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DIP-2 suppresses ectopic neurite sprouting and
axonal regeneration in mature neurons

Nathaniel Noblett"?*, Zilu Wu**, Zhao Hua Ding"?*, Seungmee Park*@®, Tony Roenspies?, Stephane Flibotte?, Andrew D. Chisholm*@®, Yishi Jin*®,
and Antonio Colavita2®

Neuronal morphology and circuitry established during early development must often be maintained over the entirety of
animal lifespans. Compared with neuronal development, the mechanisms that maintain mature neuronal structures and
architecture are little understood. The conserved disco-interacting protein 2 (DIP2) consists of a DMAP1-binding domain and
two adenylate-forming domains (AFDs). We show that the Caenorhabditis elegans DIP-2 maintains morphology of mature
neurons. dip-2loss-of-function mutants display a progressive increase in ectopic neurite sprouting and branching during late
larval and adult life. In adults, dip-2also inhibits initial stages of axon regeneration cell autonomously and acts in parallel to
DLK-1 MAP kinase and EFA-6 pathways. The function of DIP-2 in maintenance of neuron morphology and in axon regrowth
requires its AFD domains and is independent of its DMAP1-binding domain. Our findings reveal a new conserved regulator of

neuronal morphology maintenance and axon regrowth after injury.

Introduction

Neurons exhibit diverse morphologies that are important for
proper connectivity and information processing. Morphogenesis
of neurons involves specification of axon and dendritic processes,
elaboration of dendritic arbors, and wiring and refinement of
neuronal connections (Jan and Jan, 2010). Adult neurons are long
lived and, although capable of plasticity-promoting remodeling of
dendritic and synaptic structures, maintain relatively stable mor-
phologies over the adult lifespan. Both intrinsic and extrinsically
acting molecules have distinct roles in the maintenance of neuro-
nal morphology. However, despite extensive studies, the mecha-
nisms that maintain neuronal morphology and circuitry over long
lifespans remain poorly understood. Moreover, regulation of such
mechanisms may underlie adaptive responses that control neurite
outgrowth or regeneration in response to axon damage.

The disco-interacting protein 2 (DIP2) family is conserved
from Caenorhabditis elegans to mammals and contains a DNA
methyltransferase-associated protein 1 (DMAP1) binding domain
and two class I superfamily adenylate-forming domains (AFDs;
Mukhopadhyay et al., 2002). AFDs, most commonly found in
acyl-CoA synthetases in higher eukaryotes, activate fatty acids
as acyl-adenylates during fatty acid metabolism (Schmelz and
Naismith, 2009). DIP2 was first identified as a protein binding
to the nuclear factor Disconnected (Disco) in Drosophila mela-
nogaster (Mukhopadhyay et al., 2002), but the in vivo roles of

the DIP2 family remain little understood. Humans and other
mammals have three DIP2 genes (DIP2A-C). Human DIP2A was
reported to be a candidate cell surface receptor for the secreted
glycoprotein follistatin-like 1 (FSTL1) in endothelial cells (Ouchi
et al., 2010). Mouse DIP2B is associated with methylated DNA
in mitotic fetal epithelial progenitor cells during organogenesis
(Hayashi et al., 2017). Drosophila has one DIP2 gene, recently
shown to regulate stereotypical axon bifurcation of mushroom
body neurons (Nitta et al., 2017).

In this study, we report that C. elegans DIP-2 functions post-
developmentally to maintain neuronal morphology. Loss of dip-2
function results in progressive age-dependent increase in ectopic
neurite formation. Overexpression of DIP-2 suppresses the nor-
mal progressive neuronal sprouting observed in aging C. elegans.
Moreover, DIP-2 acts in mature neurons to inhibit axon regenera-
tion after laser injury. Our findings reveal a common mechanism
that restrains neurite outgrowth in mature neurons during aging
and after axon injury.

