CLs as well as in 7% of FLs, where they are considered an early
clonal event leading to the disease (Morin et al., 2010; Caganova
et al., 2013; Okosun et al., 2014). These mutations occur in the
EZH2 SET domain and alter the substrate-binding pocket. They
were initially believed to be LOF mutations as mutated EZH2 pre-
fers substrates with a higher state of methylation (H3K27me0:
mel:me2 kcat/Km ratio = 1:2:13) as compared with the WT one
(H3K27meO:mel:me2 kcat/Km ratio = 9:6:1), suggesting a de-
creased capacity to deposit the correct mark (Sneeringer et al.,
2010; McCabe et al., 2012). However, these mutations are al-
ways heterozygous; thus, while the WT form is responsible for
mono- and dimethylation, the mutated isoform enhances the
di- to trimethylation conversion. The result of this cooperation
is an aberrant, strong overall increase in H3K27me3 (Morin et
al., 2010; Sneeringer et al., 2010; Yap et al., 2011; Béguelin et al.,
2013; Bédér et al., 2013). Two additional EZH2 point mutations,
A677G and A687V, occur less frequently (in 1-2% of lymphoma
patients), and only A687V shows a slight preference for methyl-
ating H3K27me2; both mutations result in decreased H3K27me2
levels and a hypertrimethylation phenotype (Majer et al., 2012;
McCabe et al., 2012; Ott et al., 2014).

Posttranscriptional mechanisms can also alter EZH2 protein
levels. For instance, a molecular circuit with a potential role in
Burkitt’s lymphoma has been proposed in which EZH2 is neg-
atively regulated by miR-26a; when MYC is present at high lev-
els, it represses miR-26a, leading to increased EZH2 expression
(Sander etal., 2008).

The scenario is even more complex in leukemias in which fu-
sion proteins with oncogenic activities act together with PRCland
PRC2 complexes. PML-RARa and PLZF-RARa fusion proteins in-
teract with SUZ12 and BMI-1, respectively, to tether Pc complexes
to retinoic acid response elements. In both cases, depletion of PcG
proteins decreases the oncogenic potential by promoting cellu-
lar differentiation (Villa et al., 2007; Boukarabila et al., 2009).
Likewise, in MLL-AF9 acute myeloid leukemia (AML), EED is
necessary for leukemia initiation and progression, likely due to
derepression of the Ink4a/Arftumor suppressor locus. However,
other studies examining the role of EZH2 suggest that EZHI can
partially compensate for its function (Neff et al., 2012; Tanaka et
al., 2012; Shi etal., 2013). CBX8 has an important role in MLL-AF9
leukemia as well through its direct interactions with AF9 and
TIP60 proteins, which regulate proliferation and survival of leu-
kemic cells in a PRC1-independent way (Tan et al., 2011).

Tumor-suppressive functions of PcG proteins

PRC1

Various PcG proteins also have been shown to act as tumor sup-
pressors (Table S2). For instance, BMI-1 is not only crucially
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involved in HSC maintenance and differentiation (Jacobs et al.,
1999; Park et al., 2003; Rizo et al., 2009) but also has a role as a
tumor suppressor. Its genetic ablation promotes myeloid malig-
nancies (primary myelofibrosis [PMF]) through direct derepres-
sion of a cohort of genes including that of Hmga2, a well-known
oncogene usually expressed at high levels in PMF (Oguro et al.,
2012). Likewise, PHC1 has a role as a tumor suppressor in the
proper B cell maturation and differentiation, and its expres-
sion is lost in leukemic cells from pediatric patients with ALL
(Tokimasa et al., 2001).

BCOR and BCORLI (proteins that cooperate in recruiting the
complex to CpG islands) are frequently mutated in myeloid ma-
lignancies. Several deletions and mutations affecting the mRNA
levels of these factors have been identified in patients with
MDS; these account for 4.2% and 0.8% of the cases for BCOR and
BCORLI, respectively (Damm et al., 2013). Notably, both proteins
are also often down-regulated in cytogenetically normal AML pa-
tients (in 4-6% of cases); this down-regulation is associated with
poor prognosis. In AML, BCOR disruptive alterations frequently
occur together with DNMT3A mutations, suggesting a crosstalk
between these two epigenetic factors (Grossmann et al., 201;
Lietal., 2011).

