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Imaging studies, high-resolution chromatin conformation maps, and genome-wide occupancy data of architectural 
proteins have revealed that genome topology is tightly intertwined with gene expression. Cross-talk between gene-
regulatory elements is often organized within insulated neighborhoods, and regulatory cues that induce transcriptional 
changes can reshape chromatin folding patterns and gene positioning within the nucleus. The cause–consequence 
relationship of genome architecture and gene expression is intricate, and its molecular mechanisms are under intense 
investigation. Here, we review the interdependency of transcription and genome organization with emphasis on  
enhancer–promoter contacts in gene regulation.
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Overview
The genetic material of eukaryotic cells is encased by the nuclear 
envelope. The inner of the two nuclear membranes is attached 
to a fibrillar network of proteins that constitutes the nuclear 
lamina, which has a role in genome organization (Akhtar and 
Gasser, 2007; van Steensel and Belmont, 2017). Chromosomes 
occupy distinct territories within the nucleus, and their radial 
positioning correlates with gene content and activity (Cremer et 
al., 2006). Gene poor regions and repressed genes are closer to 
the nuclear periphery and are often found in close contact with 
the lamina as part of lamina-associated domains (van Steensel 
and Belmont, 2017). Gene-rich, active regions tend to localize 
centrally (Bickmore and van Steensel, 2013) but are also found 
at nuclear pore complexes that perforate the nuclear envelope. 
In addition, the nucleoplasm contains numerous presumably 
self-organizing structures with roles in gene expression, such as 
the nucleolus, Cajal bodies, splicing bodies, and promyelocytic 
leukemia bodies, that are not surrounded by membranes (Mao 
et al., 2011). Transcriptionally inactive chromatin can aggre-
gate near nuclear chromocenters (pericentromere-associated 
domains; Wijchers et al., 2015) and is found near the nucleolus 
in so-called nucleolus associating domains (Németh et al., 2010; 
van Koningsbruggen et al., 2010). Repositioning of loci from the 
nucleolus to the lamina after cell division suggests mobility of 
transcriptionally repressed DNA between different heterochro-
matic sites (Kind et al., 2013). Differentiation-induced activation 
can move genes away from the lamina (Peric-Hupkes et al., 2010), 
and as an additional example of gene mobility upon activation, 
loci can be extruded from chromosome territories (CTs; Ragoczy 

et al., 2003; Chambeyron and Bickmore, 2004). This indicates 
that gene positioning within different nuclear environments is 
closely linked to gene activity (Fig. 1).

Imaging studies have provided numerous fundamental in-
sights into global nuclear organization, but techniques based on 
chromosome conformation capture (3C) enabled unprecedented 
views of chromosome folding, reaching single-kilobase reso-
lution of chromatin contacts (Cullen et al., 1993; Dekker et al., 
2002). 3C and its high-throughput derivatives (Denker and de 
Laat, 2016) are based on proximity ligation of DNA fragments 
and have detected numerous layers of chromosome organization. 
At the lowest scale, transcriptional regulation was found to in-
volve long-range contacts between regulatory elements, such as 
enhancers, and their target genes. Enhancers serve as a binding 
platform for transcription factors that can boost gene transcrip-
tion, and a characteristic chromatin signature has allowed for 
their annotation in many cell types (Calo and Wysocka, 2013). En-
hancers mostly reside in the noncoding part of the genome and 
they often act in a cell type–specific manner, thereby establish-
ing specialized gene expression programs characteristic of spe-
cific cell types. Genes can be influenced by multiple enhancers 
that can be located up to over a megabase away from their target 
promoter, but in many cases, chromatin looping was found to 
allow for communication between elements regardless of dis-
tance. However, the regulatory space of enhancers is confined 
by megabase scale topologically associating domains (TADs) 
that are flanked by boundary elements across which the prob-
ability of chromatin interactions is reduced (Dixon et al., 2012; 
Nora et al., 2012; Sexton et al., 2012). The tendency of active and 
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repressive chromatin to segregate and occupy distinct regions 
in the nucleus is referred to as A (transcriptionally active) and 
B (inactive) compartments (Lieberman-Aiden et al., 2009). In 
addition, intra-chromosomal contacts are more frequent than 
inter-chromosomal contacts, which is compatible with the con-
cept of CTs that had been described in imaging studies (Cremer 
and Cremer, 2001).

In this review we explore in greater depth the mutual rela-
tionship between enhancer function and architectural features 
of chromatin, including how certain interactions are favored and 
stabilized while others are disfavored, and how enhancer activity 
is regulated by and impacts upon a complex, multi-layered nu-
clear architectural framework.

Physical proximity can mediate communication among 
regulatory elements
Transcriptional enhancers are DNA sequences that augment 
gene transcription (Banerji et al., 1981; Moreau et al., 1981). En-
hancers function via a plethora of mechanisms that are initiated 
by sequence-specific DNA binding proteins and their coregula-
tors (Bulger and Groudine, 2011; Buecker and Wysocka, 2012; de 

Laat and Duboule, 2013). Enhancer-bound transcription factors 
can impact gene activity by initiating the opening of chromatin 
via recruitment of chromatin remodeling complexes to generate 
nucleosome free regions. They can also recruit histone modify-
ing complexes, basal transcription factors including RNA poly-
merase 2 (pol2), and/or proteins involved in transcriptional 
pause-release. Many of these features along with sequence con-
servation have been used to annotate enhancers genome-wide 
(Calo and Wysocka, 2013).

