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Automated profiling of growth cone heterogeneity
defines relations between morphology and motility

Maria M. Bagonis*?®, Ludovico Fusco®, Olivier Pertz>**, and Gaudenz Danuser’>*®

Growth cones are complex, motile structures at the tip of an outgrowing neurite. They often exhibit a high density

of filopodia (thin actin bundles), which complicates the unbiased quantification of their morphologies by software.
Contemporary image processing methods require extensive tuning of segmentation parameters, require significant manual
curation, and are often not sufficiently adaptable to capture morphology changes associated with switches in regulatory
signals. To overcome these limitations, we developed Growth Cone Analyzer (GCA). GCA is designed to quantify growth

cone morphodynamics from time-lapse sequences imaged both in vitro and in vivo, but is sufficiently generic that it may

be applied to nonneuronal cellular structures. We demonstrate the adaptability of GCA through the analysis of growth

cone morphological variation and its relation to motility in both an unperturbed system and in the context of modified Rho
GTPase signaling. We find that perturbations inducing similar changes in neurite length exhibit underappreciated phenotypic

nuance at the scale of the growth cone.

Introduction
Already in the mid-eighties, Bray and Chapman (1985) had pos-
tulated that a systematic assessment of morphology would be
essential for unraveling the principles governing growth cone
(GC) locomotion and navigation, events fundamental for neuro-
nal development. A surprisingly limited number of efforts have
picked up this thread. While recent work has tested correlations
between neurite outgrowth rates and morphological/dynamic GC
features (Hyland et al., 2014; Steketee et al., 2014; Ren and Suter,
2016), in these studies, quantification of GC morphology was per-
formed by tedious visual inspection of hand-selected datasets,
and/or considered only coarse descriptions of shape (Goodhill et
al., 2015; Suo et al., 2015; Ren and Suter, 2016). Numerous studies
have analyzed the effect of putative perturbations of GC regu-
lation using endpoint metrics of neurite length observed at low
resolution (e.g., Briangon-Marjollet et al., 2008; Chandran et al.,
2016), without considering the effects on GC architecture. Such
limited quantification is likewise pervasive in studies investi-
gating the role of Rho GTPases, key regulators of cytoskeleton
organization and dynamics (Hall and Lalli, 2010) in neuronal
outgrowth. Hence, a proper validation of Bray’s paradigm that
GC morphology and motility are coupled is still outstanding.

To enable acquisition of an unbiased inventory of GC morpholo-
gies and their motility output, we developed Growth Cone Analyzer
(GCA) for fully automated analysis of high-resolution GC fluores-

cent movies. GCA addresses common limitations cited by current
software for GC analysis (Misiak et al., 2014; Goodhill et al., 2015;
Jacquemet et al., 2017; Urbanti¢ et al., 2017), including poor detec-
tion of fine, low signal-to-noise structures known as filopodia, as
well as difficulty in resolving crossed filopodia. Furthermore, while
available GC analysis software offers generic schemes for the identi-
fication of veil protrusions (Tsygankov et al., 2014; Jacquemet et al.,
2017; Urbanti¢ etal., 2017), GCA includes a detection module specifi-
cally designed for complex, multi-scale, veil/stem morphologies and
provides measurements of neurite outgrowth.

To showcase GCA, we provide a quantitative analysis of motile
GCsin the presence/absence of Rho GTPase pathway perturbations
previously identified to produce shifts in neurite outgrowth in an
NIE-115 mouse neuroblastoma model system (Pertz et al., 2008;
Fusco et al., 2016). The approach introduced here provides insight
into how neurite outgrowth relates to processes at the scale of the
GC and unveils novel layers of cytoskeletal regulation that illus-
trate the complexity of Rho GTPase signaling in neurite outgrowth.

Results

Morphological heterogeneity of GCs

NIE-115 mouse neuroblastoma cells, like many GC model systems
(Kleitman and Johnson, 1989; Kozma et al., 1997; Mason and Wang,
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1997; Sarner etal., 2000; Pertz et al., 2008; Dent et al., 2011; Ozel et
al., 2015; Fusco et al., 2016), adopt a wide variety of shape config-
urations (Fig. S1 A). This morphological heterogeneity is exacer-
bated by genetic manipulations targeting cytoskeleton regulation
(Fig. S1B). GC morphology, while diverse, is ultimately dictated by
the integration of two stereotypically shaped actin structures: a
veil-like lamellipodium interspersed with thin filopodia (Lowery
and Van Vactor, 2009). Filopodia are curvilinear actin bundles, and
hence can best be identified by common ridge detectors (Frangi et
al., 1998; Jacob and Unser, 2004; Fig. S1C, i). In contrast, lamelli-
podial veils can be quite amorphous and therefore require a dif-
ferent image processing method (Fig. S1 C, ii). Furthermore, veils
are interjected by consolidated, ridge-like segments of the neurite,
referred to here as the stem (Fig. S1 C, iii and iv). Therefore, the
terminal end of the growing neurite can be viewed as a unique
conglomerate of distinct geometric features requiring differential
image processing for optimal detection of each component. Seg-
mentation tools that rely on a single image processing approach
such as global thresholding (Costantino et al., 2008; Tsygankov et
al., 2014) fail on this type of data (Fig. S1 D).

GCA pipeline

To address the challenges of quantifying GC morphology, we de-
veloped GCA (Fig. 1 and Fig. S2). GCA reconstructs the veil/stem
and filopodia/branch system in two parallel detection steps op-
timized for each feature (Fig. 1 A, ii-v). It then recombines the
information to create a high-fidelity segmentation (Fig. 1 A, vi-x;
and Fig. S3). Fig. 1 outlines the general workflow of the algorithm
for a canonical GC (Fig. 1, A and C; and Video 1), and highlights
intersections where the algorithm automatically deviates from
this workflow to address segmentation challenges posed by non-
canonical GC morphologies (Fig. 1, B and D; Videos 2 and 3; and
Fig. S3; see Materials and methods).

Validation of GCA algorithm
Fig. 2 (Videos 4, 5, and 6) shows the GCA segmentation for the
set of images outlined in Fig. S1 A. Notably, the same filopodia/
branch segmentation parameters (Table S1) were used for the en-
tire N1E-115 GC dataset (n = 72 movies). While visual inspection
is commonly considered the gold standard for validation of auto-
mated image analysis, given the complexity of GC architectures,
and indeed most biological images, it is nontrivial to obtain an un-
biased “ground truth” by manual annotation (Kozubek, 2016). For
example, we have shown previously that manual annotation of
whole-cell scale N1E-115 images differ, sometimes substantially,
among annotators (Fusco et al., 2016). In the case of the NIE-115
GC scale images, we found even documentation of filopodia end-
point coordinates an impossible task for a group of manual an-
notators to perform systematically; ultimately, GCA provided a
more standardized definition of filopodia length (Fig. 2, B-D; see
Materials and methods). Given the above challenges, we devised
a semi-automated approach to quantify the accuracy of the filo-
podia/actin bundle lengths (Fig. 2 E, Fig. S4, and Fig. S5 D) and
detection numbers (Fig. 2 F and Fig. S5, A-C) extracted by GCA
(see Materials and methods).

We found GCA to perform well, notably with minimal seg-
mentation parameter changes, on GC images of different sizes,
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types, and fluorescent labels, imaged both in vitro and in vivo/
ex vivo (Fig. 3, Fig. S6, and Videos 7 and 8), and GCA generalized
well to non-GC images with filopodia (Fig. 3, E-G). These results
underlie the robustness of the pipeline and indicate that while
some heuristics were necessary to design the algorithm, the
pipeline can be applied to vastly diverse imaging datasets with
little user input.

We also confirmed that contemporary software with similar
goals to GCA (Jacquemet et al., 2017; Urbanéi¢ et al., 2017) is in-
sufficient for the assessment of Rho GTPase perturbation of N1E-
115 GCs and some in vivo morphologies (Fig. 4, A-C), even after
extensive attempts to optimize control parameters. In contrast,
GCA was able to segment test images included in these pack-
ages, with only minimal and intuitive segmentation parameter
adjustments, and offered a number of substantial advances not
available with the previous methods (Fig. 4, D-G; see Materi-
als and methods).

Extraction of morphodynamic features

Segmentation via GCA enables quantification of many GC mor-
phodynamic features (Fig. 5). These features include “global/
functional” measurements, such as neurite length/outgrowth
rate (Fig. 5 A), as well as more spatially localized measurements
such as veil/stem thickness and dynamics (Fig. 5 B), the filopo-
dia geometry and its integration with the veil (Fig. 5 C), and the
branching pattern (Fig. 5 D; see Materials and methods). No-
tably, GCA extraction of filopodia lengths/densities (Mogilner
and Rubinstein, 2005) and comparative analyses of local veil
velocities (Sivadasan et al., 2016; Fig. S6 and Video 8) were
consistent with manual quantification previously reported.
Hence, GCA provides a robust framework for multi-variate fea-
ture extraction.

Relationship between neurite outgrowth and GC

scale morphodynamics

Equipped with this analytical pipeline, we returned to this ques-
tion: Does GC motility relate to GC morphology? While molecu-
lar perturbations can indeed induce changes in GC morphology
(Pertz et al., 2008; Fig. S1 B), they are also often accompanied by
larger system adaptations that complicate interpretation of mo-
tility phenotypes. Therefore, we first sought to use the full distri-
bution of GCA features to detect potential morphology-motility
relationslatent within the heterogeneous control population. We
analyzed 20 movies (10-min) of unperturbed N1E-115 GCs and
identified correlations between neurite-to-neurite variation in
net outgrowth rate (Fig. 6 A) and temporally averaged GC mor-
phology features (Fig. 6 B).

Testing for monotonic relationships between feature pairs
(Fig. 6 C) revealed a positive correlation between filopodia length
and curvature, and a negative correlation between filopodia
length and veil protrusion persistence. However, we were par-
ticularly interested in identifying correlations between neurite
outgrowth rate and GC morphology (Fig. 6, C and D). The stron-
gest correlations included an inverse relationship between neu-
rite outgrowth and filopodia actin bundle/branch length, as well
as a positive relationship between outgrowth and the percentage
each filopodium was embedded by veil (Fig. 6, C and D). Other
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Figure 1. Automated segmentation of heterogeneous morphologies by GCA. (A) GCA segmentation pipeline: Canonical N1E-115 GC expressing LifeAct
GFP. See Video 1. (B) GCA segments GCs of varying veil/stem complexity. See Video 2. (C) Detection of veil-embedded actin bundles. (D) GCA segments GCs
of varying filopodia/branch complexity. See Video 3 and Materials and methods. Bar, 10 um.
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Figure 2. Validation of GCA for segmentation of N1E-115 GCs. (A) GCA segmentation of N1E-115 GCs expressing GFP LifeAct on laminin. Embedded actin
bundle detections not shown for clarity. (See Fig. S1, Aand B, for raw images). GCs of KDs, as in Fig. S1B, shown in context of their putative network interactions
(see GC scale morphodynamic phenotypes section for references). See Videos 4, 5,and 6. Bar, 10 pm. (B-D) Variability in manual filopodia endpoint localization
among annotators (see Materials and methods). (D) GCA filopodia linescan/fitting for example filopodia (i-iii). Boxplot insets (top): Distribution of the residuals
for each fit compared with the fit amplitude (red star). Given the multiple scales of intensity decay in i and ii, fit regions, and the boxplots of the fit residuals,
are magnified as indicated by orange insets. (E) Automated GCA versus manually refined filopodia lengths. See Fig. S4 A. Black line: Perfect correlation. Gray
solid line: Linear fit to data. Gray dotted lines: Cl of the fit. (F) GCA detection error for veil/stem attached filopodia. Top: Example overlays. Black arrowheads:

Detection error. Bottom: Heat map of error rates.
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Figure 3. GCA applied to a variety of cellular images. (A-D) GCA veil thickness (left) and filopodia (right) overlays for GCs of different size, type, and fluor-
escent label imaged in vitro (A and B) and in vivo/ex vivo (C and D). Xenopus spinal explants (A) and mice hippocampal neurons (B): unpublished data courtesy
of Lowery Laboratory, Boston College, and Gupton Laboratory, University of North Carolina at Chapel Hill, respectively. (A and B) Bottom: Veil/stem size profiles
comparing the GCs shown in the first three rows of A (left) and B (right). (C) Rohon-Beard GCs in a zebrafish embryo: previously published raw images in St John
and Key (2012). (D) Intra-vital (top) and ex vivo images (bottom) of Drosophila photoreceptor GCs: maximum intensity projections as in Langen et al. (2015) and
Ozel et al. (2015), respectively. See Video 7. (E and F) GCA segmentation of 2D maximum intensity projections of SUM159 triple negative human breast cancer
cell (E) and transformed human bronchial epithelial cell (HBEC) in a collagen | matrix imaged using meSPIM (F; Welf et al., 2016). (G) GCA segmentation of a HeLa
cell expressing a filopodium-tip localizing marker. Bottom: Automated line scan along sparsely labeled filopodium marked by arrow. Bar, 10 um, unless noted.

actin bundle features, such as filopodia density, orientation, and
branch complexity, were not significantly correlated to net neu-
rite outgrowth in 10 min. Likewise, the veil stem thickness was
a poor predictor, in line with Hyland et al. (2014). Visualization
of select movies corresponding to key data points in the neurite
outgrowth rate distribution (Fig. 6 A), namely the population
extremes (Fig. 6 E, i and iv), and two movies within +SD of the
mean (Fig. 6 E, ii and iii) confirmed the structures of these GCs
were consistent with the conclusions drawn from the correlation
analysis (Fig. 6 E and Video 4).
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GC scale morphodynamic phenotypes upon perturbation of
Rho GTPase signaling

We next sought to test if the additional morphological variation
introduced by siRNA-mediated perturbations of Rho GTPase sig-
naling would support the correlative relations. We focused upon
a subset of knockdowns (KDs) found to induce neurite length
defects within an ~20-h timescale (Fusco et al., 2016; Table
S2). These included Racl and three structurally distinct, posi-
tive regulators of Racl activity, 8-Pix (also known as ARHGEF7;
ten Klooster et al., 2006), Dock7 (Watabe-Uchida et al., 2006,
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Figure 4. Comparison of GCA to contemporary filopodia detection software. (A-C) Segmentation overlays generated using Filopodyan (Urban¢i¢ et al.,
2017;i), FiloQuant (Jacquemet et al., 2017; i), or GCA (iv). N1E-115 GCs expressing GFP-LifeAct (A and B) and a Rohon-Beard GC (C) in a zebrafish embryo (see
Fig. 3 C). Visualization as in respective package. Zoomed regions highlight segmentation challenges. (D-G) GCA segmentation using previously published raw
images available with contemporary software releases. (D and E) Filopodyan (Urbanci¢ et al., 2017) and FiloQuant (Jacquemet et al., 2017). Bottom: Zoom and
local intensity fit of filopodium marked by the black arrow in top image. (F and G) CellGeo (Tsygankov et al., 2014) and Dendritic Filopodia Motility Analyzer

(Tarnok et al., 2015). Bar, 10 pm, unless noted.

and Trio (Debant et al., 1996; Briangcon-Marjollet et al., 2008).
In addition, we examined perturbations resulting in enhanced
neurite length (Fusco et al., 2016). This set included siRNA KD of
(1) a negative regulator of Racl (srGAP2; Guerrier et al., 2009);
(2) RhoA, whose downstream signaling via its effector ROCK has
been implicated in neurite retraction in response to inhibitory
stimuli (Kozma et al., 1997; Amano etal., 1998; Zhang et al., 2003);
and (3) Cdc42, which, when reduced, is typically associated with
shorter neurite lengths (Chandran et al., 2016), but exhibits ro-
bust up-regulation of neurite outgrowth in our system, similar

Bagonis et al.
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to that observed upon RhoA depletion (Pertz et al., 2008; Fusco
etal., 2016; Fig. 2 A and Videos 5 and 6).