PRC2

EZH2 acts as a tumor suppressor in myeloid malignancies such as
MDS and myeloproliferative neoplasms (MPNs). It is a frequent
target of chromosomal deletions and missense and frameshift
mutations, which have an adverse effect on survival (Ernst et al.,
2010; Nikoloski et al., 2010; Bejar et al., 2011; Mochizuki-Kashio
et al., 2015; Shirahata-Adachi et al., 2017; Gangat et al., 2018).
Missense mutations usually affect EZH2 regions involved in pro-
tein-protein interactions or the catalytic pocket, suggesting that
the functional integrity of the complex is crucial for PRC2 tumor
suppressor functions in these malignancies. EZH2 levels can
also be altered by indirect effects. For instance, mutations in the
splicing factors SF3B1 and SRSF2 occur in 24% and 14% of MSD
cases, respectively, and are considered an early event in disease
progression (Yoshida et al., 2011; Papaemmanuil et al., 2013). In
mice, a premature termination codon (in a cassette exon) is intro-
duced into EZH2 by a mutant SRSF2 (with P95H), which leads to
nonsense mediated decay of EZH2 (Kim et al., 2015).

Other PRC2 components are also mutated in myeloid dis-
orders, although to a lesser extent. Mutations in SUZ12 or EED
lead to reduced EZH2 methyltransferase activity in vitro (Score
et al.,, 2012), and JARID2 mutations can potentially alter PRC2
targeting, suggesting that distinct genetic alterations can affect
the same pathway (Score et al., 2012). Accordingly, SUZ12 muta-
tions found in patients with MDS or MPN usually affect its VEFS
domain, which is necessary for SUZ12’s interaction with EZH2
(Brecqueville et al., 2012; Score et al., 2012). Likewise, point mu-
tations in EED can alter its protein stability or its interaction with
EZH?2 (Lessard et al., 1999; Score et al., 2012; Ueda et al., 2012).

Alterations in these epigenetic modifiers can have wide-rang-
ing effects through modulation and aberrant interactions with
other transcription factors and epigenetic regulators. For in-
stance, RUNXI, a master regulator of hematopoietic cell differ-
entiation, is mutated in ~25% of MDS cases that present EZH2
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deletions (Bejar et al., 2011). RUNXI collaborates with EZH2, and
loss of these two factors causes ineffective hematopoiesis and
initiation and propagation of an MDS phenotype (Sashida et
al., 2014). However, RUNX1 mutants recruit PRC1 to PRC2 target
genes such as HOXAY, a gene that is usually activated in high-
risk MDS and MDS/AML, thus preventing progression to AML
(Sashida et al., 2014).

LOF mutations of PRC2 members also have roles in leukemia
outcome and progression: inactivating mutations affecting EZH2,
EED, and SUZ12 correlate with poor prognosis in both T cell ALL
(T-ALL) and early T cell precursor (ETP) ALL (Ntziachristos et al.,
2012; Simon et al., 2012; Zhang et al., 2012). Likewise, deletions
affecting JARID2 have been associated to various types of leuke-
mia (Su et al., 2015). EZH2 and SUZ12 are misregulated in 25%
of all T-ALL cases, and 65% of these mutations associate with an
oncogenic increase of NOTCHLI. In T-ALL, NOTCHI binding sites
and the PRC2-deposited H3K27me3 mark overlap, suggesting
that the absence of PRC2 can reinforce altered NOTCHI signal-
ing (Ntziachristos et al., 2012). For both EZH2 and EED, a role
in ETP-ALL development has also been proposed: they cooperate
with the mutated form of GTPase NRAS (Q61K) to enhance cell
growth and survival signaling (Danis et al., 2016).

PRC2 components act as tumor suppressors also in AML,
in which deletions of PRC2 genes (EZH2, JARID2, SUZ12, and
AEBP2) have been identified in 35% of AML patients with a pre-
vious history of MPN/MDS (Puda et al., 2012). These mutations
alter the correct enzymatic activity of the complex, thus facilitat-
ing leukemia progression (Puda etal., 2012). Accordingly, in vivo
experiments confirmed that an EED missense mutation (I363M)
found in AML affects the region close to the aromatic cage, alter-
ing the correct deposition of the H3K27me3 mark. This mutation
also increases the susceptibility to leukemia in cooperation with
other genetic alterations such as EVIL (myeloid leukemia) and
RUNXI (T cell leukemia; Ueda et al., 2016).

Targeting PcG proteins in hematologic cancers

Considering the strong link between PcG protein alterations and
hematological diseases, major efforts have been directed to devel-
oping compounds that aim to restore the correct levels of these
chromatin modifiers for disease treatment (Bhaumik et al., 2007;
Copeland et al., 2009). Importantly, directly targeting epigenetic
regulation has the advantage of being more plastic than therapies
that aim to correct the patient’s genomic DNA.