Results and discussion

C. elegans DIP-2 regulates neuronal morphology

We previously reported the isolation of nde-5 mutants based on
aberrant morphology of ventral cord (VC) motor neurons (Carr
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Figure 1. dip-2 regulates neuronal morphology and migration. (A) VC4 and VC5 neurons in WT and a zy25 mutant. Arrow points to ectopic neurite from
VC4. (B) DIP-2 protein schematic showing domain organization and mutations. (C) Quantification of VC morphology defects in Dip-2 mutants. (D) Mechano-
sensory neuron images. (E) Worm schematics summarizing dip-2 neuronal morphology and migration defects (red). (F~H) Quantification of Dip-2 neuronal
morphology defects in ALM (F) and PVM (G and H). dip-2 mutants display ectopic neurites (arrows) from cell bodies and axon branching (thick arrow in D)
defects. Bars, 20 um. Error bars indicate SEM of proportion (n = 51-112). Significance compared with WT using one-way ANOVA with Tukey post hoc test.
* P<0.05 *** P<0.001.

etal., 2016). In these mutants, the normally bipolar VC4 and VC5  from PCP to block ectopic neurite formation. Because gk913988
neurons display additional neurite-like outgrowth from their is predicted to disrupt most if not all DIP-2 isoforms, we desig-
cell bodies, resulting in distinct tripolar morphologies (Fig. 1A). nate itasanull allele, dip-2(0). Apart from a defect in egg-laying
We performed whole-genome sequencing and found that nde-5  (below), dip-2 mutants show normal growth and movement. In
alleles affected the C. elegansorthologue of DIP2 (Fig.1B), hence  this study, we focus on the role of dip-2 in neurons.

we renamed the gene to dip-2. Transcriptomic data reveal several To determine the extent of neuronal morphological defects in
mRNAs produced from the dip-2locus, encoding several protein  dip-2 mutants, we examined additional types of neurons includ-
isoforms with or without the DMAP1-binding domain (Lee etal,, ing mechanosensory neurons (ALML/R, AVM, PVM, and PLM-
2018). We confirmed one of these transcripts to encode an ORF  L/R) and the DVB and HSN(L/R) motor neurons (see Materials
of 1,681 amino acids including all conserved domains (Fig. 1B). and methods). In WT animals, these neurons have simple and
Two independently derived mutants, gk913988 and 0k885, dis-  mostly unipolar morphologies. In young adult dip-2(0) mutants,
played similar VC neuronal morphology defects (Fig. 1 C). The most of these neurons displayed ectopic neurites from cell bod-
neuronal defects of dip-2 mutants resemble those in planar ies, like those in VC4 and VC5 (Fig. 1, D-G; and Fig. S1, A-D). PVM,
cell polarity (PCP) pathway mutants such as vang-1/Van Gogh  which sends a single axon ventrally to the ventral nerve cord
(Sanchez-Alvarez et al., 2011). We made double mutants of dip-2  (VNC) and then anteriorly, was an exception as it also showed
and vang-1and found the ectopic neurite defects to be furtheren-  highly penetrant axon branching such that axons bifurcated at
hanced (Fig. 1 C), suggesting that dip-2 acts in a pathway distinct the VNC and extended a short ectopic posterior branch (Fig. 1, D
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Figure 2. dip-2 mutants display an age-dependent increase in neuronal morphology defects. (A) Representative images of mechanosensory neuron
morphology in WT and dip-2 mutants at D1 and D5. Arrows indicate ectopic neurites. Bar, 20 um. (B) ALM neurons in dip-2 mutants display a cumulative
increase in ectopic neurites with increasing age compared with a lesser increase in WT animals. Some ectopic ALM neurites in dip-2 mutants show additional
age-dependent secondary branching (arrowhead in A). (C and D) PLM, AVM, and PVM also display age-dependent increases in ectopic neurites. Error bars
indicate SD for data collected from three independent counts of 40-75 ALM or PLM and 15-40 AVM or PVM neurons. Significance compared with WT at each
life stage using one-way ANOVA with Tukey post hoc test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

and H). dip-2(0) mutations displayed partial dominance for ec-
topic neurites in ALM but not in other neurons (Fig. 1, F—H) , sug-
gesting that some neurons may be more sensitive to DIP-2 levels.