GC feature values were averaged per GC movie, and a z-score
between control and perturbation calculated (Fig. 7 A, left). This
z-score vector across all features defined a GC scale morpho-
dynamic signature (MS) for each KD, similar to the whole-cell
scale profiles extracted previously in this same system (Fusco et
al., 2016). Notably, hierarchical clustering of the GC scale MSs
generally grouped the perturbations according to their previ-
ously characterized whole-cell scale MSs (Fig. 7 A) and provided
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further insight as to how these neurite length phenotypes may
arise. For instance, Racl, Dock7, and Trio KD all showed reduced
whole-cell scale neurite outgrowth dynamics, and in all cases, the
corresponding GC scale MS was characterized by long filopodia/
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branches, low actin bundle veil embedment, and reduced veil dy-
namics (Videos 5 and 6). Analogous GC features were character-
istic of stagnant neurites in the unperturbed population (Fig. 6,
B-D). In contrast, 8-Pix KD neurites were more dynamic at the
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whole-cell scale, despite their final short-neurite phenotype. Ac-
cordingly, GCs were characterized by a similar yet milder filopo-
dia and veil dynamics phenotype (Fig. 7 A and Video 6)

Conversely, srGAP2 KD GCs, which likely display enhanced
Racl activity (Guerrier et al., 2009), and exhibit elevated neurite
elongation/branching (Pertz et al., 2008; Fusco et al., 2016) at
the whole-cell scale, showed increased local veil protrusion ve-
locities without major changes in filopodia morphology (Fig. 7 A
and Video 6). The srGAP2 KD profile was also distinct from the
other neurite length-enhancing perturbations tested. RhoA and
Cdc42 KD GCs, while displaying enhanced neurite outgrowth at
the whole-cell scale, failed to induce significant changes in the
local veil velocity. Furthermore, Cdc42 KD resulted in a strong en-
hancement in filopodia length, while RhoA KD resulted in reduc-
tion of the veil/stem thickness (Fig. 7 A). Clustering the data by
neurite outgrowth rate confirmed that robustly elongating Cdc42
KDs indeed exhibit longer actin bundles (Fig. 7 C, i), a feature typ-
ically associated with low outgrowth in the unperturbed popula-
tion (Fig. 6 D, v). In contrast, with the exception of Dock7KD, the
initially striking actin bundle/filopodia length phenotypes ex-
hibited by Racl and the Racl GEFKDs (Fig. 7 A) were diminished
when normalizing for the effect of neurite outgrowth (Fig. 7 C,
ii). These results indicate that GCs exhibiting features usually re-
lated to inefficient neurite outgrowth can display robust neurite
elongation under certain signaling conditions, highlighting the
complexity of the mechanisms coupling Rho GTPase activity, GC
morphology, and the up-regulation of neurite outgrowth.

The sensitivity of GCA facilitated the interpretation of the
visually striking kinked and buckling filopodia observed upon
Dock?or TrioKD (Fig. S1B, Fig. 2 A, and Fig. 5 C). While, indeed,
the curvature of filopodia in these perturbations was increased,
further assessment of the length and curvature variation in the
unperturbed GCs also indicated a strong correlation among these
two measurements, both among the averaged neurite movie
values (Fig. 6 C) and at the level of the individual filopodium
(Fig. 7D). Indeed, normalization for the effect of filopodia length
on curvature (Fig. 7 E) suggests that the increases in filopodia
curvature upon these perturbations is primarily associated with
increased filopodia length. These results, combined with those
highlighted in Fig. 7 (B and C), demonstrate that the extraction
of multiple features is necessary for the biological interpretation
of these GC phenotypes.

Identification of morphological transitions along a neurite
outgrowth trajectory

Time-averaged analysis of unperturbed (Fig. 6) and Racl path-
way perturbation data (Fig. 7) revealed consistent relationships
between morphology and net neurite outgrowth on a 10-min
timescale. However, the averaging may mask more nuanced
relationships. We therefore sought an analytical framework to
(1) confirm morphology/motility relationships at the level of
individual neurite trajectories and (2) visualize potential sub-
populations of GCs where these relationships may be altered. As
fluctuations among morphological features may be nontrivially
coupled, transitions between morphological states in a time-
lapse sequence can likely be most robustly identified by combin-
ing multiple GCA features. Hence we asked if Hidden Markov/

Bagonis et al.
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Bayesian model (HMM) selection of multi-variate GC feature
trajectories could be employed to identify the timing of GC mor-
phology changes, as recently proposed by Gordonov et al. (2016)
for the detection of coarse-grain morphology transitions in mi-
grating breast cancer cells.

To validate the HMM, we used the small molecule CK666
(Nolen et al., 2009) to acutely inhibit the actin nucleator Arp2/3.
This perturbation has been previously shown to induce defects
in GC morphology (Yang et al., 2012) and neurite outgrowth
(Fusco et al., 2016). Consistent with observations in Aplysia
(Yangetal., 2012), CK666 treatment of N1E-115 GCs induced both
the enhancement of filopodia length and decreases in the veil-
embedment of individual actin bundles (Fig. 8, A and B). Further-
more, in line with predictions from our unperturbed correlation
data (Fig. 6), neurites treated with CK666 consistently induced
increases in the percent time the neurite spent paused or retract-
ing (Fig. 8 C).

Seven morphological GCA features (Fig. 5) were selected to
generate a per-frame feature vector (Fig. 8 D, i) for each GC movie
in the full N1E-115 dataset (n = 72). For visualization, these data
were reduced to two dimensions via multi-dimensional scaling
(MDS; see Materials and methods). We also used MDS coordi-
nates to estimate the relative likelihood of a GC to maintain a
particular combination of morphology features (Fig. 8 D, ii). Vi-
sualization of the pretreatment frames (Fig. 8 D, iii) indicated
neurite-to-neurite heterogeneity in the GC shape before DMSO/
drug application (Fig. 8D, iv). However, upon CK666 treatment,
GC trajectories diverged in morphology space (Fig. 8 E), and
these morphological transitions appeared correlated with the
switch from neurite elongation to pausing/retraction (Fig. 8, C
[ii] and E [i]).

To identify potential morphology state transitions along each
trajectory, HMM with Bayesian model selection (Posada and
Buckley, 2004) was applied to the MDS coordinates for DMSO-
and CK666-treated trajectories (Fig. 9 A). To confirm the repro-
ducibility of the detected state transitions, we analyzed the HMM
state transitions for all six movies within a 90-s window after
application of treatment. CK666 treatment consistently resulted
in morphology state transitions of similar direction, magni-
tude, and timing (Fig. 9, A [ii] and B; and Video 10). In contrast,
after DMSO treatment, morphology transitions were either not
observed (Fig. 9 B) or pointed in the opposing direction of the
CK666-induced transitions (Fig. 9 A, i; and Video 9). Comparison
of the feature value distributions corresponding to each of the
HMM morphology states identified along the DMSO- (Fig. 9 C,
i) and CK666-treated (Fig. 9 C, ii) GC movie trajectories revealed
differences in the individual feature fluctuations, distinguishing
the two transitions. This validates the HMM-based approach as
an analytical method to isolate significant transitions in GC mor-
phology in an unperturbed system or when the timing/effect of a
system perturbation is not known a priori.

We then used the MDS plots to visualize the dependence of
neurite outgrowth on the morphological feature set. We exam-
ined the relative positioning of the two unperturbed GC movies
exhibiting the highest and lowest net outgrowth (Fig. 6, A and
E). This revealed a rough gradient, whereby higher MDS1 values
correlated with poor neurite outgrowth within the unperturbed
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population (Fig. 9 D, i and iii). In addition, the direction of the
CK666-induced transitions in GC morphology (blue arrows in
Fig. 9, A [ii], B, and D [iii]) corresponded well with the direction
of this outgrowth state gradient.

Based on these observations, we screened all unperturbed
GC trajectories (Fig. 6) for morphological transitions. HMM au-
tomatically identified the timing of a spontaneous morphology
transition in the unperturbed population (Fig. 9 D, ii), which was
coupled to a switch between neurite elongation and retraction
(Fig. 9 D, iii). Evaluation of the feature profiles of the HMM states
along this trajectory (Fig. 9, E and F) confirmed that the transi-
tion was characterized by a significant enhancement of filopodia
lengths, similar to the transition observed with CK666 treatment
(Fig. 9 C, ii). These data show that similar relationships between
GC morphology and motility are maintained in the larger popu-
lation of unperturbed GCs for at least a subset of the trajectories.

Rho GTPase pathway perturbed GCs in the context of the
morphology landscape

Visualization of the siRNA perturbations within the reduced
morphology space (Fig. 10, A-G) reinforced the morphology/mo-
tility patterns found in the unperturbed population (Fig. 9 D).
For example, Racl, Dock?7, and Trio KD, perturbations which at
whole-cell scale produce the most profound dampening of neu-
rite outgrowth (Fusco et al., 2016), maintained high MDSI val-
ues (Fig. 10, E-G). In contrast, a majority of the 8-Pix KD movies
(Fig. 10 C), as well as outgrowth-enhancing perturbations,
showed more overlap with the control (Fig. 10, A, B, D, and H).
Finally, the acute inhibition of ARP2/3 activity via CK666 con-
sistently shifted GC morphologies toward the state of GCs likely
to have reduced Racl activity (Fig. 10, C, and E-G), though the
endpoint of a CK666-induced transition depended upon the GC
state at the time of drug application. In summary, these results
demonstrate that features extracted from the GCA software can
be combined with time series modeling (Gordonov et al., 2016)
to identify the timing of significant transitions in GC shape and
to study the relationship of such morphological transitions with
the neurite’s outgrowth behavior.

Discussion

Technological advances for the automated analysis

of GC morphology

Unbiased quantification of the relations between GC structure
and neurite outgrowth is crucial for understanding GC function.
While several toolkits for GC analysis (Costantino et al., 2008;
Misiak et al., 2014; Goodhill et al., 2015; Jacquemet et al., 2017;
Urbanéi¢ et al., 2017) or generic filopodia detection (Nilufaretal.,
2013; Tsygankov et al., 2014; Barry et al., 2015; Saha et al., 2016)
have been developed, they maintain too many technical limita-

tions to allow the study of morphology/motility relationships
in diverse cellular datasets (Fig. 4, A-C). We developed GCA to
remove the vast majority of these technological barriers (Fig. 1
and Fig. 4). GCA provides a versatile segmentation framework
by introducing (1) multi-scale ridge filter analysis to detect stem
and filopodia; (2) filopodia-endpoint detection based on an adap-
tive, self-configuring model of the fluorescence decay along these
structures; and (3) assembly by graph-matching of detected
filopodia fragments into a complete representation of filopodia
networks containing branches and apparent crossings present
in 2D. Combined, these algorithms generate a segmentation and
parameterization of GC morphology that is robust across a wide
spectrum of GC types (Figs. 2, 3, and 4). Hence, we were able to
capture the natural as well as experimentally induced variation
in GC structure and apply various post-processing tools to model
putative relations between GC morphology and motility.

Mining heterogeneity of unperturbed GCs

The robust quantification afforded by GCA allowed us to mine
latent information in neurite-to-neurite heterogeneity observed
within an unperturbed population of NI1E-115 GCs (Fig. 6). In
doing so, we found that net neurite outgrowth within a 10-min
window is most strongly correlated with GC structures charac-
terized by filopodia length and branching, as well as increased
actin bundle veil-embedment (Fig. 6 D). The dominant relation-
ships between GC morphology and outgrowth discovered in our
system corroborate two classical, more qualitative studies that
tested correlations between neurite outgrowth rate and subjec-
tively defined GC morphological classifications (Kleitman and
Johnson, 1989; Mason and Wang, 1997). However, if and how
these morphology/motility relationships are dependent on GC
subtype and extracellular environment remains an open ques-
tion. The adaptability of GCA (Fig. 3, A-D; Fig. S6; and Videos 7
and 8) should enable rapid and unbiased screening of such rela-
tionships in other GC systems.