Enhancers typically contain clusters of transcription factor 
binding sites (Fig. 1). Transcription factors and their cofactors 
can form assemblies (termed enhanceosomes) via cooperative 
chromatin binding, which can result in synergistic transcrip-
tional outcomes (Merika and Thanos, 2001). In addition, genes 
can be controlled by multiple enhancers that in some cases are 
close to each other along the linear chromosome (Fig. 1). Clusters 
of enhancer elements have been varyingly named locus control 
region (LCR) as well as stretch-, spread-, or super-enhancers 
based on size, histone modifications, and level of occupancy 
by nuclear factors (Heinz et al., 2015; Pott and Lieb, 2015). Con-
stituent enhancer elements can also be scattered across a locus, 

Figure 1. Subnuclear positioning and chromatin loops influence transcriptional activity. Nuclear positioning and gene expression level are related. 
Repressed chromatin is often found at the periphery, active DNA tends to be located more centrally. Chromosomes occupy distinct CTs, and genes can be 
extruded from these regions to aggregate with other sites of comparable transcriptional activity. Regulatory elements such as enhancers serve as a binding 
platforms for transcription factors (TFs), and communication with target genes is allowed for by long-range chromatin contacts (loops). A gene can be activated 
by multiple enhancers, and movement to specific nuclear sites can cause changes in expression of unrelated nearby genes, a process called bystander activation.
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residing upstream, within, or downstream of the genes they con-
trol, and can cluster in 3D to form “hubs” (Patrinos et al., 2004). 
Yet neither the size of a composite enhancer nor its positioning 
allows for reliable predictions of its mechanism of action.

Vertebrate enhancers can be located up to over a megabase 
away from the promoters they act on (Lettice et al., 2003; Sagai 
et al., 2004). An answer to how these elements can communicate 
over large distances came with the development of 3C (Cullen et 
al., 1993; Dekker et al., 2002). 3C and its high-throughput deriv-
atives (4C, 5C, capture-C, and Hi-C, among others) employ sta-
bilization of chromosomal contacts via chemical cross-linking, 
restriction digestion of DNA, and ligation of DNA fragments, fol-
lowed by quantification of chimeric DNA fragments (Denker and 
de Laat, 2016). The underlying concept is that the closer genomic 
regions are positioned in nuclear space, the more likely they are 
to be cross-linked and ligated to each other. Original analyses of 
the β-globin locus by 3C (Tolhuis et al., 2002) or a method called 
RNA-TRAP (Carter et al., 2002) revealed that an enhancer, the 
LCR, contacts the β-globin promoter, looping out the intervening 
∼50 kb of DNA. The β-globin LCR, which is used frequently here 
as an example, is a strong erythroid-specific enhancer required 
for the normal expression of all genes in the cluster. It consists 
of a cluster of DNase I hypersensitive sites that cooperate to en-
sure proper globin expression during erythroid differentiation 
(Bender et al., 1998, 2001; Bulger et al., 2003; Fang et al., 2005). 
Similar regulatory loops were found for other genes (e.g., Murrell 
et al., 2004a; Würtele and Chartrand, 2006; Vernimmen et al., 
2007), and broad assessments of 3D contacts have revealed that 
looping is a widespread phenomenon (Sanyal et al., 2012; Rao et 
al., 2014). Systematic examination of chromatin contacts during 
lineage commitment and development revealed that certain con-
tacts are stable across different developmental stages and cell 
types, while others, mostly associated with variable chromatin 
states, are dynamic (Mifsud et al., 2015; Schoenfelder et al., 2015; 
Javierre et al., 2016; Andrey et al., 2017; Freire-Pritchett et al., 
2017). Stable loops may make genes permissive for rapid tran-
scriptional activation upon external stimuli but may also serve 
as a structure within which more dynamic contacts are formed. 
The fact that some enhancer–promoter interactions are estab-
lished de novo to initiate gene expression while other loops are 
preformed indicates that contacts among regulatory elements 
do not necessarily result in active transcription and that expres-
sion or recruitment of additional transcription factors may be 
required for the loop to become functional. Moreover, ongoing 
transcription is not necessary to maintain enhancer–promoter 
loops (Mitchell and Fraser, 2008; Palstra et al., 2008).

It is important to realize that enhancer–promoter looping, 
even though widespread, might not be a universal mechanism 
of distal enhancer function. For example, a neuronal enhancer 
at the sonic hedgehog (Shh) locus appears to decompact the 
locus upon activation, thereby increasing its distance from the 
Shh promoter (Benabdallah et al., 2017 Preprint). This particu-
lar scenario seems irreconcilable with an enhancer–promoter 
looping mechanism. Additional experiments in this study sup-
port a mechanism by which enhancer activity spreads along the 
chromosome to activate the promoter. Nonetheless, distinct Shh 
enhancers have been shown to engage in looped contacts with the 

Shh gene promoter (Amano et al., 2009; Williamson et al., 2016). 
It is intriguing that seemingly different mechanisms evolved to 
control the Shh promoter over large distances in distinct cell 
types. An additional consideration is that proximity among reg-
ulatory elements might not necessarily be a reflection of simple 
loops but of more complex chromatin folding patterns in which 
active loci can be condensed (Williamson et al., 2016). Hence, both 
de-compaction and compaction (perhaps as a result of complex 
looping structures) can occur upon enhancer activation. Indeed, 
architectural studies at the Igh locus suggest that spatial con-
finement may help in forging enhancer–promoter interactions 
(Lucas et al., 2014; as will be discussed). In conclusion, transcrip-
tional output is dependent on distal enhancer–promoter commu-
nication, which can be enabled by chromatin looping. As multiple 
elements or forces may be involved, high-resolution analysis 
(using multiple techniques/viewpoints/anchors/probes) may be 
necessary to interpret the contact complexity of specific loci.

Functional assessment of chromatin loops as a driving force 
of transcription
Evidence that chromatin loops can be instructive to activate tran-
scription came from tethering experiments in which proximity 
between regulatory elements was forced in living cells (Nolis et 
al., 2009; Deng et al., 2012). Zinc-finger–mediated tethering of 
the candidate looping factor Ldb1 to the β-globin promoter led to 
recruitment of the LCR and transcription activation in immature 
erythroid precursors (Deng et al., 2012). This approach was also 
used to rewire the LCR with a different gene to activate its ex-
pression while reducing transcription of the enhancer-deprived 
gene (Deng et al., 2014). dCas9-mediated tethering of YY1 to the 
Etv4 promoter in mouse embryonic stem cells (mESCs) increased 
interaction frequency between the promoter and its enhancer 
and resulted in increased transcription (Weintraub et al., 2017). 
These studies indicate that inducing proximity between regula-
tory elements and promoters can causally underlie transcription.