In dip-2(0) mutants, HSN neurons displayed incomplete mi-
gration (Fig. S1, C and E). It is possible that the egg-laying defect
in dip-2(0) mutants is a result of defects in VC morphology and
HSN migration. Despite penetrant neurite sprouting and cell mi-
gration defects (summarized in Fig. 1E), dip-2 mutants displayed
mostly normal axon pathfinding. Similarly, loss of function in
Drosophila DIP2 does not generally affect axon guidance but re-
sults in ectopic axon branching (Nitta et al., 2017). Combined,
these findings suggest that DIP2 proteins play evolutionarily con-
served roles in neuronal development, particularly in ensuring
stereotypic morphology by blocking ectopic protrusions from
cell bodies or axons.

DIP-2 maintains the morphology of mature neurons

Neuronal morphology defects of dip-2 mutants were both more
frequent and more severe in older adults compared with younger
adults, and were more penetrant in animals cultured at 25°C
compared with 20°C. As zy25 and gk913988 result in premature
stop codons, leading to strong loss-of-function or null mutations,
this temperature sensitivity is unlikely to be an effect of tem-
perature-labile proteins. To quantify these effects, we examined
mechanosensory neuron morphology from newly hatched first
larval stage (L1) to day 5 (D5) adults in animals cultured at 20°C
(Fig. S1 F) and 25°C (Fig. 2). ALM and PLM neurons are born
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embryonically and have undergone primary axon outgrowth
and guidance before the L1 stage. AVM and PVM neurons arise
postembryonically and attain their final positions and morphol-
ogies by L2 stage (Chalfie and Sulston, 1981). In dip-2(0) mutants,
the percentage of ALMs displaying ectopic neurites increased
from ~14% in L1 to 71% and 98% in D1 and D5 adults, respectively
(Fig. 2, A and B) compared with 36% ectopic neurites in ALMs of
WT D5 adults. A similar progressive increase in axon morphology
defects was seen in PLM, AVM, and PVM neurons (Fig. 2, C and
D). Strikingly, ectopic ALM neurites in dip-2(0) mutants under-
went secondary branching or developed arbor-like morphologies
(Fig. 2 A) with increasing age (Fig. 2 B). This contrasts with the
simple unbranched ectopic neurites associated with aging in the
WT (Fig. 2 B; Pan et al., 2011; Tank et al., 2011; Toth et al., 2012).
Notably, transgenic overexpression of DIP-2 (zyIs47) suppressed
age-dependent sprouting in a WT background such that only 12%
of ALMs displayed ectopic neurites in D5 adults (Fig. 2 B), sug-
gesting that the ectopic neurites in aging WT adults might reflect
a decline in dip-2 function.

To determine whether DIP-2 acts postdevelopmentally to
maintain neuronal morphology, we asked whether restoration
of DIP-2 expression in dip-2(0) larvae mitigated the ALM ecto-
pic neurite phenotype in adult animals. We used a heat shock
(HS)-inducible promoter to drive DIP-2 expression with tem-
poral control (see Materials and methods). We found that HS-
induced (2 h at 35°C) DIP-2 expression in dip-2 mutants at the
L1, and to a lesser extent, the L4 stage resulted in a partial but
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Figure 3. dip-2 maintains neuronal morphology in postembryonic
stages. (A) Schematic indicating HS at embryonic, L1, or L4 stages in dip-2
mutants to trigger HS promoter-inducible DIP-2 expression and the quan-
tification of ALM morphology defects in D1 adults. (B) In dip-2 mutants,
HS-induced DIP-2 expression at embryonic and larval stages resulted in
significantly less severe ALM defects in D1 adults compared with vector-only
animals. Error bars indicate SEM of proportion (n = 69-361). Significance com-
pared with vector-only worms using one-way ANOVA with Tukey post hoc
test. *, P < 0.05; ***, P < 0.001.

significant reduction in ectopic neurites in D1 adults (Fig. 3). We
conclude that DIP-2 can act postdevelopmentally to maintain
neuronal morphology.