Perturbation of Racl signaling corroborates GC morphology/
motility relations discovered in the unperturbed population
Multi-scale, morphodynamic quantification of perturbations
converging on the Racl pathway (Fig. 2 A, Fig. 7, and Fig. 8)
further confirm the relationship between GC morphology and
motility unveiled by the unperturbed population (Fig. 6, Fig. 8,
Fig. 9D, and Fig. 10). Specifically, KD of Racl, or two Racl guanine
nucleotide exchange factors (GEFs; Trio and Dock?), reduced
neurite outgrowth (Fig. 7 A; Fusco et al., 2016) and induced GCs
with veils of diminished dynamics and long, curved filopodia
(Fig. 7 A and Videos 5 and 6). These changes are consistent with
Racl’s well-established role as an activator of branched actin net-
work expansion (Miki etal., 1998; Takenawa and Suetsugu, 2007;
Tahirovic etal., 2010). Importantly, the filopodial morphology of

*, P<0.05; **, P< 0.01; NS, P> 0.05: two-sided permutation t test of the means. Insets: Example images, respective cluster. (D) Positive correlation between
filopodia length and maximum filopodia curvature. () Scatter points: Spearman r between the two features per GC movie; 5-20 GC movies per treatment;
1,299-7,060 filopodia per movie. (ii-vi) Example correlation plots. Scatter points: single filopodium. N filopodia: (ii) 4,952; (iii) 3,739; (iv) 4,647; (v) 3,740; (vi)
2,328. ***, P < 0.001: Benjamini-Hochberg adjusted. (E) Enhancement of filopodia curvature observed upon Rho GTPase perturbation (top) is primarily a
secondary effect of increased filopodia length (bottom). 5-20 GC movies per treatment; 1,299-7,060 filopodia per movie (top); 25-519 filopodia per movie
(bottom). *, P < 0.05; **, P < 0.01; ***, P < 0.001: two-sided permutation t test of the means. See Videos 5 and 6.
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Figure 8. ARP2/3 inhibition via CK666 treatment induces GC morphological changes and stagnation of neurite outgrowth. (A) GCA segmentation of
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quantiles. Whiskers, 1.5 x (Qzs9 - Qas95). ***, P < 0.001: two-tailed permutation test of the medians. (C) ARP2/3 inhibition via CK666 treatment induces func-
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these KDs (Fig. 2 and Fig. 7) is reminiscent of those poorly elon-
gating neurites observed at the morphological boundaries of the
unperturbed population (Fig. 6, A and E; and Fig. 9 D, iii), though
in the case of Dock7 KD, these features were often exaggerated
(Fig. 10, Fand G).

Interestingly, the GCs of the B-Pix KD displayed a less con-
spicuous phenotype. B-Pix KD induced decreases in the veil-
stem thickness and veil protrusion persistence time, while veil
protrusion velocities and filopodia actin bundle length were un-
affected (Fig. 7 A). A majority of B-Pix KD GCs shared features
with pausing GCs in the unperturbed population (Video 6). This
more subtle GC phenotype observed for -Pix GCs is consistent
with previous whole-cell scale results (Fusco et al., 2016), which
found that unlike Racl, Dock?, and Trio KD, B-Pix KD did not
disrupt the frequency of neurite elongation events, but still in-
duced an overall neurite length deficit. Given our combined GC/
whole-cell scale results, we speculate that B-Pix maintains the
spatial veil coordination necessary for sustained neurite elon-
gation, while Dock7/Trio potentially facilitates the initiation of
veil protrusions.

Conversely, KD of srGAP2, a Racl-specific GTPase activating
protein (GAP; Guerrier et al., 2009), led to increased neurite out-
growth and branching at the whole-cell scale (Fusco et al., 2016),
and a pronounced increase in GC veil dynamics without any pro-
found effect on GC morphology (Fig. 7 A), phenocopying unper-
turbed GCs that exhibit robust outgrowth rates (Fig. 9 D, iii; and
Fig. 10, B and H). The opposing veil phenotypes of srGAP2 ver-
sus Racl, Trio, or Dock7 KD suggest increased versus decreased
Racl activity at the veil (Fig. 7 A), inducing specific morphologies
that reside at opposing ends of the GC morphological landscape
(Fig. 10). This spectrum of phenotypes associated with Racl path-
way perturbations forms a similar gradient in both morphology
and neurite outgrowth to that observed with acute perturbation of
ARP2/3 (Fig. 10, B, C, and E-G). The agreement between GC phe-
notypes associated with diminished Racl activity and those associ-
ated with direct perturbation of Arp2/3 supports Arp2/3’sroleasa
WAVE complex effector (Takenawa and Miki, 2001; Takenawa and
Suetsugu, 2007; Tahirovic et al., 2010), localized to the GC periph-
eral domain for the purpose of controlling veil protrusion (Mongiu
etal., 2007; Tahirovic et al., 2010; Yang et al., 2012). Interestingly,
HMM analysis of the multi-variate GC morphology trajectories
of the unperturbed population revealed spontaneous, albeit rare,
morphological transitions (Fig. 9, D [ii], E, and F) along the gradi-
ent of Racl activation (Fig. 10, B, C, and E-G) that resembled the
transitions induced by acute Arp2/3 inhibition (Fig. 9 D, iii). Com-
bined, these results (1) suggest that fluctuations in Racl signaling
may occur under these experimental conditions, generating some
of the natural variation in morphology and neurite outgrowth of
the unperturbed population; and (2) highlight the complexity of
Racl regulation by multiple GEFs/GAPs.

Changes in morphology/motility relations upon perturbation
of Cdc42/RhoA signaling

Quantification at the GC scale revealed under-appreciated phe-
notypic nuances among the three selected perturbations en-
hancing neurite outgrowth (Cdc42, RhoA, and srGAP2). While
srGAP2 KD predominately modified veil velocity, not morphol-
ogy, on the GC scale, Cdc42 and RhoA KD induced distinct effects
on GC morphology without changes in veil velocity (Fig. 7 A). GCs
of RhoA KD cells showed markedly reduced veil/stems (Fig. 7 A)
and sometimes shared composite feature profiles with the poorly
elongating Trio KDs (Fig. 10, D and F), an intriguing finding as
Trio is known to activate both RhoA and Racl (Debant et al., 1996).
Cdc42 KD, in stark contradiction to the classic view of Cdc42 as
a positive regulator of both neurite outgrowth (Chandran et al.,
2016) and filopodia formation (Nobes and Hall, 1995), induced
robustly elongating neurites (Fusco et al., 2016; Fig. 7 A) with
corresponding GC morphologies characterized by enhanced
filopodia lengths and decreased actin bundle veil-embedment
(Fig. 7 C, i) —features correlated with poor neurite outgrowth in
the unperturbed population (Fig. 6 D). Importantly, no decrease
in the GC veil/stem thickness was observed for the Cdc42 KDs
(Fig. 7, A and C, i), indicating the enhanced filopodia lengths
were not simply a consequence of defects in the veil. While our
observations are consistent with more recent studies suggesting
that Cdc42 knockout fibroblasts retain filopodia (Czuchra et al.,
2005), to our knowledge this is the first time an increase in filo-
podia length has been associated with a Cdc42 KD.

In our system, Cdc42 and RhoA KDs appear to induce long
neurites due to suppression of GC collapse events (Fusco et al.,
2016). This would imply a dual role for Cdc42/RhoA signaling—
one regulating GC scale architecture, the other switching be-
tween neurite outgrowth/retraction states. Alternatively, altered
relationships between morphology and neurite outgrowth may
flag larger changes in the mechanism by which outgrowth occurs
under these system perturbations. For instance, unlike in unper-
turbed GCs, the long filopodia associated with the Cdc42 KD may
facilitate elongation in the context of the perturbed signaling.
To better understand these more complex relations between
signaling and morphology, Rho GTPase activity must be imaged
directly within veil and individual filopodia. A combination of
GCA segmentation, Forster resonance energy transfer biosensor
technology (Fritz et al., 2013), and filopodia tracking will be the
key to distinguishing the corresponding signaling of long filopo-
dia associated with different outgrowth states.

The future of GC analysis

GCA provides the technical foundation for a wide array of future
GCstudies. The enhanced filopodia detections, combined with the
extracted veil protrusion vectors (Machacek and Danuser, 2006;
Ma et al., 2018), may be incorporated into previously developed

morphology features (72 GC movies: 8,454 frames). Probability density isocontours for entire dataset visualized in 3D (top) and 2D (bottom). (iii) Example of
full bagplot (i.e., 2D boxplot; Rousseeuw et al., 1999) for a single 5-min trajectory before acute perturbation. Dark shaded contour: bag; light shaded contour:
fence; circles: individual data points. Black star: outlier data point. Cross: Tukey median. (iv) Bagplot “bags” for six GC movies before acute treatment with
DMSO (black) or 25 uM CK666 (blue). (E) CK666 treatment induces a shift in morphology space, coupled to neurite outgrowth state. Two GC movies acutely
treated with DMSO (left) or 25 uM CK666 (right). Per-frame coordinates in reduced morphology space colored by neurite outgrowth state (i) or timing relative

to treatment (ii). Each movie: 10 min total, 5-s intervals.
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Figure9. Detection of significant transitions in GC morphology along a neurite outgrowth trajectory. (A) Time series modeling of a DMSO- (left and Video 9)
and CK666 (right and Video 10)-treated GC movie in reduced morphology space. Colors: state ID inferred from the HMM/Bayesian model selection. Rings: 1x and
2x the SD of the state distribution centered on the mean. Bottom insets: Plot of detected transition within a 90-s window after respective treatment. (B) CK666
treatment induces reproducible GC morphology state transitions. (i) Plots of detected morphology transitions for six movies (as described in A, bottom inset) 90 s
after treatment with DMSO (gray/black shaded vectors) or 25 uM CK666 (blue shaded vectors). (ii) Magnitude of the transition vectors ini. *, P < 0.05, two-tailed t
test for equal means. (C) Median of feature distribution for each detected HMM morphology state detected in A (DMSO, left; CK666, right). *, P < 0.05; **, P < 0.01;
***, P <0.001: Kruskal-Wallis test. Insets: Boxplots of the distribution of filopodia lengths in each HMM state. *, P < 0.05; **, P < 0.01; ***, P < 0.001: Tukey-Kramer
test. (D) Identification of morphology/motility switches in a heterogeneous population of unperturbed trajectories. (i) Three unperturbed GC movies overlaid on
the morphological landscape, each frame colored by neurite outgrowth state as in Fig. 8 E, i. Identification of morphology/motility switch (starred black arrow)
similar to that induced upon acute treatment with CK666 (A-C). Black rings: HMM states as defined in A. Colors as in D, i. (jii) “Bag” contours as defined in Fig. 8 D,
iii, for GC movies in i. Arrows: Detected morphology state transitions from B and D, ii. Each movie: 10 min total, 5-s intervals. (E) Zoom (left) and neurite outgrowth
velocity (right) of unperturbed GC movie identified in D, ii, frame colored by neurite outgrowth state (top) or HMM state ID as defined in A (bottom). (F) Feature/
HMM state heat maps (as defined in C) for unperturbed movie identified in D, ii (top). Example GCA segmentations for each HMM morphology state (bottom).
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Figure 10. Rho GTPase pathway perturbed GCs in the context of the morphology landscape. (A-G) “Bag” contours as defined in Fig. 8 D, iii, for control
(black) and siRNA (colored) movies. 3-20 GC movies per condition. (H) Separation statistics: control versus KD. Colored bars: 95th percentile bootstrapped Cls.
Gray bars: Cl between 5th and 95th quartile of the randomized, null distribution. Gray scatter points: same as in Fig. 8, D and E, and Fig. 9. Arrows: Morphology
transitions of three example GC trajectories within 90 s after CK666 treatment (25 uM) as identified in Fig. 9 B.

tracking frameworks (Jagaman et al., 2008) for the extraction of
filopodia dynamics metrics from elongating/retracting GCs. Fur-
thermore, GCA will expedite the extraction of high-confidence
fluorescent signals with respect to a variety of GC morphological
fiduciaries, including the tip/base of the filopodia, the veil edge,
or the site of the GCs leading protrusion. HMM of multi-variate
morphological GC features, as tested in Fig. 9, may prove useful
for the identification of other, more subtle, correlations between
GC morphology and neurite outgrowth, the quantification of the
kinetics associated with specific morphology-state switches, and
deconvolution of heterogeneous drug responses.

In summary, it is clear that the future challenge will be ef-
ficiently integrating information gleaned from the combinator-
ically expansive number of cell intrinsic/extrinsic scenarios to
pinpoint physiologically relevant mechanistic commonalities
and divergences governing neurite outgrowth and guidance. Au-
tomated GC analysis in vitro and in vivo allows for rapid, compre-
hensive cataloging of GC features, and thus will be fundamental
for the synthesis of image data corresponding to different GC
systems from independent laboratories.

Software availability

The MATLAB code and help files for the entire GCA pipeline,
including segmentation, feature extraction, analytical tools,
and visualization modules, are available at https://github.com/
DanuserLab/GrowthConeAnalyzer. Example images, segmen-
tation parameter files, and instructions for reproducing Fig. 3 C
and Fig. 4, A-F, are included.
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Materials and methods

Cell culture and transfection

NIE-115 neuroblastoma cells (American Tissue Culture Collec-
tion) were cultured in DMEM supplemented with 10% FBS, 1%
L-glutamine, and 1% penicillin/streptomycin. For differentia-
tion, N1E-115 cells were starved for 24 h in serum-free Neuro-
basal medium (Invitrogen) supplemented with 1% L-glutamine
and 1% penicillin/streptomycin. Both siRNA and LifeAct GFP re-
porter were transfected simultaneously as previously described
(Chong et al., 2006). Specifically, 400 ng of the plasmid pLen-
ti-LifeAct-GFP, 20 pmol of the specific siRNA (Invitrogen Stealth
Select), and 1 pl of TransFectin (Bio-Rad) were used in one trans-
fection reaction. 48 h after transfection, cells were starved in
Neurobasal medium. 72 h after transfection, cells were detached
with Puck’s saline and replated on a glass-bottom 24-multiwell
plate (MatTek), coated with 10 ug/ml laminin overnight at 4°C
(Millipore). 24 h after plating, cells were imaged in Neurobasal
medium (Invitrogen) in a heated closed chamber. Plasmid trans-
fection rates were measured at ~70%. 90% KD efficiency for select
siRNAs used in this study was previously confirmed by Western
blot or quantitative PCR as shown previously (Fusco et al., 2016).
LifeAct GFP-transfected cells were therefore assumed to be also
siRNA-transfected. Based on our previous siRNA screen on N1E-
115 whole-cell scale neurite outgrowth (Fusco et al., 2016), we use
specific siRNA sequences to knock down with the lowest possible
amount of off-target effect (Table S2). Specifically, we used the
siRNA that yielded the most similar whole-cell scale MS to the
average MS of three distinct siRNAs.
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Image acquisition of N1E-115 morphodynamics

All experiments were performed on an inverted Eclipse Ti micro-
scope (Nikon) equipped with a motorized stage, hardware-based
autofocus, and CoolLED light source, and controlled using Meta-
morph imaging software (Universal Imaging) using a PlanApo
60x/NA 1.4 objective. The images were acquired every 5 s for a
total of 10 min. A Coolsnap HQ2 camera (Photometrics) was used
for image acquisition. In the CK666 experiments, the cells were
first imaged for 5 min without drug, and then for an additional
5 min with DMSO, or DMSO plus CK666 (corresponding to a final
concentration of 25 pM CK666).

GCA: Overview
The GCA pipeline is illustrated in Fig. 1, and the full algorithmic
scheme is outlined in Fig. S2.