What is the temporal relationship between transcription and 
architectural chromatin features? Transcription is a discontinu-
ous process with periods of intense mRNA production (bursts) 
followed by longer periods of transcriptional silence (Raj and van 
Oudenaarden, 2008). Output can be modulated by altering burst 
size, reflective of the number of RNA molecules produced, and/or 
burst fraction, reflective of frequency and duration of the bursts. 
Forced juxtaposition between β-globin and the LCR leads to an 
increase in burst frequency but not burst size (Bartman et al., 
2016). Early pioneering RNA FISH studies at this locus (Wijgerde 
et al., 1995), later revisited using single-molecule RNA FISH 
(Bartman et al., 2016), provided evidence in favor of a model in 
which two genes that are under the control of the same enhancer 
display alternating and thus mutually exclusive contacts with the 
enhancer. Hence, alternating bursting of these genes might be 
a reflection of competing enhancer–promoter loops (Fig. 2 A). 
These findings contrast with a study using an engineered locus 
in Drosophila melanogaster in which a single enhancer was ca-
pable of regulating two flanking genes in a manner such that 
both genes exhibited synchronous bursting behavior (Fukaya 
et al., 2016). The latter result suggests that looped contacts are 
not always mutually exclusive (Fig. 2 A), and that competition 
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for them is not a universal mechanism for gene control at multi-
gene loci. Recent live measurements of the proximity between 
the endogenous even-skipped (eve) enhancers and an integrated 
eve promoter-driven LacZ reporter gene in Drosophila embryos 
demonstrated a close correlation between transcriptional burst-
ing and enhancer–promoter juxtaposition (Chen et al., 2018). 
Together with the aforementioned studies, this suggests that dy-
namic chromatin contacts can underlie bursty behavior of gene 
transcription. Moreover, in Chen et al. (2018), the presence of 
an ectopic eve promoter in the reporter construct diminished 
expression of the endogenous gene, presumably as a result of 
promoter competition.

Alternating chromatin loops have also been invoked to ex-
plain changes in gene expression over much longer time scales 
such as during ontogeny. For example, the developmental switch 
in the expression of β-type and α-type globin genes during de-
velopment is thought to involve mutually exclusive interactions 
with the enhancers (Foley and Engel, 1992; Palstra et al., 2003; 
Vernimmen et al., 2007), likely controlled by developmentally 
regulated nuclear factors that foster specific enhancer–promoter 

contacts, and by developmentally dynamic architectural con-
straints, as will be discussed below. Competition among poised or 
active genes for shared enhancers can modulate gene expression 
and even underlie aberrant gene expression in disease. De novo 
formation of a transcriptional start site by a gain-of-function reg-
ulatory single-nucleotide polymorphism upstream of the human 
α-globin genes sequestered the distal enhancer away from the 
α-globin promoters (Fig.  2  B), reducing their expression and 
resulting in α-thalassemia (De Gobbi et al., 2006). Conversely, 
increased expression of the MYC proto-oncogene in cancer can 
result from mutations in the PVT1 promoter (Fig. 2 C), a gene in 
close proximity of MYC, which normally competes for the same 
enhancer (Cho et al., 2018). CRI​SPR interference based mapping 
of functional regulatory sequences revealed similar competitive 
relationships between promoters and enhancers at the MYC and 
GATA1 loci (Fulco et al., 2016).

Genes can be activated simply by residing within the regu-
latory range of an enhancer even if their expression is ostensi-
bly irrelevant to the function of the cell in which the enhancer 
is active, a phenomenon called the bystander effect (Fig. 1). For 

Figure 2. Interactions between gene-regulatory elements. (A) Schematic of how two promoters can compete for enhancer contact (left panel) or how one 
enhancer can drive expression of two genes simultaneously (right panel). Hypothetical RNA FISH analysis of transcriptional bursts of both genes (green and 
red) is indicated in DAPI-stained (blue) nuclei. (B) Birth of a new transcriptional start site as a result of a single-nucleotide polymorphism (SNP) can result in 
decreased gene expression of the endogenous enhancer target. This phenomenon can underlie reduced α-globin expression in α-thalassemia (De Gobbi et al., 
2006). (C) Loss of a transcriptional start site can direct the regulatory influence of an enhancer to one rather than two genes. MYC overexpression as a result 
of such loss of competition has been implicated in cancer (Cho et al., 2018).
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example, the gene CD79b, which is transcribed and functional in 
B-lymphocytes, sits between the human growth hormone gene 
cluster and a distal LCR that drives gene expression in the pitu-
itary gland. Transcription of CD79b is activated in the pituitary 
gland as a result of being close to the enhancer even though it 
plays no discernible role in pituitary function (Cajiao et al., 
2004). As another example, the NME4 gene that resides 300 kb 
away from the human α-globin genes is in physical contact and 
under the regulatory influence of the α-globin enhancer. NME4 
competes for the activity of the α-globin enhancer even though 
it is dispensable for erythroid cell function (Lower et al., 2009). 
Finally, in the forced chromatin looping experiments described 
above, tethering of the adult type β-globin gene to the LCR addi-
tionally activated the interspersed embryonic bH1-globin gene, 
presumably as a result of bringing it closer to the LCR (Deng et 
al., 2012), which corroborates that proximity can favor regu-
latory influence.