DIP-2 localizes to the cytosol of neurons and acts

cell autonomously

To determine where DIP-2 is expressed and localized, we gen-
erated transgenic lines expressing a transcriptional reporter
(zyEx44) or a translational fusion protein with GFP at the C
terminus (zyIs47) driven by ~2.5-kb upstream regulatory se-
quences (see Materials and methods). We also used genome
editing (Dickinson etal., 2015) to insert GFP at the start of the en-
dogenous dip-2 gene (zy70). DIP-2::GFP expression from zyIs47
rescued Dip-2 defects, and zy70[GFP::DIP-2] displayed normal
neuronal morphology (Fig. 1 F), indicating that GFP fusions to
either the N or C terminus do not disrupt DIP-2.

Expression from these three DIP-2 reporters was observed
in multiple tissues in different developmental stages. In lar-
vae and adults, dip-2 was expressed in most neurons including
VNC motor neurons, HSN, PVD, and mechanosensory neurons
(Fig. 4, A-E; and Fig. S2 A) as well as a subset of epidermal cells
(Fig. S2 B). In neurons of larvae and adults, both transgenic DIP-
2::GFP and endogenous GFP::DIP-2 proteins showed cytoplasmic
localization in axons and cell somas and were mostly excluded
from nuclei (Fig. 4, B-E; and Fig. S2 A). Cytoplasmic levels of GF-
P::DIP-2 (zy70) in neurons showed a decreasing trend with age
(Fig. 4 F), consistent with our findings that DIP-2 overexpression
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can suppress age-dependent neuronal morphology defects in WT
animals. Interestingly, however, in epidermal cells, transgenic
and endogenous DIP-2 GFP fusions were localized to the mem-
brane from embryo to late larvae (Fig. S2 B). Such differential
subcellular localization of DIP-2 suggests that DIP-2 may func-
tion via divergent molecular mechanisms in different cell types.

We next asked whether DIP-2 was required cell autonomously
toregulate mechanosensory neuron morphology and HSN migra-
tion. We generated transgenic lines in which dip-2 was expressed
from panneuronal (Prgef-1or Punc-33), mechanosensory neuron
(Pmec-4 or Pmec-7), or panepithelial (Pdpy-7or Pcol-19) promot-
ers and assessed them for their ability to rescue neuronal defects
in dip-2(0) mutants and aged WT animals. dip-2 expression in
neurons but notin the epidermis rescued dip-2 ALM morphology
defects (Fig. 4 G), suppressed ectopic sprouting in WT D5 and D7
adults (Fig. 4 H), and rescued dip-2 HSN migration defects (Fig.
S1G), consistent with dip-2 acting in a cell autonomous manner.

DIP-2 function in neurons depends on AFD, not on its
DMAP1-binding domain

AFD domain-containing enzymes such as acyl-CoA synthetases
are present in many compartments of the cytoplasm and can also
associate with membranes (Coleman et al., 2002). Drosophila
DIP2 mutants have decreased acyl-CoA levels, suggesting a role
in fatty acid metabolism (Nitta et al., 2017). However, none of the
human DIP2 homologues have been shown to have acyl-CoA syn-
thetase activity. To characterize the contribution of C. elegans
DIP-2 AFD domains in its function and subcellular localization,
we generated transgenes expressing DIP-2 lacking specific do-
mains (Fig. S2 C). Deletion of either AFD domain but not of the
DMAPI-binding domain completely abolished the ability of DIP-2
to rescue neuronal morphology and migration defects (Fig. S2,
D and E). In mature neurons, DIP-2::GFP, expressed from these
in-frame deletion constructs, showed cytoplasmic localization
resembling that of full-length (FL) protein (Fig. S2 F). How-
ever, in embryonic epidermal cells, DIP-2::GFP proteins lacking
AFD1 or AFD2 but not those lacking the DMAP1-binding domain
showed partial to complete loss of membrane localization com-
pared with FL (Fig. S2 G). These findings suggest a cytosolic site
of action and potentially an AFD-dependent acyl-CoA synthetase
role for DIP-2 in neurons. Human DIP2A was identified as a pu-
tative cell surface receptor in cultured endothelial cells (Ouchi
et al., 2010). We found that DIP-2 shows membrane localization
in epidermal cells. Such differential localization observed across
species implies a membrane site of action for DIP2 proteins in
nonneuronal cells.