Veil/Stem reconstruction

To detect the veil/stem of the neurite (Fig. 1 A, iii-v; and Fig.
S2, Steps I-11I) the algorithm combines a broadband ridge filter
(Jacob and Unser, 2004; Fig. S2, Steps I and II) with an initial
intensity-based thresholding (Niblack, 1985)/morphological
opening (Maitre, 2008; Fig. S2, Step III). While the former de-
tects the thick, ridge-like, consolidated regions of the neurite
stem and its entrance into the image (Fig. 1 A, iii), the second
step facilitates detection of more amorphous actin veils, which
fail to conform to a ridge detector (Fig. 14, iv). When the stem is
relatively thick, and of high signal to background (e.g., Fig. 1 A,
iii-v), the ridge information mainly serves to identify the neu-
rite entrance point in the image (Fig. 1 A, iii, black star). How-
ever, images of GCs positioned within more complicated local
environments (Fig. 1 B, i) and/or exhibiting more complex veil/
stem morphologies (Fig. 1 B, ii and iii) require the integration
of the ridge information for successful segmentation (Fig. S2,
Steps I-III; and Video 2).

Filopodia/Branch network reconstruction

A similar ridge localization scheme as employed for stem de-
tection (Jacob and Unser, 2004) is used to detect filopodia with
high sensitivity (Fig. 1 A, ii). However, this detection scheme has
two limitations: (1) since the width of filopodia approaches the
diffraction limit of the microscope (~200 nm), high frequency
noise is often also detected; and (2) regions where filopodia cross,
branch, or connect to the veil give low signal, introducing breaks
in the GC segmentation.

We solve both problems by first combining the veil/stem with
the thin ridge information to create a “high confidence seed”
(Fig. 1A, vii), i.e., only filopodia segments attached to, and residing
outside of, the veil/stem are maintained. These seed pixels serve
as an anchor for (1) iterative reattachment of filopodia segments
that may have been disconnected due to weak ridge detector re-
sponses at junctions (Fig. 1A, viii, Veil), (2) resolution of crossing
filopodia (Fig. 1D and Video 3), (3) grouping thin filopodia/actin
branched structures (Fig. 1, A [viii, Branch] and D; and Video 3),
and (4) detection of actin bundles embedded in the veil (Fig.1C).
Final segmentation is obtained via three different, but analogously
formulated, graph matching steps: (1) a filopodia segment-build-
ing step thatassociates curvilinear segments of detected filopodia
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broken due to filopodia crossing/branching (Fig. 1A, vi), (2) an it-
erative filopodia/branch network reconstruction step to reattach
filopodia/branch candidates to seed pixels (Fig. 1 A, vii; and Fig.
S3), and (3) an optional step to associate embedded actin bundle
detections with their corresponding filopodia (Fig. 1C).

Filopodia endpoint localization

To enhance the filopodia tip localization accuracy, we modified
the intensity fitting approach used previously to localize micro-
tubule tips (Demchouk et al., 2011). In this approach, the tip loca-
tion was defined as the midpoint of a Gaussian survival function
fitted along the microtubule axis in a manually defined region
of interest. However, in contrast to the tip of a single microtu-
bule, filopodia tips are not always best described by a single decay
model. Rather, filopodia taper off as a result of spatial gradients in
actin polymerization, possibly due to steric restriction of G-actin
diffusion (Dobramysl et al., 2016). Thus, f-actin-labeled filopodia
bundles may exhibit complex, multiple-decay intensity profiles.
To localize filopodia endpoints with sufficient robustness, in a
completely automated fashion, we use information regarding the
local background intensity distribution (purple crosses) and the
local minima (red) and maxima (green) in the slope of the inten-
sity profile to isolate an optimal region of the intensity profile for
data fitting. Fig. 1 D (iii) shows two such complex decay profiles,
while Fig. 1C (ii) illustrates that a similar approach can be applied
to identify the endpoint of a veil-embedded actin bundle.

GCA: Algorithmic details and segmentation parameters
Segmentation parameter overview

Table S1 defines the default segmentation parameters used for
the N1E-115 data and provides recommendations for users. Block
colors in both Fig. S2 and Table S1 indicate a specific segmenta-
tion step within the pipeline. Note that while all segmentation
parameters are made accessible to the user, many required no
adjustment to achieve quality segmentation of our diverse image
set of 72 N1E-115 neurite movies. The one exception was the local
threshold patch size, which needed a course adjustment to the
GC thickness. Importantly, the default segmentation parameter
settings for the filopodia reconstructions also produced good re-
sults when applying the pipeline to other GC models (Fig. 3, A-D;
Fig. 4, C and D; Fig. S6; and Videos 7 and 8) and even to non-GC
images (Fig. 3, E-G; and Fig. 4, E-G) with only minimal, intuitive
adjustments, primarily to account for the differences in pixel size
among the datasets. Full documentation of each step in the al-
gorithm and discussion of specific segmentation parameters are
provided below. In addition, segmentation parameter files and
corresponding images for reproducing Fig. 3 C and Fig. 4 (A-F)
are included with the software release.

Detection of neurite stem and determination of

neurite entrance point

Currently GCA is designed to segment the GC and a small por-
tion of the neurite stem, as this was the primary biological region
of interest (Fig. 1). A small cropping tool to select this region of
interest is included in the package. It is optional, and the only
step requiring manual user input. The algorithm is then initi-
ated by a procedure that locates the neurite entrance point (black
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stars in Fig. 1 B). For this to be successful, the cropping needs
to ensure that some part of the neurite stem is included in the
image sequence.

To identify stem-like regions of the neurite, GCA first filters
the image using a multi-scale, fourth-order, steerable ridge filter
(Jacob and Unser, 2004; Fig. S2, Step I). Ranges of sigma (o) val-
ues defining the SDs of the Gaussian kernels on which the filters
are based are set by the user via the segmentation parameter BB-
Scale (Table S1, Step I, i). The ridge filtering is performed on the
entire image for each sigma value assigned in the BBScale vector.
For all movies in this study, multi-scale ridge filtering was per-
formed using a sigma range of 5-10 pixels (~1-2 pm) sampled at
1-pixel intervals, which is tuned to find relatively large line struc-
tures such as the stem without response to finer structures such
as filopodia. A multi-scale approach is required to accommodate
stems of variable thickness. The final multi-scale ridge response
map is computed by finding for each pixel the maximum filter
response over all scales. A nonmaximum suppression (NMS;
Canny, 1986; Jacob and Unser, 2004) is performed on this multi-
scale ridge response to identify the local maximum in the direc-
tion of the response gradient. The NMS map traces connected
paths along the ridge-like portions of the veil/stem (orange lines,
Fig. 1 B). Two ridge-cleaning steps are subsequently performed
(Table S1, Step 1, ii). First, an additional per-pixel thresholding of
the NMS response is performed to remove very weak local-max-
imum ridge signals. The strictness of this threshold is dictated
by a user adaptable parameter threshNMSResponse, set in this
study to the 25th percentile of the total population of the NMS
response values. Second, connected component objects from the
final NMS ridge response less than MinCCRidgeBeforeConnect
(setin this study to 3 pixels) are filtered, as it is difficult to extract
high-confidence local orientation information, required for the
subsequent connection step, in these cases.

If the veil/stem were a simple ridge with high signal to noise
and invariant thickness, the NMS response map should trace
a continuous path along the neurite. However, gaps along this
path are expected in larger and/or more amorphous regions of
the veil/stem where the ridge model is a poor assumption. (De-
tection of these amorphous regions will be addressed in the Veil/
Stem reconstruction section.) However, gaps can arise even in
relatively thin ridge-like regions of the neurite due to inherent
limitations of the ridge filter. Small, geometrically noncontinu-
ous gaps are often observed at sites where the neurite veil/stem
abruptly changes thickness or the stem of the veil has very asym-
metric filopodia density along either side. Larger, typically more
geometrically aligned gaps in the large-scale ridge response may
be observed when the response is weak due to poor signal to noise
of the original image or from subtle deviations of the image ob-
ject from the underlying ridge model. Therefore, we implement
a linking step to bridge endpoints of connected components in
the NMS map (Table S1, Step I, iii). The main goal of this step is
to find rough connected component veil/stem pathsleading from
the neurite entrance point to each larger amorphous veil/stem
structure. Accordingly, we allow relatively discontinuous linking
geometries. If the gap distance is less than a user-defined cut-
off radius, MaxRadiusNoGeoTerm, set in this study to 3 pixels
(~0.6 pm), connected components are linked regardless of the
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attachment geometry. Gaps with distances greater than MaxRa-
diusNoGeoTerm, but below a user adaptable cut-off, MaxRadi-
usLargeScaleLink, are bridged only if the respective connected
components fulfill the constraint, that the angle (ORL) between
the linking vector (L) and the local orientation vector at the con-
nected component endpoint (R) does not exceed the value Geo-
Thresh, in this study set to a lenient 90°. Potential links within
a MaxRadiusLargeScaleLink (set to 10 pixels [~2 pm] in this
study) are found using a K-dimensional tree and linear linker
path interpolated between candidate endpoints. To ensure only
a single linkage for each ridge endpoint, a maximum weighted
graph matching step (Avis, 1983; Kolmogorov, 2009) is performed
using weights based upon distance only if the distance is below
the MaxRadiusNoGeoTerm, or based on distance and geometry if
the linkage distance is greater than MaxRadiusNoGeoTerm and
less than MaxRadiusLargeScaleLink. After this initial linking
step, detected endpoints of thick ridge candidates within Max-
DistBorderFirstTry (10 pixels [~2 pm] in our study) from the
image edge are chosen as potential neurite stem entrance ridge
candidates (Table S1, Step I, iv). The software assumes a reason-
able entrance candidate for each frame of the movie exists; there-
fore, while MaxDistBorderFirstTry is technically a user-defined
parameter, the value is widened automatically if no ridge can-
didate in a given frame meets this initial criterion. If more than
one ridge candidate is found, such as is shown in (Fig. 1 B, i), the
algorithm first filters candidate ridges based on length alone, as
defined by the user-adaptable parameter MinCCEntranceRidge-
FirstTry (set in our study to 5 pixels), in order to filter out any
potential high-intensity noise. Using a summation of the mean
fluorescence intensity (FI) and the length of the ridge candidate
as a score, the program then determines on a per-frame basis
which candidate ridge path most likely corresponds to the en-
tering neurite stem. Occasionally, an incorrect ridge candidate is
chosen as the neurite entrance ridge. As the orientation of the en-
tering neurite stem within the image does not move significantly
during the time resolution of interest in this study (total movie
time ~10 min), the correct orientation of the neurite within all
images is the most frequent orientation of the automatically de-
termined seed ridge for the entire movie. Frames in which the
selected seed ridge fails to correspond with the majority neurite
orientation for the movie—for example, due to a transient dis-
tracter object entering the image such as in Fig. 1 B, i—are cor-
rected in a subsequent step so that the seed ridges for all frames
are consistent (Fig. S2 and Table S1, Step II). This is accomplished
by simply performing a crude spatial clustering via dilation of a
logical mask marking all the estimated neurite entrance points
by an input radius SizeOfConsistencyRestraint (default is 5 pix-
els). This dilation is then separated into connected components,
and the connected component with the majority of frames is cho-
sen as the correct neurite orientation cluster. The program then
combines all the ridge neurite stem candidates from the majority
cluster that are found in more than five frames as a base neur-
ite orientation path. The best ridge candidate from the outlier
frame that aligns to this path is then chosen as the new neurite
entrance stem from which to build the veil/stem estimate in that
frame. GCA has an optional visual quality control step, allowing
the user to check the final neurite orientation selected for the
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movie (the checkOrient option; Table S1, Step II). If users see the
wrong neurite entrance region is selected from the majority vote,
they can select the correct entrance ridge to which the movie is
aligned by the process described above. This feature also can
help choose the correct SizeOfConsistencyRestraint. However,
we found this manual refinement was typically not necessary
as long as a distractor element, such as another GC, was absent
or relatively transient. For example, incorrect entrance ridges in
the movie corresponding to Fig. 1 B (i) were corrected automati-
cally by the algorithm without any need for manual refinement.
Notably, none of the datasets analyzed in this study, including
the data of Fig. 3 (A-D), Fig. 4 (C and D), or Fig. S6, required this
manual refinement.

Veil/Stem reconstruction

Gaps along the ridge path are expected in larger and/or more
amorphous regions of the veil/stem where the ridge model is a
poor assumption. A practical solution is to simply detect these
more amorphous regions using local intensity Otsu thresholding
(Niblack, 1985), a variant of traditional Otsu thresholding (Otsu,
1979), which allows for differences in the value of the intensity
threshold per pixel throughout the image, depending on the in-
tensity profile of the local surrounding region (Fig. S2, Step III).
The size of the local region is controlled by the segmentation
parameter LocalThresholdPatchSize (Table S1, Step III, i), which
was set between 30 and 100 pixels in this study for the N1E-115
dataset, depending on the size of the GC (larger GCs required
larger patch sizes). The default value is set to 75 pixels. Notably,
global thresholding rather than local thresholding (Table S1, Step
111, i) helped avoid over-emphasizing intracellular inhomogene-
ity associated with some datasets. Ultimately the method most
appropriate here will depend upon the characteristic intensity
distribution of a given imaging modality. Therefore, several dif-
ferent initial thresholding methods are made available for this
step, as well as an option to import an externally generated mask
(Table S1, Step III, i). Notably, this initial thresholding step is
indeed the most likely segmentation parameter that may need
modification/troubleshooting when applying GCA to a novel
dataset. Importantly, however, as in GCA the main goal of this
initial thresholding step is to find a reasonable detection of the
veil and not the lower intensity filopodia, the final segmentation
becomes less sensitive to this step as compared with other meth-
ods (Fig. 4, A-C, ii; Tsygankov et al., 2014; Urban¢i¢ et al., 2017).
This vastly facilitates the segmentation parameter optimization.
Low-fidelity information corresponding to filopodia from the bi-
narization achieved via the initial thresholding step is removed
via morphological opening (Maitre, 2008). Here morphological
opening was performed using the imopen function included in
MATLAB's image processing toolbox, using the strel function to
create a disk structuring element of a user-defined radius dic-
tated by the veil/stem segmentation parameter DiskSizeLarge,
set to 6 pixels (~1.3 um) for segmentation of all the GFP LifeAct
images in this study (Table S1, Step III, ii). Note that in the case
of the LifeAct images we found it worked best to keep the struc-
turing disk for this morphological operation slightly larger than
the true scale of the filopodia objects we aimed to remove, as re-
sidual fluorescence and overlapping filopodia are often merged/
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under-thresholded, leading to low-fidelity noise in the binary
image thicker than a single filopodium. This was less of a prob-
lem in the case of the membrane-labeled images (recommended
DiskSizeLarge is 4 pixels [~0.86 pm] for the N1E-115 images), as
filopodia exhibited lower signal to noise and thus were typically
not detected by the local thresholding. However, morphological
operations using larger disk sizes begin to remove thin pieces of
the neurite stem/veil path, breaking connectivity. To maintain
maximal connectivity along the veil stem path, we use geomet-
ric information to adapt the local disk size of the morphological
operation employed in select regions of the neurite. We reasoned
that ill-detected, thick filopodia/branch bundles, which we wish
to remove in this step, and thinner portions of the veil/stem (Fig.
S1C, iii), which we wish to preserve, can be deciphered based on
their connectivity with respect to the thicker regions of the neu-
rite. Therefore, the algorithm scans for simple connected com-
ponent paths of the neurite removed by morphological openings
that span two larger-size veil/stem “pieces” in the binary thresh-
old image. In these regions, the size of the structuring element is
reduced to the user-defined radius DiskSizeSmall (Table S2, Step
111, ii) set to 3 pixels (~0.65 um) for the N1E-115 dataset.