Transcriptional activity is linked to nuclear positioning
Transcriptional activation (by enhancers) often results in relo-
calization of genes toward the nuclear interior. Enhancers such 
as the β-globin LCR can drive positioning of the β-globin locus 
away from heterochromatin (Francastel et al., 1999) and promote 
movement of the locus toward the nuclear interior during eryth-
roid cell maturation, which is accompanied by increased gene ac-
tivity (Ragoczy et al., 2006). The β-globin LCR directs the locus 
toward foci of engaged (Ser5 phosphorylated) pol2, also referred 
to as transcription factories (Ragoczy et al., 2006). The func-
tion, if any, of gene movement to the nuclear center, although 
common and generally observed across species, is unclear. As 
a case in point, the CFTR gene and its neighbors migrate to the 
nuclear center upon activation in human but not murine cells, 
in which they are constitutively positioned centrally (Sadoni 
et al., 2008), suggesting that central nuclear localization might 
be permissive but not instructive for gene expression. Perhaps 
similarly, relocalization of β-globin away from its CT does not 
necessarily result in transcription but primes the region for ac-
tivation (Ragoczy et al., 2003). Ectopic integration of the LCR in 
a different chromosome moved the integration site away from 
the CT and resulted in activation of some, but not all, surround-
ing genes (Noordermeer et al., 2008). This indicates that regu-
latory elements can influence nuclear localization, but does not 
settle the question whether it is the LCR per se, chromatin open-
ing, or active transcription that causes positioning outside the 
CT. Experiments in embryonic stem cells showed that targeted 
chromatin decondensation at a chosen gene in the absence of 
transcription activation is sufficient to mobilize the locus toward 
the nuclear interior (Therizols et al., 2014). This suggests that 
chromatin state but not transcription can be a driving force in 
nuclear repositioning. 

While many observations regarding enhancer function and 
nuclear architecture have been made at the β-globin locus, most 
concepts gleaned from this locus are likely to apply to other genes 
as well. However, it is important to bear in mind that consider-
ations of enhancer function in the context of genome topology 
are fraught with the limitation that correlation of a particular 
feature and gene activity does not imply causation.

Gene silencing is an important component of transcriptional 
programs, and maintenance of this state is indispensable for cell 
fate specification. The consequences of impaired gene silencing 
were first observed in Drosophila in the form of severe pheno-
types in mutants with derepression of developmental patterning 
genes such as hox genes (Lewis, 1978; Struhl, 1981; Duncan, 1982; 
Ingham, 1985). Polycomb group (PcG) protein complexes are 
now known to recognize silent genes and to maintain their in-
active status through repressive epigenomic modifications such 
as histone 3 lysine 27 trimethylation (H3K27me3; Schwartz and 
Pirrotta, 2007). Interchromosomal as well as intrachromosomal 
interactions between PcG-silenced genes were found to underlie 
the aggregation of silenced chromatin into PcG bodies (Pirrotta 
and Li, 2012), and recent super-resolution imaging in Drosoph-
ila revealed very dense packaging of PcG chromatin (Boettiger 
et al., 2016). There is considerable evidence that H3K27me3 and 
H3K9me2/3 promote peripheral localization (Harr et al., 2015), 
and deposition of the former repressive mark by forced EZH2 re-
cruitment was sufficient to induce repression and compartment 
(active to inactive) switching (Wijchers et al., 2016). Targeted 
perturbations, in which genes were tethered to specific nuclear 
sites, further demonstrated the direct impact of gene position-
ing on activity (reviewed in Deng and Blobel, 2014; Bartman and 
Blobel, 2015). For instance, tethering genes to the nuclear lamina 
resulted in repression of some but not all genes (Andrulis et al., 
1998; Finlan et al., 2008; Kumaran and Spector, 2008; Reddy et 
al., 2008). This indicates that relocalization can drive transcrip-
tional changes but, as discussed, regulatory elements can also 
drive movement of loci to compartments with a different activity 
status. Importantly, most of the links between subnuclear posi-
tioning and gene expression are still correlative with unexplored 
cause–effect relationships.

Regulatory interactions in gene repression
Heterochromatinization and loss of gene-specific looping are as-
sociated with long-term gene silencing, but architectural changes 
that occur at the initial stages of repression are less well under-
stood. Especially in higher eukaryotes, studies on the link between 
genome organization and early gene repression are underrepre-
sented. Polycomb response elements (PREs) in Drosophila are suf-
ficient to recruit PcG proteins that mark regions with H3K27me3, 
and repress nearby genes (Simon et al., 1993; Chan et al., 1994; 
Wang et al., 2004). PREs, like enhancers, can be distant from their 
targets and are able to form long-range contacts with the genes 
they act on (Schwartz and Cavalli, 2017). Notably, no mammalian 
counterpart of PREs has been identified so far. One alternative 
mechanism by which polycomb can be recruited to chromatin 
involves noncoding RNAs that can bind to the polycomb compo-
nent PRC2 (Schaaf et al., 2013; Kaneko et al., 2014; Berrozpe et 
al., 2017). For instance, initiation of X-chromsome inactivation 
by Xist results from recruiting PRC2 to Xist occupied sites. Xist 
spreads across the X-chromsome by scanning and occupying ge-
nomic loci that reside in spatial vicinity, which then alters chro-
mosome structure of these sites and allows H3K27me3 to spread 
to new, and from there other, genomic sites (Engreitz et al., 2013).

Gene repression can be accompanied by acute loss of en-
hancer–promoter contacts. For example, a repressive cue leads 
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to rapid dissocation between the enhancer and promoter at the 
Kit locus in maturing murine erythroblasts (Jing et al., 2008). 
Loss of enhancer–promoter contacts upon cell state change was 
observed in other cell types as well and is indispensable for shut-
down of the pluripotenty program and differentiation of mESCs 
(Whyte et al., 2012; Respuela et al., 2016; Schnappauf et al., 2016; 
Bonev et al., 2017). At genes under circadian regulation, rhyth-
mic enhancer–promoter contacts are found (Aguilar-Arnal et al., 
2013; Kim et al., 2018; Mermet et al., 2018), and the transcrip-
tional repressor Rev-erbα has been implicated in the circadian 
disruption of enhancer–promoter loops (Kim et al., 2018). This 
echoes studies in Drosophila suggesting that the transcriptional 
repressor Snail functions to disrupt enhancer–promoter con-
tacts, earning its description as “anti-looping” factor (Chopra 
et al., 2012). However, as mentioned in other contexts above, 
establishing a cause–effect relationship between lost enhancer 
activity and the disruption of long-range contacts remains an 
unmet challenge.