For PRCI, inhibitors targeting BMI-1have been developed that
provide good responses in distinct tumor types. The first BMI-1
inhibitor identified was PTC-209, which is able to lower BMI-1
transcript levels without affecting those of RING1B or CBX7. In
models of human colorectal cancer, it reduces the number of
functional cancer-initiating cells, resulting in a strong reduction
of tumorigenic potential in xenograft models (Kreso etal., 2014).
PTC-209 has shown promising results both in primary AML and
chronic myeloid lymphoma (CML) cell lines: it induces the ex-
pression of CDKN2A and CCNG2, two direct targets, leading to
significant arrest in G1 and apoptosis in both (Mourgues et al.,
2015; Nishida et al., 2015).

The first BMI-1 inhibitor to enter clinical trials was PTC596
(Nishida et al., 2017). PTC596 increases BMI-1 protein degra-
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dation by enhancing CDKI1 association with BMI-1, followed by
phosphorylation at two N-terminal sites. In the AML cell line,
PTC596 induces p53-independent apoptosis through MCL-1
down-regulation. Even more promisingly, it has shown antileu-
kemia activity in vivo (in xenograft models; Nishida et al., 2017),
and it has been recently tested for patients with advanced solid
tumors (NCT02404480).

Several EZH2 inhibitors as well as compounds that disrupt
the PRC2 complex have been developed over the years that have
distinct selectivity/specificity. Some of these are in preclinical or
clinical trials (Lund et al., 2014; Kim and Roberts, 2016). The first
compound, DZNep (developed in 1986), is an S-adenosyl-1-homo-
cysteine (SAH) hydrolase inhibitor that causes an increase of the
cellular levels of SAH, which in turn blocks methyltransferase
activity. This compound is not specific for EZH2, has a short half-
life, and is toxic in animal models (Glazer et al., 1986; Miranda
et al., 2009; Sandow et al., 2017). Several inhibitors have been
further developed that have greatly increasing selectivity toward
EZH?2. For instance, GSK126 and EPZ005687 have been tested in
lymphomas carrying EZH2-activating mutations and have been
found to reduce tumor growth and increase survival in xenograft
mouse models in a dose-dependent way (Knutson et al., 2012;
McCabe et al., 2012; Verma et al., 2012). A further compound, EI1,
does not alter EZH2 protein levels but rather reduces H3K27me2
and H3K27me3 levels by competing with the cofactor SAM. In
DCBCL-carrying EZH2 mutations, EI1 reduces cell growth, apop-
tosis, and induction of genes involved in memory B cell differen-
tiation (Qi et al., 2012).

An important breakthrough in EZH2 inhibitors came with
the development of orally bioavailable inhibitors. The first one
developed was UNC1999, which can block both EZH2 and EZH],
making it advantageous for treating cancers that rely on both
enzymes. Accordingly, UNC1999 reduces global levels of H3K27
trimethylation/dimethylation (H3K27me3/2), thus inducing
apoptosis and differentiation of MLL-rearranged acute leuke-
mia cells. Moreover, in a MLL-AF9 mouse model, UNC1999 gives
rise to a phenotype similar to that of EED KO, altering the correct
deposition of the H3K27me3 mark and affecting CDKN2A levels,
with strong effects on the mouse survival (Konze et al., 2013; Xu
et al., 2015). Another potent EZH2 inhibitor, EPZ6438 (Tazeme-
tostat), is being tested in several clinical trials for treating B cell
lymphomas and solid tumors (NCT02220842, NCT03456726,
NCT01897571, NCT03028103, NCT03009344, and NCT03010982;
Knutson et al., 2013, 2014a; Italiano et al., 2018); one is already
in phase 2 for patients with DLBCL and FL, in order to test the
efficacy and safety of this compound either alone or in combi-
nation with prednisolone (NCT01897571). OR-S1 and OR-S2 are
methyltransferase inhibitors that are highly specific for EZH1
and EZH2, and their efficacies have been tested in preclinical
studies in AML murine models (MOZ-TIF2 and MLL-AF10) in
which they lead to a complete remission of AML (Honma et al.,
2017; Fujita et al., 2018).