The neurite entrance ridge is then combined with the veil
pieces detected via the initial thresholding/morphological open-
ing step. All veil pieces overlapping the neurite entrance ridge
are maintained. Subsequently, all ridge pieces overlapping with
these selected veil pieces are added to the veil/stem detection.
Any ridge detections within MaxRadiusBridgeRidges (set in this
study to 5 pixels, ~1 pm; Table S, Step I1I, iii) of all veil/stem de-
tection endpoints are linked to the current veil/stem detection.
The process iterates until no more veil pieces overlap with the
final veil/stem detection. When the reconstruction is complete,
any endpoints, other than the neurite entrance point (black star
inFig. 1B), of the veil/stem detection are eroded to create the final
veil/stem mask (Fig. 1B, far right panels, green outlines). The veil
pieces are treated as nodes on a graph whose edges are defined by
the detected thick ridges (potential stems). Only ridge detections
spanning two separate veil nodes are maintained. Occasionally
cycles are formed in this veil/stem graph (Fig. 1 B, iii), and these
are resolved by solving for a minimal spanning tree (Prim, 1957)
where the weights of the edges are dictated by the scale (i.e.,
thickness) and filter response strength of the connecting large-
scale ridge, as well as its underlying original image intensity (Fig.
S2, Step III). As the NMS only marks the central line of the stem,
without providing information of the thickness/localization of
the stem edges, remaining stem detections are dilated using MAT
LAB’s imdilate function included in MATLAB'’s image processing
toolbox, using the strel function to create a disk-structuring el-
ement with a radius set to 4 pixels (~864 nm). (See Video 2 for
a visual summary of these iterative steps for four example GCs
with diverse morphology.)

Neurite length measurements

Given the morphological heterogeneity between GCs as well as
the morphological variation over time, it is prohibitive to use the
GC centroid for tracking neurite length changes, as was done pre-
viously (Tsygankov et al., 2014). We instead use the properties
of veil/stem segmentation to obtain more robust neurite length
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measurements over time. We assume neurite length to extend
from the entrance point to the tip of the leading veil protrusion
(Fig. 5, A and B). This measurement can be achieved through
skeletonization of the veil/stem (Fig. S2, Step IV). We used the
“skel” operation of MATLAB'’s bwmorph function. The skeleton is
converted to a graph representation, where each node represents
a pixel in the skeleton with a nearest neighbor number either
equal to 1 (endpoint vertices) or greater than 2 (branch vertices).
The shortest path through the skeleton graph from the neurite
entrance point to each endpoint vertex of the skeleton (marking
approximately the convex endpoint of a veil/stem protrusion) is
calculated, and the longest of these paths is then chosen as the
neurite length measurement for the given frame (Fig. 5 A, orange
line). Note in a system of high symmetry there can be fluctuations
in the orientation of the longest path from one frame to another
as the neurite makes a directional decision. However, the overall
neurite length outgrowth metric velocity can remain constant.

Optional veil/stem refinement step

Once the neurite length measurements are extracted (as de-
scribed in the previous section), identification of outlier data
points within an individual neurite outgrowth time series can
serve as an automated indicator of segmentation error. There-
fore, GCA includes an optional step (Fig. S2, Step V) to flag prob-
able segmentation error frames, as indicated by an outlier veil/
stem length measurement and the presence of a high-intensity
floating “veil piece,” initially excluded from the final veil/stem
segmentation due to failure to find a viable stem attachment path
during reconstruction. While the exclusion of these detected
“veil pieces” is desirable in certain cases—for instance, when
there is surrounding high FI debris, or when the GC of interest
is in the presence of a neighboring neurite (Fig. 1 B, i)—a coin-
cident length outlier flag indicates a potential veil/stem trunca-
tion, which may be caused by limitations of the ridge filter at
larger sigma values. For these identified frames, the longest path
of the veil/stem skeleton in the frames ty,gier + 1 and toygier - 1 are
combined, thinned, and then used in an attempt to bridge the
previously excluded veil/stem piece and correct the segmenta-
tion for the outlier frame. All veil/stem masks calculated in this
study were visually verified. Such truncations were infrequent
and typically caused by dense, asymmetric filopodia distribu-
tions along one side of the stem to be detected. Notably, only two
movies in this study required veil/stem refinement via this step,
and therefore by default it is an optional step in the GCA pipeline.

Filopodia candidate detection
Filopodia-like structures were identified using the same
fourth-order steerable ridge detector (Jacob and Unser, 2004) as
for ridge identification, but applied using a single, much smaller
Gaussian sigma value, set by the segmentation parameter Filo-
Scale (Table S1, Step VI, i, in this study 1.5 pixels [324 nm]). The
filter step was followed by an NMS step (Canny, 1986; Jacob and
Unser, 2004) to isolate the center line of the filopodia images.
With smaller sigma Gaussians underlying the steerable filter,
the responses tend to be noisier, requiring stringent filtering of
false positives in the NMS map. Therefore, GCA takes a number of
practical measures to limit the number of false-positive filopodia

Bagonis et al.
Quantification of heterogeneity among growth cones

A

W0
QD Q
n’:g

segments that are entered into the subsequent filopodia/branch
optimization steps. First, a permissive threshold of the image
intensity histogram estimates a rough background mask of the
image, leaving a permissive filopodia search area surrounding
each object, threshold: (Mt Noise + 201t Noise), Where Pnt Noise and
Olnt_Noise are the mean and the SD, respectively, of the fit to the
first Gaussian. These object masks can be cleaned and dilated if
necessary if the filopodia search region surrounding the object
is too small (i.e., the background mask is overestimated). This
is an optional step (filterBackEst) in the pipeline (Table S1, Step
VI, ii), but it is recommended to save computational time and to
quickly avoid possible false-positive branch structures. Second,
we applied a threshold directly upon the NMS values. We found a
threshold of (HNoiseNMSResponse + 3‘:“-NoiseNMSResponse) Performed Weur
where HNoiseNMSResponse and 0-NoiseNMSResponse are the mean and the
SD, respectively, of the fit to the first Gaussian of the probability
density function corresponding to the nonzero response values
from the NMS. This value was sufficient for a majority of our
needs in this study when combined with the above object-mask-
ing step. However, this value can be adjusted by the parameter
multSTDNMSResponse (Table S1, Step VI, ii), and several quick
automated checks are included in the software to check the integ-
rity of these initial thresholds on the response values. If flagged,
the software attempts a different thresholding method automat-
ically, which may perform better given the shape of the intensity
histogram. After thresholding, the NMS image is binarized, and
any remaining branch/higher-order junctions are broken to ob-
tain curvilinear ridge pieces that can be grouped in subsequent
steps. Note that junctions typically show weak steerable ridge
filter responses since they represent points in the image where
the orientation of the ridge structure is ambiguous, and hence
they are not typically well detected by the steerable filter. The
subsequent filopodia/branch reconstruction steps resolve this
problem (see below). In addition, ridge pieces <3 pixels (0.65
pm; segmentation parameter minCCRidge; Table S1, Step VI,
ii) are removed from the NMS map, as the geometric measure-
ments of these pieces, required for subsequent linking steps, are
too uncertain. To classify this pool of segments into veil-exposed
filopodia (Fig. 1 A, vi and vii) versus veil-embedded actin bundle
candidates (orange lines, Fig. 1C, i), we used the veil/stem mask
and considered veil-exposed candidates connected directly to the
mask as high-confidence filopodia detections. The combination
of veil/stem edge pixels and their connected filopodia detections
were subsequently used as a “high-confidence seed” (Fig. 1 A,
vii) for further filopodia candidate reattachment in the Filopo-
dia/Branch Reconstruction and Optional Veil-Embedded Actin
Bundle Detection modules documented below.

We also considered veil-exposed filopodia candidates not di-
rectly attached to the veil/stem mask. We reasoned that the pop-
ulation of connected candidates provided a distribution of filter
response values representative for bona fide filopodia detections.
Therefore, to remove weak filopodia candidates from the unat-
tached candidate pool, we removed segments of less than 10 pix-
els in length or with a mean ridge filter response less than the
fifth percentile of the veil/stem-attached filopodia distribution.
Note this filtering step can be skipped by the user if the number
of veil-attached filopodia is too small to obtain an estimate of the
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distribution. For example, this filtering step is not applicable in
the case of a single dendritic filopodium (Fig. 4 G). The compila-
tion of these initial selection steps produced the final unattached
filopodia candidates as shown as orange lines in Fig. 1 A (vi).

Filopodia/Branch reconstruction

The filopodia segments were entered into the filopodia building
step in which neighboring, linearly continuous fragments were
merged (Fig. 1 A, vi). Candidates for merging were selected by
finding matching endpoints within the distance defined by max-
RadiusLink (set in this study to 5 pixels, ~1 pm) using a K-di-
mensional tree search. Between potential matching endpoints,
linear paths were then interpolated, and the link orientation
represented by a unit-length vector. To determine the continu-
ity between the filopodia segments and their corresponding link,
the angle, 6FL, between the link vector and the local orientation
at the filopodia segment endpoint (black and orange arrows, re-
spectively, in Fig. 1 A, vi) was calculated for each endpoint. While
two OFL values, 6FLij and 6FLji, were calculated for each possible
link, a single OFLij calculation is illustrated in Fig. 1 A (vi) for clar-
ity. The tolerance with which links are allowed to deviate from
perfect continuation (OFLij = 0°) is controlled by the parameter
geoThresh (set in this study to OFL = ~25° [cosOFL = 0.9]; Table
S1, Step IV, iii). Hence, any endpoint whose local orientation vec-
tor and corresponding link vector formed an angle 6FL > 25° was
not considered for merging. Typically, only a single possible link
between two endpoints fulfilled the stringent criteria for link
selection. However, occasionally multiple links competed for
the same endpoint. To ensure that each endpoint was associated
with no more than one link, we formulated the link assignment
as a maximum weighted graph matching problem (Avis, 1983;
Kolmogorov, 2009). Each endpoint under consideration defines
anode on the graph, and each interpolated link a graph edge. To
calculate the weights, distances d;;between candidate endpoints
were converted to distance scores scoreDy = max(D) - dy, where
Dj;represents the full set of dj; values for a given frame. This con-
version ensured that larger d;; values result in smaller weights.

The scores D;; were then normalized as
scoreDy;
scoreDij’ = -

max (scoreDy)
where scoreDj/ is the final normalized distance score.

Weights of edges between two endpoints, iand j, were derived
by simple summation of the normalized distance score D;;and the
dot products between link orientation and local filopodia orien-
tation in at each candidate endpoint:

Wy = scoreDy + cos(OFLy) + cos(OFLy).

Application of a maximum weighted matching to this graph
determines which filopodia candidates are merged into a
single candidate.

The final filopodia/branch reconstruction was then achieved
by combining information from this new set of merged filopodia
candidates (Fig. 1 A, vi) and the “high-confidence seed” (Fig. 1 A,
vii), comprised of both the veil/stem edge pixels and its con-
nected filopodia detections. Akin to the preceding filopodia can-
didate building step, we formulated a graph matching problem
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(Fig. 1 A, viii; Fig. S3; and Video 3): all pixels of the “seed” within
a user-defined search radius maxRadiusConnectFiloBranch,
set to 15 pixels, ~3.2 pm in our study (Table S1, Step VI, iv), sur-
rounding each filopodia endpoint were selected (Fig. S3 A, ii and
iii). Linear paths are interpolated between candidate endpoints
and all seed pixels using the Bresenham algorithm. These paths
become the edges, and each graph node is either a single filopo-
dia candidate or a pixel on the “seed” (Fig. S3 4, iii). In the sec-
ond step (Fig. S3 B), weights are calculated for each path. These
weights were designed to reflect that a path is more likely if (1)
the Euclidean distance of the path is low, (2) the mean intensity
of pixels along the path is high, and (3) the linkage results in a
geometrically reasonable structure given the biophysical prop-
erties of actin filaments.

Specifically, geometric continuity between each filopodia
candidate and each putative linkage was assessed by calculating
the dot product of the unit vectors representing the the local ori-
entation of the candidate filopodia in its endpoint and the direc-
tion of the linkage path. Given the relatively linear geometry of
actin bundles of interest, dot products corresponding to an angle
greater than the geoThreshFiloBranch segmentation parameter,
set in this study to OFL = 60° (Table S1, Step VI, iv), were filtered
before the final graph matching step (Fig. S3 B, i and ii). Any
paths that crossed the veil/stem mask and/or crossed another
ridge/candidate were likewise removed.

Similar to the preceding filopodia/ridge candidate building
step, all individual distances, dj, between potential graph nodes
were converted to individual distance scores scoreD; = max
(D) - dyj, where D represents the full population of dj; values
for a given frame, for a given reconstruction iteration, before
geometry-based path filtering (Fig. S3 B, i and ii). This conver-
sion ensures that larger d;; values result in a smaller scoreD;;.
scoreDys were then normalized such that the maximum
scoreDyis equal to 1,
scoreDy;
scoreDyi’ = ————,

max (scoreDy)
where scoreDj is the final normalized distance score (Fig. S3 B, iii).