Novel chromatin loops can be established during transcrip-
tional repression in yeast (Yadon et al., 2013) and murine cells 
(Jing et al., 2008). In the case of the former, it is thought that 
looping juxtaposes sites bound by the repressive chromatin re-
modeler Isw2 with silenced genes. In the case of the latter, acute 
repression of the Kit gene was associated not only with a loss of 
the enhancer–promoter loop but also with a concomitant gain of 
a repression-specific interaction of a promoter-proximal region 
with an intronic segment. Whether de novo loop formation at the 
Kit gene contributes to repression remains an open question. It is 
possible that alternative looped contacts compete with activating 
loops to diminish enhancer–promoter contacts. This indicates 
that loops are dynamic and that chromatin architectural changes 
seem as tightly coupled to gene repression as to activation.

Which proteins establish and maintain chromatin loops?
A longstanding and difficult to answer question relates to the 
identity of nuclear factors that forge chromatin loops. Early in 
vitro studies using electron microscopy showed that purified 
transcription factors capable of dimerization such as Sp1 or the 
viral protein E2 can form loops when bound to chromatin-free 
DNA templates (Knight et al., 1991; Su et al., 1991). Pinpointing 
the proteins at the base of the loops that form the actual connec-
tions in vivo remains an unresolved issue. Nonetheless, several 
proteins have been identified that are thought to contribute to 
chromatin looping, and a short summary of different factors 
that were found at the base of dynamic and/or stable long-range 
contacts will be provided. While some proteins act in a more 
cell type–specific manner (e.g., GATA1, Ldb1, and EKLF at the β- 
globin locus in erythroblasts [Drissen et al., 2004; Vakoc et al., 
2005; Song et al., 2007], TAF3 in mESCs [Liu et al., 2011], and 
SATB1 in thymocytes [Cai et al., 2006]), others are thought to 
serve as more general looping factors (e.g., Mediator, CTCF, co-
hesin, and YY1 [ Rollins et al., 1999; Splinter et al., 2006; Kagey 
et al., 2010; Lai et al., 2013; Phillips-Cremins et al., 2013; Ing-
Simmons et al., 2015; Beagan et al., 2017]).

ChIA-PET and HiChIP are methods that enrich for chromatin 
contacts associated with selected proteins or chromatin modifi-
cations of interest (Fullwood et al., 2009; Mumbach et al., 2016). 

These approaches have revealed that transcription factors (e.g., 
estrogen receptor; Fullwood et al., 2009), architectural proteins 
(e.g., CTCF and cohesin; Tang et al., 2015; Mumbach et al., 2016), 
and pol2 or histone acetylation (Zhang et al., 2013; Mumbach et 
al., 2017) can be linked to contacts among multiple enhancers 
and/or promoters in cis and in trans, thereby creating regula-
tory nodes, which led to the speculation that transcriptional 
regulation of multiple genes might be coordinated. However, the 
degree to which chromatin interactions between chromosomes 
impact gene expression remains a subject of debate (Cremer and 
Cremer, 2001; Meaburn and Misteli, 2007; Williams et al., 2010; 
Cavalli and Misteli, 2013; Bonev and Cavalli, 2016).

While the above reports provide insights into which factors 
and chromatin marks occupy the base of the loops, they do not 
establish evidence for their direct involvement as “glue” between 
contact sites. Studies that monitor in vivo long-range interac-
tions have typically relied on loss-of-function assays of candidate 
looping factors or regulatory elements themselves (Drissen et al., 
2004; Patrinos et al., 2004; Vakoc et al., 2005). However, these 
approaches typically fail to distinguish direct from secondary ef-
fects that might result from transcriptional perturbations. Even 
in the case of targeted tethering of the candidate looping factor 
Ldb1 to a predetermined site in the genome, which was success-
ful in forging long-range chromatin contacts in the globin locus 
as discussed, definitive proof that this occurs in vivo via direct 
contacts rather than protein intermediates is difficult to attain. 
This challenge still stands for most, if not all, factors implicated 
in chromatin looping.

Enhancer function is restricted by insulators
Most enhancers are promiscous since they are capable of aug-
menting the expression of commonly used reporter genes with 
minimal promoters (Picard and Schaffner, 1983). Methods to 
identify enhancers rely on this concept (e.g., Arnold et al., 2013; 
Symmons et al., 2014). Moreover, as discussed, ectopic integra-
tion of the β-globin LCR into a novel genomic region leads to close 
association and activation of many but not all nearby genes, in-
cluding nonerythroid ones (Noordermeer et al., 2008). What, 
then, underlies the high degree of specifity of enhancer action 
in vivo? One mode to constrain enhancer function comes from 
enhancer-blocking insulators (West et al., 2002). Insulators are 
position-dependent as their placement between an enhancer and 
promoter nullifies enhancer activity, while placement upstream 
or downstream is inoccuous (Fig. 3; West et al., 2002). This strict 
position dependence distinguishes them from transcriptional 
repressor elements (such as PREs) that can silence genes in a 
more position-independent manner. Interestingly, insulators 
were found to be able to reposition and colocalize PRE-repressed 
genes in Drosophila, thereby ensuring their silencing (Sigrist and 
Pirrotta, 1997; Comet et al., 2011; Li et al., 2011, 2013).