DIP2 was first identified in Drosophila from its binding
to Disco, a transcription factor implicated in axon guidance
(Mukhopadhyay et al., 2002). However, fly dip2 mutant phe-
notypes differ from those of Disco, suggesting that the pro-
tein-binding interaction may not be relevant in vivo (Nitta et
al., 2017). Drosophila and vertebrate DIP2 proteins are broadly
expressed in the central nervous system (Mukhopadhyay et al.,
2002; Zhang et al., 2015), and their subcellular localization in
neurons had not been fully characterized (Nitta et al., 2017). We
find that functional GFP::DIP-2 or DIP-2::GFP does not accumu-
late in the nucleus and that the DMAPI-binding domain is not
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required for DIP-2 function in neurons (Fig. S2, D and E). More-
over, Disco orthologues are detected only in insects. These results
suggest that roles of C. elegans DIP-2 in neuronal maintenance
are unlikely to be through interaction with transcription factors
in epigenetic gene regulation.

DIP-2 inhibits the early phase of axon regeneration via its AFDs
The persistent expression of DIP-2 in the adult nervous system
and the role of dip-2 in maintaining mature neuron morphol-
ogy led us to ask whether it may mediate other forms of axon
growth. We examined adult axon regeneration using femtosec-
ond laser axotomy (Wu et al., 2007). In WT adults, axotomy of
PLM axons triggers growth cone reformation and regrowth from
the severed proximal end. dip-2(0) adults displayed enhanced
regrowth compared with WT controls (Fig. 5, A and B; and Fig.
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S3 A). Expression of FL DIP-2 driven by pan-neural (Prgef-I) or
mechanosensory (Pmec-4) neuron promoters but not by an adult
epidermal promoter (Pcol-19) rescued the enhanced regrowth
phenotype in dip-2(0) mutants (Fig. 5, A and B). These data in-
dicate that dip-2 acts cell autonomously to inhibit the regenera-
tive capacity of axons. GABAergic motor neurons also displayed
enhanced regeneration (Fig. S3 B), suggesting broad effects of
dip-2 in axon regeneration. DIP-2 lacking its DMAPI-binding
domain was fully able to rescue enhanced regrowth phenotypes,
whereas DIP-2 lacking either AFD1 or AFD2 lacked rescuing abil-
ity (Fig. S3, Dand E).

DIP-2 acts early in the axon regenerative response. WT PLM
axons initiate regrowth ~6 h after axotomy (Chen et al., 2011).
dip-2(0) mutants showed significantly enhanced regrowthat 6 h
after axotomy (Fig. 5 E), suggesting that DIP-2 inhibits the initial
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response to damage and/or growth cone reformation. Previous
studies identified multiple pathways that regulate the early re-
growth response including the MAPKKK DLK-1, which is essen-
tial for initiation of regrowth (Hammarlund et al., 2009; Yan et
al., 2009), and the microtubule regulator EFA-6, which restrains
regrowth (Chen et al., 2011, 2015). Loss of function in dip-2 par-
tially suppressed the regeneration defects in dlk-1(0) (Fig. 5 C) as
well as those of its downstream components, pmk-3 and cebp-1
mutants (Fig. S3 C). In contrast, loss of efa-6 leads to increased
regrowth, and double mutants of efa-6 and dip-2 showed further
enhanced regrowth (Fig. 5 D). These data indicate that DIP-2
likely acts in parallel to both DLK-1 and EFA-6.