Unlike in the filopodia candidate building step, the graph
weights corresponding to the final filopodia/branch reconstruc-
tion steps also accounted for the mean FI of each path. To this
end, we calculated the mean FI ImeanPerPath;; of a single path
from graph node i, a ridge candidate endpoint, to graph node j, a
pixel on the seed, and normalized the value such that the full pop-
ulation of potential paths maintained a value between 0 and 1:

[ImeanPerPath;; - min(ImeanPerPath)]

Scorelyf = [max (ImeanPerPath) - min (ImeanPerPath)]
Here, ImeanPerPath denotes the full distribution of path in-
tensity mean values in a frame for a given filopodia/branch
reconstruction iteration, and min(ImeanPerPath) and max(Ime-
anPerPath) denote the minimum and maximum values of this
distribution, respectively.

Finally, the absolute value of the unit dot product correspond-
ing to the local orientation vectors at the site of the filopodia
segment endpoint (F) and the site of attachment to the seed (S),
|cosOFSij|, was calculated.
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The final weight (Fig. S3 B, vi), Wy, for each path was com-
piled by weighted summation of the above scores (Fig. S3 B,
ii-v), such that

Wy = 0.5(ScoreDij’) + Scorelyi' + |cosOFSij| + cosOFLy;.

Weight values typically approached a Gaussian distribution
(Fig. 3 B, vi, bottom). The maximum weighted graph matching
step (Avis, 1983; Kolmogorov, 2009) solves the graph by choos-
ing a subset of edges (black paths in Fig. S3 C) that maximizes
the sum of the weights of the edges subject to each node being
connected to another node not more than once. As each ridge
candidate is considered a single node in the graph (Fig. S3 A, i)
this formulation forces only a single optimized link to be chosen
between filopodia segment and seed (Fig. S3 C). The attached
fragments are then assigned labels based on their attachment
site (Fig. 1 A, viii) and become part of the next iteration’s seed.
The above steps iterate until no pixels in the current seed set fall
within maxRadiusConnectFiloBranch of the remaining candi-
date filopodia segment endpoints (Video 3).

Optional veil-embedded actin bundle detection

Veil-embedded actin bundle candidates, as defined in the Filo-
podia Candidate Detection Step, were first cleaned using MAT
LAB’s bwmorph “spur” option (2 pixels). Any candidates without
two well-defined endpoints were discarded. The endpoint closest
to the veil/stem edge for both the exposed and embedded actin
bundle candidate was chosen for potential matching. Any em-
bedded actin bundles with endpoints equidistant from the veil/
stem edge were discarded, as it was typically an indication that
these ridge candidates corresponded to signal generated from
the veil/stem edge itself. To further solve the problem of false-
positive actin bundle detection, we also included a step that
breaks the embedded ridge candidates at sites surpassing a user-
defined curvature, curvBreakCandEmbed (Table S1, Step VI, v;
set in this study to 0.05 1/pixels). This enforces the assumption
that true embedded candidate ridges of interest are linear. If one
wishes to detect more noncanonical highly curved embedded
structures, one can simply set this value to 0, though at the po-
tential risk of an increased false-positive rate.

All embedded actin-bundle, ridge candidate endpoints (or-
ange lines in Fig. 1 C, i) within a 10-pixel (2.16-pm) radius of
the high-confidence exposed filopodia seed points (green lines
in Fig. 1 C, i) were found using a K-dimensional tree search.
Although this study kept the radius fixed for all datasets, the
software allows user adjustments via the segmentation param-
eter maxRadiusLinkEmbedded (Table S1, Step VI, v). Similar
to the filopodia candidate building step (Fig. 1 A, vi), and the
geometry filtering step of the main filopodia/branch recon-
struction (Fig. S3 B, i and v), only connections exhibiting a
linking geometry conforming to the specifications defined by
the geoThreshEmbedded segmentation parameter (OFL = 60°
in this study; Table S1, Step VI, v) were considered for link-
ing. Again, to ensure only one linkage is maintained between
two ridge candidate endpoints, the assignment problem was
formulated as a maximum weighted graph matching problem
(Avis, 1983; Kolmogorov, 2009), such that each endpoint under
consideration corresponds to a node on the graph, and each
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interpolated linkage a graph edge path. In this case, weights,
Wj;, of individual edge paths were based completely on linkage
geometry, such that

Wy = cos(6FLy) + cos(6FLg).

Of note, distance was not included in the weight. We empirically
observed that confounding ridge signal corresponding to intra-
cellular noise and the veil/stem edge frequently caused breaks
along the ridge NMS extracted for the exposed filopodia ridge
population. This, combined with generally lower ridge responses
inside the image of the cytoplasm, often produced truncated ridge
candidates with relatively large distance gaps between correct
pairings. Hence, we reasoned in this case that geometry alone
was the most reliable indicator of a high-fidelity link. Note that
this framework allows only those embedded actin bundles with
a veil-exposed filopodium counterpart to be detected (Fig. S5 C).

Filopodia endpoint localization

The thresholded steerable filter response of a filopodium pro-
vides only an inaccurate estimate of its endpoint, both because
of the often weak signal in these regions, and because any signal
at the ridge end inherently deviates from the geometric model
underlying the detector, which assumes the ridge to be of infinite
length. This may result in either an over- or underestimation
of the true filopodia length. To improve on the tip localization,
the local directional vector, identified from the steerable filter
response, was employed to extrapolate each putative filopodia
region by 10 pixels (~2 pm). Examples of these extrapolated re-
gions are shown in purple in Fig. 1 A (ix) and Fig. 1 D (iii) and are
combined with the original filament fragment detection (green)
to create a mask localizing the approximate region of each fila-
ment. For visualization, and to estimate the local intensity back-
ground surrounding a filopodium, each filament mask included
+2 pixels (~0.4 um) perpendicular to the filament’s centerline
(achieved via the NMS of the steerable filter response or via
the extrapolation step above). Image extraction from these re-
gional masks confirmed good localization of filopodia centerline
by the ridge detection followed by NMS thresholding (Fig. 1, A
[ix] and D [iii]).

A weighted average of the pixel intensity values (not limited
by the above mask), based upon the point spread function (PSF)
of the microscope, was extracted for each pixel on the filament
fragment’s backbone (Fig. 1, A [ix] and D [iii]). As the fluores-
cence decay of actin bundles can be complex (Fig. 1D, iii), a series
of steps was then employed to localize the region of each linescan
corresponding to the first significant fluorescence signal decay.
Specifically, we subjected a smoothened version of the signal’s
derivative (obtained via cspas in MATLAB, P = 0.1) to MATLAB'’s
findpeaks function to locate the corresponding local minimum
and maximum, denoted as green and red dots, respectively, in
Fig. 1, A (ix) and D (iii).

The local background surrounding the filopodium was es-
timated using the extrapolated region of the filopodium mask
(purple in Fig. 1, A [ix] and D [iii]). The center line of the pro-
jection mask was not included in the filament’s intensity back-
ground estimation. The first maximally decreasing region with
signal above the mean of this background estimate was isolated,
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and signal within +10 pixels (approximately +2.14 pm) of this
value was isolated for the final least-squares regression fitting
of the intensity values. The maximum window size for least-
squares regression can be modulated by the maxWindForLSQFit
segmentation parameter (Table S1, Step VII). However, this win-
dow is currently partially self-adaptive. If a second maximally
decreasing region is found within the initial window size, the val-
ues used for the least-squares regression are truncated to exclude
these portions (Fig. 1D, iii), as this typically indicates a second
confounding intensity decay. The final window of the intensity
profile is then fit to a Gaussian survival function (below equa-
tion) using the Isqcurvefit function in MATLAB:

Ix") = %Im erfc (ﬁ) + Ipg.

Here I(x”) denotes the portion of the filament intensity profile,
x”is the distance along the filament bundle, Ir; is the amplitude
of the filament intensity above the mean background Ipg, gy
corresponds to the mean value for the filament endpoint mea-
surement, and o(g; . psp corresponds to the combined SD in the
filament endpoint localization due to both the filament’s physical
structure (Fil) and the PSF of the microscope.

GCA: Feature extraction

Integrated with GCA are a number of functions that extract from
the segmented veil and filopodia morphological features for
classification of GC behaviors. Importantly, GCA users are en-
couraged to define their own features. In the following sections,
we define the morphological and morphodynamic features em-
ployed for the GC analysis in Figs. 6,7, 8, 9, and 10.

Neurite length

We use neurite length as our primary feature describing GC
function. It is defined as the longest path through the veil/stem
skeleton as shown in Fig. 5 A. Further details are provided in the
Neurite length measurements subsection under the GCA: Algo-
rithmic details and segmentation parameters section.

Veil/Stem thickness

An illustration of the veil/stem thickness metric is shown in
Fig. 5 B. The veil/stem thickness is defined as the mean of the
Euclidian distance transform values along the longest path of the
veil/stem skeleton, from the tip of the leading protrusion to a us-
er-selected length (default 20 pm). The distance transform of the
veil/stem binary mask was calculated using bwdist in MATLAB.

Veil/Stem dynamic features

Using the veil/stem detection mask (Fig. 1 A, iii), protrusion vec-
tor calculations and edge sector averaging of vectors were per-
formed as described previously (Ma et al., 2018).

Specifically, cell edge velocities were derived from pixel-
by-pixel matching of cell contours between consecutive time
points. A B-form spline was fitted to the edge pixel positions
of the segmented cell area, with nodes corresponding to each
edge pixel. The spline representations of two consecutive
frames were then divided into segments between their inter-
sections. To map a correspondence between the edge splines on
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consecutive frames, the following objective function was itera-
tively minimized as:

N A
(01, - ,0n) =

n 2

Z;[x(t +1,0;) - x(t,pi)] .

b
arg min SUM, (1)
(/0\1, .. .,6,,) wi [oi(t +1) —0;,(t+1) 2

=) pi(t) - pia(t)
SUM;

with the topological constraints

1 = 0] < 0y < ...< 0y = e (2)

The variable n denotes the number of nodes, which in the ab-
sence of down-sampling (see below) is equal to the number of
spline at time t defining equally spaced edge nodes x(t,pi), one
at each edge pixel. The goal of Egs. 1 and 2 is to identify n spline
parameters o1,2...n(t+1) in between the intersection points el and
en that define nonequally spaced nodes x(t+1,0i) at t+1such that
the overall displacement (SUMA) and strain, i.e., changes in spac-
ing of nodes (SUMB), is minimized. Eq. 2 imposes the constraint
to the minimization that displacement vectors must not cross.
The two sums in Eq. 1 have different physical units. To balance
them correctly, a factor w is introduced as follows:

(SUMA>
W = Wk

SUMp

iteration=1
n 2
z;[x(t +1,0;) - x(t,pi)]
iz

n [oi(t+1) —oi,,(t+1)]2
pi(t) - pia(t)

W

1=2 iteration=1

The factor wis calculated only in the first iteration of the minimi-
zation, as the unit conversion by the ratio SUM, = SUMj changes
insubstantially thereafter. The parameter wis a free user-control
that allows the definition of the trade-off between minimal edge
displacement and minimal lateral strain.

The minimization of Eq. 1 can be computationally costly when
the number of edge pixels in a segment exceeds 100. To circum-
vent this problem, a control parameter 10 < Nmax <100 is intro-
duced. When the number of edge pixels in a segment is greater
than Nmax, the number of nodes to Nmax is downsampled, and
the boundary displacement for this number of nodes is calcu-
lated and then upsampled to the original number of edge pixels
by interpolation. Once the boundary displacements are identi-
fied, the projections of these displacements onto the boundary
normal vector are calculated to obtain a signed local measure-
ment of the instantaneous normal edge velocity.

Edge sector numbering was initiated in each frame at the
detected neurite entrance point (Fig. 1 B, black star). Propaga-
tion of this origin was set to false. Edge sectors were propagated
using the “ConstantNumber” method, whereby the number of
sampling edge sectors are held constant, allowing the width of
each sector to vary as the length of the cell edge changes. The
initial size of each edge sector, parallel to the cell edge, was set
to ~5 pixels (~1.0 pm for the N1E-115 GC images). Edge sectors
were reinitiated midway through the movie (frame 61) to help
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limit sector tracking errors. As extreme changes in the local veil
velocity are predominately associated with rare veil/stem edge
segmentation errors, to limit veil velocity analysis artifacts, out-
lier data points approximately greater than six times the mean
were detected (Rousseeuw and Leroy, 1987) and removed for each
veil velocity time series before further analysis (black crosses in
Fig. 5 B, iii, indicate outlier data points). The velocity traces for
each segment (Fig. 5 B, iii) were then processed as described pre-
viously (Mendoza et al., 2015), using a signal detection algorithm
on the basis of empirical mode decomposition (Huang and Shen,
2014). Velocities within the noise level were classified as insig-
nificant and the respective edge segment as inactive (Fig. 5 B, iv
and v). Once a significant event was detected, it was classified
as either protrusion or retraction, and the mean values were ex-
tracted. The event duration was also measured.

Design of filopodia/branch segment filters for feature extraction
Before any feature extraction, GCA’'s workflow allows the user
to design a filopodia/branch filter based on segment length (de-
fined as pFilo, Fig. 1 A, ix), the quality of the intensity profile
regression, as measured by IFilo compared with the residuals of
the fitted data points (Fig. 1 A, ix), and segment branching order,
such that order = 0 (veil-attached, no branch detected), order = 1
(veil-attached segment, with branch), order = 2 (branch segment
attached to veil-attached segment type 1), order = 3 (branch at-
tached to branch segment type 2), etc. (Fig. 5 D, top). Unless oth-
erwise noted, segments with an pFilolength less than 0.3 pmand
an IFilo amplitude less than the 95th percentile of the residuals
from the intensity fit were excluded. For select features, these
filter criteria were relaxed slightly as explained in the respective
feature descriptions below.

Filopodia length

Filopodia lengths can be potentially calculated in two different
ways using the intensity profile (Fig. 14, ix) fit information. One
option, used in this study, is to use the value of uFil as the termi-
nation site of the filament and not consider variation in potential
filament tapering that may be reflected in the SD of the fit. The
second option is to use Py + O(ri.pse) as the sub-pixel filament
termination point. While both metrics are reasonable, using
Mril + O (rips) may yield filopodia lengths that are visually more
satisfying. As filaments exhibiting a large o, potentially due to
excessive tapering of the actin bundle, may look visually under-
estimated if only the u of the fit is displayed.

Unless otherwise noted, filopodia lengths were calculated
from both branching and nonbranching veil/attached segments
(branch order equal to either 0 or 1). Filopodia length was defined
as the distance from pg; of the fitted segment outside the veil, to
the detected veil/stem, as traced along the NMS of the ridge filter
response (Fig. 5 C).