Another possible therapeutic approach is to target the stabil-
ity of the PRC2 complex, which disassembles in the absence of a
core subunit, to reduce or eliminate its methyltransferase activ-
ity. The drug SAH-EZH2, was modeled on the a-helical domain
of EZH2 that interacts with EED, a stabilized a-helix of EZH2
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peptide capable of disassembling the PRC2 complex and im-
pairing its function by impeding their association. This reduces
H3K27me3 levels and increase cell differentiation in MLL-AF9
leukemia cell lines (Kim et al., 2013). Two more compounds
(EED226 and A-395) have been developed that impair PRC2 func-
tion by targeting EED; specifically, EED226 disrupts the integrity
of the complex, while A-395 prevents H3K27me3 recognition,
and both cause tumor regression in xenograft mouse models of
DLBCL (He et al., 2017; Huang et al., 2017). Finally, GNA002, a
gambogenic acid derivative, covalently binds to the Cys668 resi-
due of EZH2, causing its proteasome-mediated degradation and
consequent PRC2 disassembly. In xenograft models, GNA0O2 re-
duces tumor growth (Wang et al., 2017).

Drug resistance is a major issue in addressing cancer treat-
ments, considering that cell populations vary greatly and are
continuously evolving. Two EZH2 amino acid substitutions
(Y111L and Y661D) were identified after EI1 inhibitor treatment;
these mutations cooperate in conferring acquired resistance in
EZH2-mutated lymphoma models (Gore et al., 2006; Gibaja et
al.,, 2016). In particular, Y111L was able to restore PRC2 activity
and methylation levels in the presence of distinct PRC2 inhibi-
tors (Gibaja et al., 2016). Acquired resistance has also been ob-
served to be associated with EZH2 protein levels in AML patients:
many patients have low EZH2 protein levels after chemotherapy,
which correlates with poor prognosis. AML cell lines treated with
PKC412, a kinase inhibitor, can develop drug resistance due at
least in part to EZH2 protein degradation. This EZH2 reduction
in turn alters gene expression of various factors associated to the
HOX genes. Interestingly, knocking down HOXB7 and HOXA9
proteins in AML cell lines partially rescues sensitivity to drugs.
Furthermore, a combination of Ara-C and bortezomib, used both
ex vivo on primary AML samples and in vivo in AML patients,
rescues EZH2 protein levels and reduces levels of immature
blasts from peripheral blood (Géllner et al., 2017).

Many other combination of treatments have been proposed
for lymphomas (Zhao et al., 2013; Knutson et al., 2014b; Béguelin
etal., 2016), leukemias (Kowolik et al., 2016; Wen et al., 2018), and
myelomas (Bolomsky et al., 2016; Alzrigat et al., 2017). In general,
these show synergistic effects, leading to increased apoptosis
and reduced tumor burdens. Overall, these reports provide an
encouraging avenue that warrants continued work on identify-
ing additional compounds and on studying more thoroughly dif-
ferent combinations of therapies as a way to achieve better and
more durable antitumor effects.

Conclusions

Hematological diseases are characterized by lower levels of ge-
netic mutations but higher levels of alterations of epigenetic
factors as compared with other diseases (Haladyna et al., 2015).
These alterations (GOF, LOF, and aberrant recruitment of com-
plexes) greatly affect gene expression and play a major role in
hematopoietic malignancies. Of note, both overexpression and
LOF of the PcG proteins are strongly correlated with cancers.
These apparently contradictory observations could be due to the
distinct roles played by the complexes during the differentiation
process. Additionally, they could also be due to misregulation of
these proteins causing a general alteration of gene expression
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that, together with the distinct tumor niches, can lead to very
distinct outcomes. This topic is of particular interest for thera-
peutics: development of new molecules with increased selectiv-
ity and decreased toxicity should be encouraged, but we should
keep in mind that we still lack knowledge about many biological
processes. In any case, an accurate patient selection will be man-
datory to avoid secondary health problems. Another possible ca-
veat is the risk of development of drug resistances (Gibaja et al.,
2016); nevertheless, with the use of combinational therapies, this
phenomenon can be greatly reduced and controlled.

Results from GOF studies of PRC1 and PRC2 have highlighted
that mutations in distinct proteins (especially for PRC2 sub-
units) down-regulate common genes that have tumor suppressor
functions such as the CDKN2A locus. Distinct complexes can, of
course, affect the same pathway; however, it is crucial to point out
that most of our knowledge focuses on BMI-1 and EZH2 and that
PcG proteins can potentially form numerous distinct complexes
with many different targets. We now need to focus on studying
the other subunits in order to clarify their contribution to normal
and malignant hematopoiesis.
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