In summary, we have shown that C. elegans DIP-2 main-
tains neuronal morphology. Loss of DIP-2 function leads to ec-
topic axon branching and neurite sprouting through adult life.
Conversely, DIP-2 overexpression suppresses the progressive
neuronal sprouting seen in the aging WT, suggesting that DIP-2
levels in normal aging might affect the stability of neuronal mor-
phology. DIP-2 maintains neuronal morphology by suppressing
nascent neurite outgrowth in mature neurons, unlike trophic
factors that regulate the complexity of existing neuronal struc-
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tures in adult animals (Emoto et al., 2006; Matter et al., 2009;
Chen et al., 2017). We also show that DIP-2 negatively regulates
regenerative regrowth after injury. Repression of neurite growth
and inhibition of injury-triggered regrowth both depend on the
AFDs of DIP-2 but not on its DMAPI-binding domain, providing
the first evidence that maintenance of neurite morphology and
axon regrowth might involve a common mechanism. It will be of
interest to determine whether mammalian DIP2 family members
play comparable roles in the mature nervous system.

Materials and methods

C. elegans strains and genetics

C. elegans strains were cultured using standard methods. The
Bristol N2 strain was used as WT along with the following al-
leles and transgenes: LGI: dip-2(zy25, zy26, ok885, gk913988),
dik-1(km12), zdIs5[mec-4p::GFP]. LGIL: juls76[unc-25p::GFP].
LGIV: pmk-3(tm745, okl69), efa-6(tm3124), zyls47 [DIP-
2:GFP + myo-2p::mCherry], zdIs4[mec-4p::GFP], zdIs13[tph-
1p::GFP], juSi329[mec4p::mKate]. LGX: vang-1(tml1422),
cebp-1(tm2807). zylIs3[flp-10p::GFP + odr-1p::mCherry] (linkage
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unknown). Extrachromosomal transgenes: zyEx44[dip2p::gfp
+ myo-2p::mCherry], zyEx51[unc-33p::DIP-2::SL2::tagRFP
+ myo-2p::mCherry], zyEx53[rgef-1p::DIP-2::SL2::tagRFP +
myo-2p::mCherry], zyEx55[dpy-7p::DIP-2::SL2::tagRFP +
myo-2p::mCherry], zyEx57[mec-4p::DIP-2::GFP + myo-2p::m-
Cherry], zyEx65[dip-2p::DIP-2::SL2::tagRFP + myo-2::m-
Cherry], zyEx67[dip-2p::DIP-2 DMAPIA::SL2::tagRFP +
myo-2::mCherry], zyEx69-70[dip-2p::DIP-2 AFDIA::SL2::tagRFP
+ myo-2::mCherry], zyEx72-73[dip-2p::DIP-2 AFD2A::SL2::-
tagRFP + myo-2::mCherry], zyEx75-77[col-19p::DIP-2::GFP
+ myo-2::mCherry], zyEx78[dip-2p::DIP-2::GFP + myo-2::m-
Cherry], zyEx79[dip-2p::DIP-2 DMAPIA::GFP + myo-2::m-
Cherry], zyEx81[dip-2p::DIP-2 AFDIA::GFP + myo-2::mCherry],
zyEx82[dip-2p::DIP-2 AFD2A::GFP + myo-2::mCherry], zyEx83-
84[hsp-16.2p::DIP-2::SL2::tagRFP + myo-2p::mCherry], zyEx-
85[hsp-16.2p (pPD49.78) vector], zyEx86[mec-7p::DIP-2].

Molecular biology and transgenic strains

Whole-genome paired sequence reads were mapped to the C.
elegans reference genome version WS220 using the short-read
aligner Burrows-Wheeler Aligner (Li and Durbin, 2009). Single-
nucleotide variants (SNVs) were identified and filtered using
the SAMtools toolbox (Li et al., 2009). Each SNV was anno-
tated with a custom-made Perl script and gene information
from WormBase (WS220). The read alignments in the regions
of candidate SNVs were visually inspected with the IGV viewer
(Thorvaldsdéttir et al., 2013).