Embedded actin bundle length

An additional filter step removed embedded actin bundle seg-
ments from the feature distribution if their corresponding ex-
tra-veil filopodia segment failed to meet the confidence criteria of
the filter. Embedded actin bundlelength was calculated as the dis-
tance from p; of the fitted segment inside the veil to the detected
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veil/stem, as traced along the NMS of the ridge filter response
(Fig. 5 C). If no embedded segment of the filopodia was detected,
orthe detected segment did not meet the filter criteria, the embed-
ded actin bundle length is set to 0. Only nonzero embedded actin
bundle lengths were pooled for the distribution calculations in
Fig.6 (Cand D), Fig.7A, and Fig. 8 B. Note, a fluorescent actin label,
such as LifeAct GFP, is required for the calculation of this feature.

Full actin bundle length

Full actin bundle lengths were measured from both branching
and nonbranching veil/attached segments (branch order equal
to either 0 or 1), and calculated as the summation of the filopodia
length and the embedded actin bundle length as defined in the
above sections (Fig. 5 C). If no embedded segment of the filopo-
dia was detected, or the detected segment did not meet the filter
criteria, the embedded actin bundle length is set to 0.

Percent length each actin bundle veil embedded

The percentage each actin bundle veil embedded was calculated
by dividing the embedded actin bundle length by the length of
the full actin bundle (as defined in the above sections). Actin
bundles with no significant veil-embedment (0 values) were ex-
cluded from this feature distribution, as a majority of detected
filopodia do not have an embedded actin bundle counterpart and
inclusion of these values skew the feature distribution to 0.

Branch length

Branch lengths were measured from second order branch seg-
ments only, and defined as the distance from pg; of the second
order fitted branch segment, to its site of attachment along its re-
spective first order branch, as traced along the NMS of the ridge
filter response (Fig. 5D).

Filopodia/Branch curvature

Detected filopodia/branch backbone coordinates obtained via
the NMS of the steerable filter response were first smoothed
using the spaps function in MATLAB, setting the tolerance pa-
rameter equal to 2. The local curvature was calculated at each
pixel by fitting polygons to each of the filopodia backbone co-
ordinates and solving for the curvature analytically from the
polygons. The maximum curvature value along the length of the
filopodia/branch (as defined in the Filopodia length and Branch
length sections above) was recorded (Fig. 5 C, black arrows).

Filopodia/Branch LifeAct FI

For each detected segment of the filopodium/branch network,
the background-subtracted FI profile along the filament’s back-
bone was averaged (Fig. 5, C and D), using pixels associated with
the respective length calculations, where the end of the filopo-
dium is defined as pFilo (Fig. 1 A, ix). These values were then
normalized for LifeAct expression level by dividing by the mean
of the veil/stem intensity distribution (excluding any high-in-
tensity embedded actin bundles) calculated per frame.

The background mask used above was estimated via a coarse
localization of the object regions in the image was first achieved
as specified in the initial steps of the filopodia reconstruction
(Table S1, Step VI, ii). To further ensure that none of the final
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detected object was considered in the background mask, the
veil/stem and filopodia detections, plus the forward filopodia
search projections, were combined and the mask dilated using
imdilate in MATLAB. Inversion of these combined object masks
were used to calculate the mean intensity of the background, and
this value was subtracted from the original image. Any negative
background-subtracted values were set to 0.

Filopodia/Branch orientation

Orientation for each filopodium is calculated as the angle between
the filopodium’s directional vector at the site of veil/stem attach-
mentand the local direction of the veil/stem boundary. Local veil/
stem boundary vectors are defined as proceeding from the site of
filopodia attachment, toward the neurite’s leading protrusion, in
the direction along the veil/stem boundary. Given this definition,
the orientation, 0, of the filopodia can assume a value between 0°
and 180°, and for a relatively canonical GC architecture, filopodia
with a 0 value between 0° and 90° (Fig. 5 C, blue arrows) effec-
tively point toward the “front” of the neurite, whereas filopodia
with a 0 value between 90° and 180° (Fig. 5 C, orange arrows)
effectively point toward the “back” of the neurite. Note that a filo-
podium with a 0 of 0° and filopodium with a 0 of 180° are both
considered fully collapsed onto the veil/stem, and a 0 value of 90°
indicates a filopodium positioned orthogonally (Fig. 5 C, green
arrows) with respect to the local veil /stem. Both 0 and first-order
segments were included in this feature distribution.

Likewise, branch filament orientations (Fig. 5 D) are defined
as the angle between the two local vectors formed between
branch and the root filament at the site of attachment. Root vec-
tors are defined as proceeding from the site of branch attach-
ment toward the tip of the root filament. Given these definitions,
abranch lying along its filament stem pointing in the direction of
the filament stem’s endpoint maintains a branch orientation, 6,
of 0° and a branch lying along the filament stem and away from
the filament stem’s endpoint maintains a branch orientation, 6,
of 180°. Only second-order branch segments were included in
this feature distribution.

Filopodia density

A filopodia/branch segment filter, as detailed in the Materials
and methods section Design of filopodia/branch segment filters
for feature extraction, was initially applied. However, as an ac-
curate count of filopodia is of primary importance for the den-
sity calculation, and some intensity fits for long filopodia can be
misleadingly poor due to crossing filopodia/complex decay pro-
files, this initial filter was relaxed such that any filopodium with
alength greater than 5 um and a mean intensity greater than the
50th percentile of the total distribution of segments was main-
tained for the density calculation, regardless of its correspond-
ing IFilo value. Filopodia density (Fig. 5 C) was then calculated
by dividing the number of filtered filopodia segments directly
attached to the veil (branch order = 0 or 1) by the total length of
the veil/stem boundary.

Branch density and complexity
Filopodia/branch segment filtering was performed as described
in the Filopodia density section. Second-order branch densities
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(Fig. 5D) were calculated as the number of second-orderbranches
divided by the first-order segment length. 0-order segments,
where branch density by definition equals 0, were excluded from
the branch density distribution, as most filopodia segments at-
tached to veil do not branch and hence, when included, these val-
ues skew the distribution toward 0. Branch complexity (Fig. 5 D)
was defined as the total number of segments after filtering with
a branch order greater than 1, divided by the total length of the
complete filopodia/branch network.

GCA: Validation

Manual filopodia endpoint localization: Comparison among
multiple annotators

Eight individual annotators were given both the image shown
in Fig. 2 B (left) and the corresponding raw image. Using the
“point” tool in Image], they were asked to identify the endpoint
coordinates (i.e., tip) of each filopodia/branch segment indicated
by the 22 green dots (manually placed at the center/base of each
filopodium). Annotators were allowed to modify the contrast of
the raw image in Image] as they desired; however, they were not
explicitly instructed to do so. The Euclidian distance between
each filopodium endpoint annotation and the pFilo coordinate
of GCA (Fig. 2 B, right) was calculated (Fig. 2 C). Each filopodium
annotation was mapped to the closest point along the automated
filopodium linescan (Fig. 2 D). Annotations mapped to linescan
coordinates greater than uFilo (along the respective filopodium
coordinate system) were assigned a positive value, while anno-
tations mapped to linescan coordinates less than pFilo were as-
signed a negative value (Fig. 2 C).

While in general we observed good agreement between
GCA-detected filopodia endpoint coordinates and manual filopo-
dia endpoint annotations (Fig. 2 C), for select filopodia (Fig. 2 C,
i and ii) we observed substantial variation among annotators,
particularly for those filopodia exhibiting multiple FI decays
along their length (Fig. 2 D, i and ii). In such cases, GCA auto-
mated detection often coincided well with the more subtle inten-
sity decay identified by a subset of the eight annotators. Finally,
while the endpoint localization appeared to be underestimated in
select cases by GCA detection as compared with manual results
(Fig. 2 C, iii), such apparent discrepancies typically were again
due to semantics of the filopodia endpoint definition (Fig. 2 D,
iii). We found these filopodia typically exhibited relatively slow
fluorescent decay along their length and hence larger estimated
o values (Fig. 2 D, iii).

Further examination of the automated filopodia linescans
marked by the manual annotator as a false positive often re-
vealed ambiguous weak signals within complex environments
(Fig. S4 A, vi and vii). Similarly, many false-negative filopo-
dia were associated with complex intensity decays, whereby
it became more difficult to quickly isolate an optimal fit re-
gion (Fig. S4 B).

Semi-automated validation of GCA filopodia length measurements
260 veil-attached filopodia segments from the N1E-115 dataset
were randomly selected (n = 88 filopodia sampled from im-
ages of unperturbed GCs and n = 14-32 filopodia sampled per
siRNA condition). The filopodia filter was set to the defaults
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used for the filopodia length feature extractions (default filter:
ConnectToVeil LengthInt: where filoTypes = [0,1]; filterByBun-
dleLength= [0.3,inf]; filterByFit = true; saveFiloByLengthAndSig
= [];.embedFitCriteria = 95; filoFitCriteria = 95). Only filopodia
segments that passed these criteria were considered in the
random sampling.

For each sampled filopodium, the annotator was provided
with the intensity decay along the respective filopodium and a
zoom corresponding to the raw image and segmentation over-
lay as in Fig. S4. The annotator could refine the length of the
filopodium by moving the detected filopodium endpoint (Fig.
S4 A, i, iv, vi, and vii) or the base of the veil/stem (Fig. S4 A, ii
and v) along the detected linescan and iteratively evaluating the
updated zoomed segmentation overlays until satisfied. Low con-
fidence fits, resulting in false negatives (e.g., Fig. S4 B), were not
included in Fig. 2 F, as these failed detections are not included in
the final filopodia length distributions collected. An analogous
method was used to evaluate the embedded actin bundle length
errors in Fig. S5 D, where n = 100 embedded actin bundles were
randomly selected from the unperturbed NI1E-115 dataset. The
semi-automatic filopodia refinement tool was custom-coded in
MATLAB. Data corresponding to the automated versus manually
refined lengths were fit to a simple linear model with no inter-
cept, using fitlm in MATLAB.

Based on this semi-automatic, curated data, we confirmed
the accuracy of the automated length metrics for a majority of
the filopodia sampled, even for perturbation conditions, result-
ing in complex filopodia crossings (Fig. 2 E and Fig. S4 4, iii).
Errors in endpoint detection typically arose in cases where the
localization of the region for the best fit along the sigmoidal was
ambiguous due to the shape of the intensity decay profile (Fig.
S4 A, i). Notably, while filopodia length refinements were occa-
sionally necessary due to errors in the veil/stem edge detection,
they were often easily manually refined by using the automated
information corresponding to the veil-embedded actin structure
(Fig. S4, A, ii).

The complex and ambiguous intracellular decay profiles
resulted in larger discrepancies in the automated versus man-
ually refined embedded actin bundle lengths (Fig. S5 D) as com-
pared with extra-veil filopodia detection (Fig. S4 A and Fig. S5D,
i, iii, and v).

Post-segmentation calculation of false-positive and
false-negative errors

One frame for each movie in the N1E-115 dataset (66 movies total,
excluding the acute perturbation movies of Fig. 8) was randomly
selected. Filopodia filters were set to the defaults used for the
filopodia density feature extraction (default filter: Connect-
ToVeil_Density: where; filoTypes = [0,1]; filterByBundleLength
= [0.3,inf]; filterByFit = true; saveFiloByLengthAndSig = [5 inf;
50100];.embedFitCriteria = 95; filoFitCriteria = 95). Overlays as
in Fig. 2 F along with the raw image were provided to the anno-
tator. The annotator was then asked to click on (1) false-positive
and (2) false-negative filopodia in each image, and the corre-
sponding coordinates were recorded. The numbers of GCA filo-
podia detections, false positives, and false negatives were pooled
for all images sampled for a given perturbation condition, and
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the percentages of false positives and false negatives were cal-
culated such that

# False Positives x 100

0, i -
% False Positives = # GCA Detected Filopodia

and

_ # False Negatives
" # GCA Detected Filopodia-
# False Positives + # False Negatives

% False Negatives x 100.

The post-segmentation validation tool was custom-coded
in MATLAB.

The above validation method confirmed a consistent false-
positive rate 6-13% and a false-negative rate 6-16.5% for all
perturbation images sampled. Further examination of the au-
tomated filopodia linescans marked by the manual annotator
as a false positive often revealed ambiguous weak signal within
complex environments (Fig. S4 A, vi and vii). Similarly, many
false-negative filopodia were associated with complex intensity
decays, whereby it became more difficult to quickly isolate an
optimal fit region (Fig. S4 B).

The false-positive and false-negative error rate for the detec-
tion of the embedded actin bundles was slightly higher than for
the traditional filopodia detections (18.1% and 17.2%; Fig. S5 A),
as it can be more difficult to obtain robust endpoint fits that pass
confidence criteria in the final filtering step due to the inhomoge-
neity/complexity in the intracellular intensity (Fig. S5 B). We note
GCA is not designed to detect fully veil-embedded actin bundles
(i.e., actin bundles without a corresponding extra-veil filopodia
component) as part of the criteria for detection employs one-to-
one geometric matching of each filopodium to its potential em-
bedded counterpart (Fig. S5 C). Notably, many of the false-positive
actin bundle counts were simply due to an orthogonal problem of
incorrect veil/localization in very dense filopodia regions. How-
ever, in these cases, the automated full actin bundle length mea-
surement typically remains robust (Fig. S4 A, ii; and Fig. S5 D, iv).

Comparison of GCA to contemporary software packages
We compared the performance of GCA on our N1E-115 and in
vivo zebrafish images to two recently released filopodia detec-
tion software packages, FiloQuant (Jacquemet et al., 2017) and
Filopodyan (Urbanéi¢ et al., 2017; Fig. 4, A-C). Notably, in these
packages, it was nearly impossible to establish segmentation
parameter settings that would successfully translate to other
frames/perturbation conditions in the same dataset (Fig. 4 B
and Fig. S7). While the filter offered in FiloQuant (Fig. 4, A-C, iii)
indeed appeared more sensitive than the thresholding methods
offered in Filopodyan (Fig. 4, A-C, ii), the final threshold for this
filter needed to be set manually in the package, making its utility
quite limited in practice, and it was very difficult to use this en-
hanced sensitivity without introducing false positives (Fig. S7E).
After tedious segmentation parameter optimization (Fig.
S7, A-E), we found filopodia lengths were frequently underes-
timated in both packages (Fig. 4 B). Unlike GCA, neither con-
temporary algorithm resolves branching (Fig. 4 A) or crossing
filopodia (Fig. 4 C), or ensures thin regions of the veil/stem are
excluded from the filopodia detections (Fig. 4 C). Furthermore,
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using these images, we show GCA isless prone to filopodia length
underestimation due to fragmentation, crossings, and high filo-
podia density (Fig. 4 E); extracts novel features, such as veil-em-
bedded actin bundles (Fig. 4 F); and generalizes to dendritic
filopodia (Fig. 4 G).