CTCF is currently thought to be the major enhancer blocking 
insulator protein in mammals (Bell et al., 1999). Thus, even though 
CTCF can play a role in fostering enhancer–promoter communi-
cation, it can also prevent it. This has been well characterized 
at the imprinting control region (ICR) between the paternally 
expressed Igf2 and the maternally expressed H19 genes, which 
operates in part via DNA methylation–sensitive CTCF binding 
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(Bell and Felsenfeld, 2000; Hark et al., 2000; Engel et al., 2004). 
On the maternal chromosome, CTCF occupies the unmethylated 
ICR to shield the Igf2 gene from a downstream enhancer. On the 
paternal chromosome, the ICR is methylated, preventing CTCF 
binding and enabling the enhancer to interact with the Igf2 pro-
moter (Murrell et al., 2004b; Kurukuti et al., 2006). In addition, 
it has been proposed that CTCF forms looped contacts with the 
blocked enhancer (Fig. 3; Yoon et al., 2007). Another instructive 
example of CTCF insulating an enhancer, presumably via loop 
formation, is provided by ectopic insertion of a CTCF-bound ele-
ment between the β-globin genes and the LCR (Hou et al., 2008). 
The ectopic element pairs with a CTCF-bound element upstream 
of the LCR, encasing it in a loop (Fig.  3), which is thought to 
prevent LCR contacts with the globin promoters. Pairing of in-
sulators has been described in Drosophila (Blanton et al., 2003; 
Byrd and Corces, 2003), but how widespread this dual function 
of CTCF of preventing loops while engaging in new loops is in 
mammals remains unclear. Loop formation via pairing of CTCF 
sites might not be required for enhancer-blocking activity, since 
it can occur in reporter assays with single CTCF elements and no 
known partner elements (Bell et al., 1999). CTCF might alterna-
tively prevent tracking of an enhancer toward a promoter (Zhao 
and Dean, 2004), which would explain the position dependence 
of an enhancer blocker and at the same time provide a rationale 
as to why enhancers cannot simply loop across an insulator el-
ement to reach a promoter. This suggests that the role of CTCF 
as an insulator may involve looping in some but not all cases. 
Regardless, loss of CTCF can lead to aberrant gene expression, 
presumably due to enhancer–promoter miswiring.

Originally appreciated as a factor important for sister chro-
matid cohesion (Michaelis et al., 1997), cohesin was found to co-
localize at >50% of CTCF sites across multiple cell lines (Parelho 
et al., 2008; Rubio et al., 2008; Wendt et al., 2008). It is likely to 
contribute to the insulation function of CTCF through mediating 

long-range chromatin interactions. Similarly, the insulating po-
tential of CTCF is dependent on other cofactors (Ghirlando and 
Felsenfeld, 2016). In addition, insulation can also be obtained in 
an ostensibly CTCF-independent manner. For instance, the β-glo-
bin LCR can function promiscuously under experimental condi-
tions, so why does it not activate fetal-type globin genes in adult 
erythroid cells and vice versa? Fine scale chromosomal contact 
maps in human erythroid cells identified a regulatory element 
that engages in developmental stage–specific long-range chro-
matin contacts in a manner that insulates the “wrong” type of 
globin genes from contacting the LCR (Huang et al., 2017). De-
letion of this element (which does not contain any detectable 
CTCF-occupied sites) in adult cells leads to increased LCR con-
tacts with fetal genes and reactivates them. How this element 
functions is currently not understood, but it provides an example 
of a developmental stage- and tissue-specific architectural ele-
ment that influences enhancer–promoter wiring. This further 
suggests that different architectural proteins, some of which 
may be unknown, cooperate to set up a framework to promote or 
prevent contacts between regulatory elements.

Architectural constraints define regulatory domains
The introduction of Hi-C has enabled the mapping of chromatin 
interactions genome-wide (Lieberman-Aiden et al., 2009). Con-
tact maps revealed that chromosomes are partitioned into roughly 
megabase-scale TADs (Dixon et al., 2012; Nora et al., 2012; Sexton 
et al., 2012). TADs are highly conserved between cell types and 
species (Dixon et al., 2012; Ho et al., 2014; Vietri Rudan et al., 
2015). Accordingly, recent analysis of late primate evolution re-
vealed that boundaries are depleted for evolutionary changes that 
disrupt their function (Fudenberg and Pollard, 2018 Preprint). 
The invariant nature of these domains suggests they represent a 
more general principle of chromosomal organization and have lit-
tle influence on tissue-specific gene expression programs. This is 

Figure 3. Different modes of insulator function. Insulators are reduced for regulatory interactions to occur across them. This can be mediated by enhancer–
promoter blocking (A), enhancer sequestration by direct contact (B), or isolation of regulatory elements through insulator–insulator interaction (C).
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consistent with the view that specific transcriptional profiles are 
mainly driven by unique long-range contacts between regulatory 
elements within TADs as well as compartmentalization of chro-
matin contacts between TADs (Dixon et al., 2015; Beagan et al., 
2016, 2017; Bonev et al., 2017). Uniformity of TADs across tissues 
also suggests that gene expression cannot be the only determinant 
of TAD formation even though it likely contributes to it (Bonev 
et al., 2017). Of note, TADs were detected with high-resolution 
imaging as well as more recently developed genomic methods that 
are independent of proximity ligation, suggesting these findings 
are not reflective of technical biases (Beagrie et al., 2017; Nir et 
al., 2018 Preprint; Wang et al., 2016; Quinodoz et al., 2018; Szabo 
et al., 2018). Sub-TADs, which are nested within larger TADs are 
more variable between cell types (Phillips-Cremins et al., 2013; 
Rao et al., 2014). Communication between regulatory elements 
is generally restricted to such contact domains because interac-
tions across TAD or sub-TAD boundaries are depleted. This was 
corroborated by insertion of a LacZ reporter-based enhancer trap 
at random sites in the mouse genome (Symmons et al., 2014). The 
reporter genes were mostly responsive to enhancers within the 
same TAD, indicating that TADs are not just physical structures 
but function to constrain enhancer influence. The other side 
of the coin is that TADs can also foster long-range enhancer– 
promoter contacts. Integration of the Shh limb enhancer at dif-
ferent sites within its TAD showed that the enhancer functions 
largely independent of distance (Symmons et al., 2016). However, 
when the TAD was disrupted, the enhancers seemed to only func-
tion at shorter distances. Thus, physical constraints imposed by 
TAD boundaries might not only prevent aberrant enhancer–pro-
moter pairing but also facilitate long-range contacts between 
them, a concept reminiscent of the bystander effects due to forced 
chromatin looping as was discussed.