A 5,046-bp cDNA corresponding with the DIP-2b transcript
(F28B3.4b; WormBase) was isolated from mixed-stage total RNA
by RT-PCR using SL1 trans-spliced lead (5'-GGTTTAATTACCCAA
GTTTGAG-3') and dip-2 C-terminal end (5'-TTACATGTGATACGC
TACGTATAT-3') primers and cloned into pBluescript. The dip-
2p::GFPtranscriptional reporter was made by PCR amplification
of the 2,458-bp upstream regulatory sequences and inserted into
the pPD95.77 vector. This construct was modified using Gibson
Assembly to insert the dip-2 cDNA (excluding stop codon) up-
stream and in-frame with GFP to generate the dip-2p::DIP-2::GFP
translational reporter.

Expression constructs containing promoters of dip-2 (2,458
bp), neuronal unc-33 (1,961 bp), neuronal rgef-1 (3,443 bp), and
epidermal dpy-7 (434 bp) were made using three-fragment Gib-
son Assembly in which PCR-amplified promoters and the 5,046-
bp dip-2 cDNA (including stop codon) were ligated upstream of
SL2::tagRFP from a linearized pSM-SL2::tagRFP vector (a gift
from C.-F. Chuang, University of Illinois, Chicago, IL). Overlap
PCR extension was used to fuse the mechanosensory neuron
mec-4p (1,020 bp) and epidermal col-19p (759 bp) promoters to
DIP-2::GFP. PCR-amplified dip-2 cDNA was cloned into the Kpnl
site of the mec-7 expression plasmid pPD96.41. DIP-2 domains
were identified using HMMER (Finn et al., 2011), and domain
deletion constructs were made using Gibson Assembly in which
either dip-2p::dip-2(cDNA)::SL2tagRFP or dip-2p::DIP-2::GFP
plasmid was the backbone and overlap PCR was used to delete
dip-2 cDNA nucleotides 7-345, 1,279-2,736, and 3,256-4,641 to
generate in-frame deletion of DMAPI1-binding domain (amino
acids 3-115), AFD1 (amino acids 428-912), and AFD2 (amino
acids 1,086-1,547) constructs, respectively. Gibson Assembly
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was used to insert a dip-2(cDNA)::SL2tagRFP PCR fragment
into the EcoRV site of the hsp-16.2p vector pPD49.78 to generate
hsp-16.2p::DIP-2::SL2::tagRFP. dip-2 cDNA-containing constructs
were sequenced to verify PCR fidelity.

Extrachromosomal transgenes were made by injecting each
construct at 10 ng/ul with 5 ng/pl pCFJ90 (myo-2p::mCherry)
coinjection marker and 115 ng/ul pBluescript. A dip-2p::DIP-2::
GFP-containing extrachromosomal transgene was integrated
to generate zyIs47. For ALM and HSN cell-specific rescue ex-
periments, rgef-1 and unc-33 promoters, respectively, were
used to drive panneural expression. For neuronal morphology
and axon regeneration cell-specific rescue experiments, dpy-7
and col-19 promoters, respectively, were used to drive panepi-
dermal expression.

zy70 CRISPR/Cas9-mediated GFP knock-in

The CRISPR/Cas9-mediated approach described in Dickinson et
al. (2015) was used to insert an in-frame GFP cassette at the N ter-
minus of endogenous dip-2 to generate dip-2(zy70). The CRISPR
design tool (http://crispr.mit.edu) was used to identify the dip-2
N-terminal target site 5'-GTTGCAGATAATGAATGATCCGG-3'.
Overlap fusion PCR was used to generate a plasmid containing
C. elegans germline promoter driven Cas9 and dip-2-sgRNA (5'-
GTTGCAGATAATGAATGATCGTTTTAGAGCTAGAAATAGCAA
GT-3'). The GFP::DIP-2 homology-directed repair (HDR) plasmid
was made using three-fragment Gibson Assembly in which dip-2
homology arms containing 508 bp upstream and 800 bp down-
stream of the dip-2 ATG start codon were PCR amplified from N2
genomic DNA and fused such that they flanked the GFP in the lin-
earized GFP cassette-containing plasmid described in Dickinson
etal. (2015). zy70 was verified by sequencing.