Statistical analysis

Correlation analysis: Unperturbed dataset

Net neurite outgrowth rate for each trajectory, as shown in
Fig. 6 A, inset, was calculated by recording the difference between
the neurite length (Fig. 5 A) at the start and the end of the neurite
outgrowth trajectory. This value was then divided by the 10-min
total time interval, for which each neurite was imaged. All other
neurite movie features were extracted asillustrated in Fig. 5and as
described in the GCA: Feature extraction portion of the Materials
and methods. Feature values were pooled for the entire neurite
trajectory (Fig. 6 B). The mean value of each pooled distribution
was calculated and used for the subsequent Spearman correlation
analysis (Fig. 6, C and D). Spearman correlation coefficients and
corresponding P values between each set of features were calcu-
lated using the corr function in MATLAB. Benjamini and Hoch-
berg-adjusted P values were calculated using the original linear
step-up procedure (Benjamini and Hochberg, 1995) via the mafdr
functionin MATLAB (input, “BHFDR” = true). The full distribution
of 253 pairwise P values was used to perform the adjustments.

Hierarchical clustering of MSs

z-Score feature vectors comprising the perturbed condition MSs
relative to control were calculated as described in Fig. 7 A. Hi-
erarchical clustering, using unweighted average linkage and a
Euclidean distance metric, was performed via the clustergram
function in MATLAB.

Clustering of individual GC movies by neurite outgrowth rate

The neurite outgrowth rate in 10 min was calculated as in Figs. 5,
6, and 7 A for n = 66 N1E-115 GC movies, including seven different
siRNA perturbation conditions. Using these data, movies were
separated into two groups, high and low net outgrowth, via the
kmeans function in MATLAB (K = 2, replicates = 20; Fig. 7 B), and
for each cluster of movies, selected morphological features were
directly compared between siRNA perturbation conditions and
the control (Fig. 7 C).

Per filopodia length versus maximum curvature analysis
Thelength of each filopodium was calculated from its veil attach-
ment point to the filopodium endpoint (defined in this study as
WFilo; Fig. 1 A, ix) and the maximum curvature along this length
extracted. To reduce potential curvature/length relationships
due to branching and/or segmentation errors, only nonbranch-
ing filopodia, connected to the veil (branch order = 0), were con-
sidered for these analyses. Spearman correlation coefficients and
corresponding P values were calculated using the corr function
in MATLAB. Benjamini and Hochberg-adjusted correlation coef-
ficient P values were calculated using the original linear step-up
procedure (Benjamini and Hochberg, 1995) via the mafdr func-
tion in MATLAB (input, “BHFDR” = true). The full distribution of
69 P values was used to perform the adjustments.
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Permutation t tests: siRNA data

Each data pointin Fig.7 A, left; Fig. 7 C; and Fig. 7 E represents the
distribution mean for the respective GCA feature value pooled
over all frames of a single N1E-115 GC movie (5-s intervals; 10-
min duration). These values were plotted in MATLAB using
notBoxplot.m written by R. Campbell (https://www.mathworks
.com/matlabcentral/fileexchange/26508-notboxplot), which
plots the individual data points, the mean (bar), the 95% CIs for
the mean (dark patch), and +SD (light patch) for a distribution
of values. In Fig. 7 (A, C, and E), the SD estimates the GC-to-GC
variation for the respective GC feature calculated per GC movie.
A two-tailed permutation ttest of the means (1,900 repetitions)
implemented in MATLAB was performed between the control
and each siRNA treatment distribution. The nvalues for Fig. 7 A
(left) are as follows: control: 20 GC movies, 3,047-8,213 filopodia
per movie; Cdc42: 6 GC movies, 2,872-5,607 filopodia per movie;
RhoA: 5 GC movies, 2,743-6,298 filopodia per movie; srGAP2: 5
GCmovies, 4,052-10,216 filopodia per movie; Racl: 9 GC movies,
3,794-8,104 filopodia per movie; B-Pix: 9 GC movies, 2,498-6,911
filopodia per movie; Dock?7: 6 GC movies, 2,146-5,634 filopodia
per movie; and Trio: 3 GC movies, 3,386-4,329 filopodia per
movie. (Note the full N1E-115 dataset, corresponding code, and
instructions on how to reproduce Fig. 7 A are included with the
GCA software release.)

Partitioning of neurite outgrowth trajectory into velocity states

The smoothed derivative of the neurite outgrowth trajectory was
found using the csaps function in MATLAB where p, the smooth-
ing parameter, was set to 0.01. Each frame of the trajectory was
labeled by its instantaneous velocity such that frames correspond-
ing to positive velocities greater than 0.5 um/min were defined as
growth, frames corresponding to negative velocitiesless than -0.5
pm/min were labeled as retraction, and velocities between 0.5 and
-0.5 um/min were labeled as pausing. The growth states were fur-
ther partitioned into accelerating and decelerating by calculating
the smoothed second derivative, again using the csaps function.

Acute drug perturbation: Permutation t tests

GCA features, filopodia length or the percent length each actin
bundle veil embedded, were extracted using the GCA pipeline for
each acutely treated N1E-115 GC movie (Fig. 8 B). For each movie,
these values were pooled before and after treatment for each tra-
jectory (Fig. 8 B, ii) and plotted using the boxplot.m function in
MATLAB. Two-sided permutation t tests of the medians (10,000
repetitions) were performed comparing the before and after
treatment feature distributions for each GC movie (Fig. 8 B, ii).

Per-frame feature dimensionality reduction

The median value for each frame for each of the seven features
noted in Fig. 8 D, i, was calculated from the GCA output. Features
are as defined in Fig. 5 and the GCA: Feature extraction section
of Materials and methods. For the initial time series analysis, any
feature selection based on the correlation analysis of the time-av-
eraged data (Fig. 6) was consciously avoided to not exclude more
subtle morphology/motility relationships that might be more
difficult to detect via the pooled analysis. GCA features that did
not maintain an adequate sample size per frame to be calculated
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robustly (e.g., branch orientation) were not included, nor were
features that might be considered trivially correlated (e.g., the
correlation between full actin bundle length and filopodia length
in Fig. 6 B partially arises due to redundancy of the two metrics).
Note, the percentage of each actin bundle veil-embedded feature,
as calculated in Fig. 6 (C and D), Fig. 7 A, and Fig. 8 B, yielded
an inadequate sample size per frame, as only actin bundles with
significant veil embedment were considered. Hence this feature
was excluded from the multi-dimensional per-frame analysis.
Values for each distribution of features were normalized for scale
such that the pooled values over all experimental conditions had
amean of 0 and a SD of 1.

Initially principal component analysis, using the pca function
in MATLAB, was used to reduce the dimensionality of the seven
features. However, the first two principal components of these
data explained only ~50% of the variability of the original seven
features. Therefore, the dimensionality of the per-frame dataset
was finally reduced to two dimensions via MDS using the MAT
LAB mdscale function (Borg, 1997). Kruskal’s stress-1 metric (total
error in similarity representation) was computed to be 0.026.

Time series modeling of trajectories in reduced

morphological space

HMM selection was performed as described previously (Monnier
et al., 2015; Gordonov et al., 2016) using the MATLAB function
hmm_process_cell_trajectory.m from the SAPHIRE package
(http://saphire-hcs.org). Specifically, 2D shape space MDS coor-
dinates for each GC movie were modeled as emissions e, = (xy:)
from K number of “hidden” shape states, {s; }£;, K = {1,2,3...}.
Therefore, for each model, My, the full set of parameters, 0y, that
must be inferred from the data are defined as

o [(mamrls () )5

where for each shape state (bivariate Gaussian distribution),
p; and o; correspond to the state mean and the SD in shape
space, respectively; ¢y is the probability of transitioning from
state s; to state s; within the state transition probability ma-
trix; and 7; is the probability of the GC starting state, s; at the
first time point.
The total
My is defined as

marginalized likelihood of each model

PeIM) = J3(m, Mo, [pae) |POUM)AO.
Summation over the hidden state sequences was performed
using the forward algorithm, while Metropolis Markov Chain
Monte Carlo with importance sampling integration was used
to calculate the total marginalized likelihood of each model and
corresponding maximum likelihood parameters. The model
with the highest marginalized likelihood was chosen, and the
most likely hidden shape state sequence was calculated by the
Viterbi algorithm using its maximum likelihood parameters. Im-
portantly, this method attempts to find the model that optimizes
the number of morphological states based on each GC’s specific
reduced-space morphological coordinates while penalizing in-
creasing model complexity (i.e., increasing number of states).
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The maximum number of hidden shape states, K, tested for each
GC movie time series was set to five in this study.

Morphological states were identified for 6 acute perturba-
tion movies (for validation; Fig. 9, A and B) and 20 unperturbed
movies (for screening; Fig. 9 D). The unperturbed GC trajec-
tory in Fig. 9 D (ii) was identified computationally by screen-
ing among all well-separated state transitions identified by
the HMM analysis (i.e., the distance between the mean of the
first and the second Gaussian states of the transition is larger
than two times the SD of the first state). Specifically, all HMM-
identified morphological transitions were screened for switches
into a persistent morphological state (longer than 90 s), where
the neurite outgrowth state was classified as pausing/retract-
ing for a majority of the state time points (greater than 85%),
and accompanied by an increase in the percent time the neurite
was pausing/retracting between the two morphology states (at
least a 30% delta). Fig. 9 D (ii) shows the only trajectory, of the
20 unperturbed GC movies analyzed, exhibiting a morphology
state transition meeting the above criteria.

After HMM, each frame of a respective trajectory is assigned
to a given HMM state. Fig. 9 (C and F) was generated by pool-
ing scale-normalized feature data (see Materials and methods,
Per-frame feature dimensionality reduction) associated with
each HMM state discovered along each respective trajectory.
Heat maps show the median corresponding to the feature value
distribution for each respective HMM state. The kruskalwallis
P values were calculated via the kruskalwallis function in MAT
LAB. The resulting kruskalwallis stat structure for the filopodia
length distributions was then input into MATLAB's multcompare
function to obtain the respective Tukey-Kramer P values.

Bagplot (2D boxplot) overlays

To visualize the localization of multiple individual GC trajec-
tories within the reduced morphological MDS space and to re-
move potential outlier data points, 2D boxplots (i.e., bagplots)
were constructed as described previously (Rousseeuw et al.,
1999) using MATLAB code available for download at https://
physionet.org/physiotools/ecg-kit/common/LIBRA/bagplot
.m (Goldberger et al., 2000). These plots (Fig. 8 D, iii and iv;
Fig. 9 D, iii; and Fig. 10, A-G) are 2D versions of the more fre-
quently used one-dimensional boxplot; the inner contour,
referred to as the “bag,” encloses 50% of the trajectory’s data
points, while the outer contour, referred to as the “fence,”
is the convex hull of the trajectory data points in 2D with
outliers removed.

Separation statistic

The separation statistic, SS, in Fig. 10 H calculated between the
control population and each respective siRNA treatment condi-
tion was formulated as an Inverse Davies-Bouldin index (Davies
and Bouldin, 1979) such that

SS = ClustDist
[zﬁ*;m(aipert) S NCont (iCont) | ©

NPert * NCont
Here, ClustDist is the Euclidian distance between the centroid
of the control and the centroid of the perturbation. Centroids
of the respective populations were calculated from the pooled
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perturbation (control) per-frame data points. giPert(Cont) is
the Euclidean distance between the centroid of the perturba-
tion (control) and the feature vector corresponding to the ith
per-frame data point of the perturbation (control) popula-
tion. NPert(Cont) is the total number of per-frame data points
comprising the respective pooled perturbation/control popu-
lation. Separation statistics were calculated using the full sev-
en-dimensional feature vector as defined in Fig. 8 D (i). Values
for each distribution of features were normalized for feature
scale such that a pooled feature distribution over all conditions
maintained a mean of 0 and a SD of 1. CIs for each separation
calculation were constructed via bootstrapping, i.e., each pair
of data was randomly resampled with replacement for 10,000
iterations maintaining the original labels. P value estimates
were calculated by a permutation test, i.e., each pair of data
was pooled and randomly reassigned group labels for 10,000
iterations to estimate the null distribution.

Online supplemental material

Fig. S1 shows raw image data segmented in Fig. 2 A, definitions
of GC parts, and problems associated with global thresholding
as a primary image processing method for GCs. Fig. S2 shows
an extended flow chart of the GCA algorithm for segmentation,
complementing Fig. 1. Fig. S3 details how GCA formulates the
filopodia/branch reconstruction as a graph matching problem.
Fig. S4 plots the GCA automated linescans corresponding to
select veil/stem filopodia from Fig. 2 E as well as a false-nega-
tive filopodia resulting from a poor sigmoidal fit. Fig. S5 shows
the results from the semi-automated validation of GCA's em-
bedded actin bundle detection and corresponding length mea-
surements. Fig. S6 shows GCA segmentation and veil velocity
analysis applied to previously published, primary mouse and
differentiated induced pluripotent stem cell motor neurons. Fig.
S7 shows how the segmentation parameters in Fig. 4 (A and B)
for previously published software Filopodyan (Urbanc¢i¢ et al.,
2017; ii) and FiloQuant (Jacquemet et al., 2017; iii) were chosen
using systematic segmentation parameter scanning. Videos 1,
2, and 3 show steps in the segmentation algorithm for a canon-
ical unperturbed GC (Video 1), several noncanonical GC veil/
stems (Video 2), and two noncanonical GC filopodia/branch
reconstructions (Video 3), respectively. Videos 4, 5, and 6 show
GCA filopodia segmentation and local veil velocity overlays for
example control (Video 4), Rho GTPase siRNA (Video 5), or select
Racl GEF/GAP siRNA (Video 6)-treated N1E-115 GCs labeled with
GFP LifeAct. Videos 7and 8 compile movies of GCA filopodia seg-
mentation and either veil/stem thickness (Video 7) or local veil
velocity (Video 8) for GCs of varying size, type, and fluorescent
label, imaged in vitro, ex vivo, and in vivo. Videos 9 and 10 show
dynamic visualizations of how a GC morphology changes over
time in reduced morphology space for an N1E-115 GC acutely
treated with DMSO (Video 9) or 25 M CK666 (Video 10). Data
points in Videos 9 and 10 are colored by instantaneous neurite
outgrowth (top; Fig. 8 E) or HMM morphology state (bottom;
Fig. 9 A) classification. Table S1 lists GCA segmentation param-
eters, default settings, and recommendations. Table S2 provides
the siRNA sequences used in this study.
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