In line with its insulating and looping potential, CTCF was 
found to be enriched at TAD boundaries (Dixon et al., 2012; Nora 
et al., 2012; Phillips-Cremins et al., 2013). While insulator func-
tion often refers to blocking the communication between cis-reg-
ulatory elements (enhancer blocking insulators) or limiting the 
spreading of repressive chromatin (barrier insulators), bound-
ary annotations of topological domains are often contact-based 
(usually measured by Hi-C). While the different functions of in-
sulators can be separated (Recillas-Targa et al., 2002; West et al., 
2004), they can be related, and as a result, the definition of these 
functions has become somewhat blurred. In general, chromatin 
interactions across insulator/boundary elements are disfavored, 
and CTCF is often found at the base of loops that define domains 
(loop domains; Rao et al., 2014). However, not all CTCF-occupied 
sites are boundaries (Dixon et al., 2012; Nora et al., 2012), which 
suggests that CTCF binding alone is insufficient for (sub)TAD 
boundary formation. CTCF binding per se can be tissue-specific, 
modulated by contextual transcription factors (e.g., Behera et al., 
2018), but there are also examples of sites where CTCF is bound 
across a range of tissues but engaged in looped interactions only 
in one of them. This is the case, for instance, for CTCF sites flank-
ing the α- and β-globin loci (e.g., Hou et al., 2008; Hanssen et al., 
2017; Huang et al., 2017).

The functional relevance of domain boundaries in safeguard-
ing proper gene regulation has been impressively demonstrated 

in cases where their disruption leads to disease (reviewed in 
Krijger and de Laat, 2016). Structural variants, such as inversion, 
duplication, or deletion of a CTCF-associated TAD boundary can 
result in pairing between a limb enhancer and a gene normally 
not regulated by this enhancer, leading to digit malformation 
(Lupiáñez et al., 2015). Cook’s syndrome, characterized by limb 
malformations, can be caused by a specific duplication event that 
forms a new TAD in which the KCNJ2 gene is contacted and acti-
vated by SOX9 enhancers (Franke et al., 2016). Targeted deletion 
of CTCF sites at boundaries near the miR-290-295 and Pou5f1 
loci in mESCs enabled new enhancer contacts and activation 
of nearby genes (Dowen et al., 2014). Similar observations have 
been made at a boundary near an erythroid gene where deletion 
of a CTCF site enables a tissue- and developmental stage–specific 
enhancer to act on a housekeeping gene (Hsu et al., 2017). At the 
HoxA-locus, deletion of a CTCF site leads to spreading of active 
chromatin into a previously repressed domain and inappropri-
ate gene activation (Narendra et al., 2015). In patients with T 
cell acute lymphoblastic leukemia, microdeletions perturb a 
CTCF-associated boundary, which results in proto-oncogene 
activation (Hnisz et al., 2016). In gain-of-function IDH mutant 
gliomas, DNA hypermethylation prevents CTCF binding and per-
turbs a domain boundary, allowing an enhancer to aberrantly 
activate a proto-oncogene (Flavahan et al., 2016). Deletion of a 
CTCF–cohesin cobound site that demarcates one end of an eryth-
roid-specific sub-TAD surrounding the mouse α-globin locus ex-
tended the sub-TAD, enabling an α-globin regulatory element to 
contact and augment the expression of genes outside the sub-
TAD (Hanssen et al., 2017). These examples illustrate how CTCF 
loss can lead to enhancer–promoter miswiring.

It may, however, be over-simplified to conceptually equate do-
main boundaries with functional insulation by CTCF. Numerous 
recent papers show that features such as housekeeping genes, 
pol2 occupancy, transcriptional activity, and short interspersed 
nuclear elements are also enriched at TAD boundaries (Dixon et 
al., 2012; Nora et al., 2012; Rowley et al., 2017). Transposable el-
ement-mediated expansion of transcription factor binding sites 
(such as for CTCF) was found to be a substrate for cooption of 
regulatory functions during evolution. Therefore, CTCF and gene 
activity may (co)evolve to establish regulatory domains (Schmidt 
et al., 2012; Sundaram et al., 2014).

Global perturbation of architectural proteins 
and the 3D genome
The previously described examples at single loci highlight the 
potential consequences of perturbing (CTCF) boundaries, but 
recent experiments in which architectural proteins were de-
pleted globally report limited transcriptional changes, even 
though domain configuration was markedly perturbed. Aux-
in-mediated degradation of CTCF for 24 h in mESCs decreased 
domain insulation at around 80% of the 5,525 boundaries that 
were called, but only ∼400 genes were transcriptionally affected 
(Nora et al., 2017). Approximately half of the genes whose ex-
pression changed were down-regulated. Those tended to have 
CTCF bound close to their transcriptional start site. Next to loss of 
CTCF as a potential transcriptional activator (West et al., 2002), 
expression changes may result from misregulation of CTCF- 
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mediated loops that arrange pairing among cis-regulatory el-
ements (Phillips and Corces, 2009; Ghirlando and Felsenfeld, 
2016). The genes that were up-regulated upon CTCF depletion 
were often located close to boundaries, raising the possibility that 
they came under the inappropriate influence of enhancers. How-
ever, gene activation was rare under these conditions (Nora et al., 
2017), suggesting that other requirements, such as the presence 
of certain transcription factors, may have to be met in specific 
cases in order for aberrant transcription to occur even when ge-
nome partitioning defects spatially allow for it. This is the case 
for the β-globin locus, for example, where mutations or deletion 
of CTCF sites led to new interactions, but did not result in acti-
vation of surrounding nonerythroid genes by the LCR (Bulger et 
al., 2003; Splinter et al., 2006).