Quantification of neuronal morphology and migration defects
Neuronal morphology phenotypes were analyzed in worms
grown at 25°C. Worms were mounted on a 2% agarose pad in
200 mM levamisole hydrochloride (31742; Sigma-Aldrich). Fluo-
rescent imaging was performed by wide-field microscopy (Zeiss
Axiolmager M2) using either 20x/0.75-NA air or 63x/1.4-NA
oil objectives. Images were acquired using a Zeiss Axiocam 506
mono camera and processed using Zeiss Axiovision (v.4.8) soft-
ware. Ectopic neurites and axon branches (in PVM) were scored
in young adults when extension length was >10 pm. For analysis
of age dependence on neuronal morphology, worms were syn-
chronized by bleaching and then grown on standard medium
supplemented with 16 uM fluorodeoxyuridine (FO503; Sigma-Al-
drich) to induce sterility and prevent premature death due to
retention of eggs in aging dip-2 adults. In L4 and adult stages,
neurites were scored as ectopic if length was >10 pm and as
branched if they also showed secondary or complex branching.
In L1, any ectopic ALM cell body protrusion >0 yum was scored as
an ectopic neurite. HSN migration phenotypes were analyzed in
young adults grown at 20°C. HSN positions were scored along the
anterior-posterior (AP) axis between the vulva (0% AP position)
and the tip of the tail (100% AP position). HSN was scored as un-
dermigrated if at least one HSN per animal was located within
bins defined as 12.5-37.5% (light gray), 37.5-75% (dark gray), and
75-100% (black) along the AP axis.
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Heat shock-induced expression

Newly laid eggs (0-3 h after egg laying) or newly hatched L1
(0-3 h after hatching) from dip-2(0); Ex[hsp-16.2p::vector] or
dip-2(0); Ex[hsp-16.2p::DIP-2] that were grown at 20°C were heat
shocked, allowed to recover, and then scored for ALM neurite de-
fects as described above as D1 adults. For embryonic heat shock,
from worms grown at 20°C, newly laid eggs were heat shocked at
35°C for 2 h and then allowed to recover at 20°C. Newly hatched
L1 were then transferred to 25°C for 48 h. For L1 heat shock, from
worms grown at 20°C, newly hatched L1 were heat shocked at
35°C for 2 h and then allowed to recover at 25°C for 46 h. For L4
heat shock, from worms grown at 20°C, newly hatched L1 were
transferred to 25°C for 24 h, heat shocked at 35°C for 2 h (early
L4), and then transferred to 25°C for 22 h. Two independent lines
containing hsp-16.2p::DIP-2 transgenic arrays were examined.

Age-dependent DIP-2 expression

Worms were mounted with levamisole in M9 buffer described
above, and Z stack images of a cell of interest were acquired
using the Plan Apochromat 63x/1.4 oil differential interference
contrast objective lens of a Zeiss LSM710 confocal microscope
at room temperature. GFP and mKate2 images were collected
using the Zen 2011 SP3 (black edition) software and processed
for maximum-intensity Z projection using Fiji (ImageJ; National
Institutes of Health). In the final projected image, a circle fitting
in the nucleus was drawn as a region of interest (ROI) in which
GFP intensity was measured. Same-size ROIs were selected in
the cytoplasm, one above the nucleus and the other below the
nucleus. GFP intensity measured in these two cytoplasmic ROIs
was averaged. The nuclear intensity considered as background
was subtracted from the average cytoplasmic intensity. The size
of ROI was identical in all the images analyzed using Image].

Laser axotomy
Axons of PLM or GABAergic motor neurons were axotomized in
anesthetized L4 larvae as described (Wu et al., 2007).

Statistical analysis
Allstatistical analysis used Prism (GraphPad Software). Data distri-
bution was assumed to be normal, but this was not formally tested.

Online supplemental material

Fig. S1 shows that dip-2 mutants display neuronal morphology
and migration defects. Fig. S2 shows requirements for the DMAP1
binding and AFD domains for DIP-2 neuronal development and
protein localization. Fig. S3 shows supporting evidence for dip-2
in PLM axon regeneration.
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