Contact domains have been proposed to be formed by a mech-
anism called loop extrusion (Nasmyth, 2001; Sanborn et al., 2015; 
Fudenberg et al., 2016). Upon recruitment to genomic elements, 
the cohesin complexes are thought to propel the chromatin fiber 
through their ring-shaped structure until extrusion stalls at con-
vergently oriented CTCF sites (de Wit et al., 2015; Guo et al., 2015; 
Vietri Rudan et al., 2015). This, in concert with tightly regulated 
loading and unloading of extrusion factors, results in looped do-
main-like configurations. This model found support in studies in 
which cohesin subunits and the factors that load and unload com-
ponents of the complex were targeted. Knockout of the cohesin 
unloading factor WAPL1 in HAP1 cells increased the size of loops 
between convergent CTCF sites due to loop extrusion beyond pri-
mary CTCF sites at which it would normally stall (Haarhuis et 
al., 2017). Conversely, knockout of the cohesin subunit Rad21 or 
its loading factor NIP​BL resulted in loss of TADs and revealed a 
3D organization that was more reflective of compartments based 
on epigenomic chromatin landscapes (Rao et al., 2017; Schwarzer 
et al., 2017). This is in line with recent findings in Drosophila, 
in which genes with comparable transcriptional status were 
found to converge in mini-domains (Rowley et al., 2017). In-
depth analysis of Hi-C data in a human lymphoblastoid cell line 
revealed comparable active/inactive switches at domain borders. 
With CTCF present at the majority of these borders (Rowley et 
al., 2017), this corroborates the interplay between architectural 
proteins and transcriptional activity in domain formation. 

Early embryonic lethality of CTCF knockout mice suggests 
that this protein is indispensable for proper gene regulation 
(Moore et al., 2012). In addition, cell death is observed in mam-
malian cells upon prolonged CTCF depletion, and cohesin loss in-
terferes with cell division (Soshnikova et al., 2010; Watson et al., 
2014; Gupta et al., 2016; Nora et al., 2017). However, CTCF is not 
required for embryonic development in Drosophila (Gambetta 
and Furlong, 2018), and while pronounced developmental and 
disease phenotypes at the organismal level are observed in indi-
viduals with mutations in genes that code for cohesin subunits, 
these alterations do not prevent viability (Watrin et al., 2016). 
As discussed, acute depletion of architectural proteins impaired 
3D folding without dramatically altering the transcriptome. The 
ostensibly mild changes at the level of gene expression after do-
main disruptions raise questions regarding the degree to which 
large-scale chromatin architecture impinges on gene expression. 
One needs to keep in mind, however, that boundary loss has been 

measured mainly by Hi-C. As suggested by recent super-resolu-
tion imaging (Bintu et al., 2018), it is possible that smaller shifts 
and heterogeneity at boundaries as a result of architectural pro-
tein depletion might lead to loss of boundary calls in cell pop-
ulation–based experiments even though boundaries could be 
functionally preserved at the single-cell level. Together with the 
other examples in which boundary loss does lead to enhancer–
promoter miswiring and disease, this suggests that consequences 
may have to be investigated on a case-by-case basis because of 
context specificity.

Conclusion
In this review, we attempted to highlight examples of the closely 
intertwined relationship between chromosomal architectural 
features and gene regulation. While most studies, especially ear-
lier ones, are correlative when linking gene activity to nuclear 
architecture, an increasing number includes specifically targeted 
perturbations, allowing inferences about causal relationships. 
We have learned that gene positioning, chromosomal looping, 
and gene expression are in mutually influential relationships. 
However, the state of a gene cannot predict architectural fea-
tures surrounding it with certainty and vice versa. For example, 
as illustrated above, escape from the nuclear periphery, extru-
sion from the chromosome territory, and enhancer looping are 
frequently seen at active genes, but none of these features are 
fully deterministic. Moreover, the interplay between regulatory 
elements and their nuclear environment may be distinct between 
genes, where, for example, in one scenario, enhancer–promoter 
loops exist before activation, whereas in another, looping might 
be rate-limiting. These considerations are also important when 
using chromosomal contact maps to interpret genome-wide as-
sociation study signals and making inferences of nucleotide vari-
ants on variable traits or disease mechanisms.

While this field has witnessed a massive expansion in knowl-
edge in a relatively short time span, key challenges remain. 
These include establishing the identity of nuclear factors that 
directly assemble the myriad of chromosomal configurations 
observed. This issue is not easily addressed since depletion, even 
transiently, of nuclear factors can have wide-ranging secondary 
effects, and since even precise editing of transcription factor 
binding sites can affect chromatin association of nearby fac-
tors. Hence, loss-of-function and gain-of-function studies have 
to be combined to strengthen the conclusions. Another import-
ant issue that the field has to contend with is that while general 
principles of chromatin organization and gene regulation have 
been recognized, there are clearly differences in the way differ-
ent regulatory elements function and genes are controlled. This 
necessitates deep reductionist experimentation at individual loci 
if the goal is to fully understand a specific gene.

Another widely faced challenge in the field is cell-to-cell 
and even allele-to-allele variability in gene regulation and ar-
chitecture. Heterogeneity in gene expression is impinged upon 
by responsiveness to regulatory cues (e.g., signaling gradients, 
asymmetric distribution of cellular content during mitosis, etc.), 
cell cycle stage, and stochastic effects. Especially when it comes to 
the cell cycle, everything that is measurable about higher-order 
nuclear architecture undergoes dramatic reorganization during 
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the life of a cell, most strikingly during mitosis. This needs to be 
taken into account when targeted experimental perturbations 
can affect cell cycle progression.

The road ahead promises that many of the above challenges 
can be met. This optimisim is rooted in the stunning improve-
ments of single-cell technologies and live imaging tools, as well 
as more refined genome and epigenome editing methods. Hence, 
our insights into the intricacies of the nucleus will benefit from 
ever finer spatial and temporal resolution.
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