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Adherens junctions influence tight junction formation
via changes in membrane lipid composition

Kenta Shigetomil, Yumiko Ono?, Tetsuichiro Inai?@®, and Junichi Ikenouchi*>*®

Tight junctions (TJs) are essential cell adhesion structures that act as a barrier to separate the internal milieu from the
external environment in multicellular organisms. Although their major constituents have been identified, it is unknown
how the formation of Tjs is regulated. T| formation depends on the preceding formation of adherens junctions (AJs) in
epithelial cells; however, the underlying mechanism remains to be elucidated. In this study, loss of AJs in a-catenin-
knockout (KO) EpH4 epithelial cells altered the lipid composition of the plasma membrane (PM) and led to endocytosis
of claudins, a major component of TJs. Sphingomyelin with long-chain fatty acids and cholesterol were enriched in the
TJ-containing PM fraction. Depletion of cholesterol abolished the formation of TJs. Conversely, addition of cholesterol
restored T] formation in a-catenin-KO cells. Collectively, we propose that AJs mediate the formation of Tjs by increasing

the level of cholesterol in the PM.

Introduction
Recent advances in lipidomics and lipid visualization tools
revealed that membrane lipids are essential regulators of various
membrane structures such as microvilli (Tkenouchi et al., 2013;
Nicolson, 2014). Numerous membrane structures have character-
istic morphologies such as tight junctions (TJs) in epithelial cells.
TJs are cell adhesion structures thatact as a barrier to prevent para-
cellular diffusion of solutes and water (Tsukita et al., 2001) and to
stop infectious microorganisms entering the body. In pathologi-
cal conditions such as inflammatory bowel diseases, asthma, and
atopic dermatitis, the barrier function of TJs is impaired. Compro-
mised epithelial barrier function underlies these chronic inflam-
matory diseases (Barmeyer et al., 2015; Tokumasu et al., 2016).

TJs are observed as a set of continuous, anastomosing strands
in freeze-fracture EM; however, the molecular organization of TJ
strands remains controversial (Pinto da Silva and Kachar, 1982;
Lingaraju et al., 2015). Claudins, which have four transmem-
brane domains, are the major component of TJs and have been
intensely studied (Zihni et al., 2016; Shigetomi and Ikenouchi,
2018). Nusrat et al. (2000) reported that claudins are present
in detergent-resistant membranes (DRMs). However, the lipid
composition of isolated membranes containing TJs has not been
reported, and the roles of lipids in the function and formation of
TJs remain unclear.

Although the molecular mechanisms underlying TJ forma-
tion are poorly understood, this process requires the preceding

formation of adherens junctions (AJs). TJs do not form when
the formation of AJs is blocked (Gumbiner et al., 1988; Watabe-
Uchida et al., 1998). Although the formation of AJs and TJs is
closely related, the underlying mechanism is unclear (Hartsock
and Nelson, 2008). It has long been assumed that AJs assist the
formation of TJs by bringing the plasma membranes (PMs) of
neighboring cells into close proximity; however, this assumption
has not been directly tested.

In this study, we found that loss of AJs altered the subcellular
distribution of cholesterol. The enrichment of cholesterol in the
PM was decreased in a-catenin-knockout (KO) cells, and choles-
terol was essential for the retention of claudins in the PM and
the formation of TJs.

Results and discussion

Distribution of claudins in a-catenin-KO epithelial cells

To clarify the relationship between the formation of AJs and TJs,
we knocked out a-catenin in cultured EpH4 epithelial cells using
the CRISPR-Cas9 system (Fig. 1, A and B). In these cells, claudin-3
was present in cytoplasmic vesicles (Fig. 1 C). Other components
of TJs such as occludin and JAM-A were also internalized in
these cells, and the total level of claudin-3 was markedly reduced
(Fig. 1 C). Exogenous expression of GFP-a-catenin restored the
formation of AJs and TJs in these cells (Fig. 1, D and E).
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GQQ' e’{\\o claudins. (A) Phase-contrast images of WT and

& 00\' a-catenin-KO EpH4 cells. (B) Immunoblotting
i of whole-cell lysates of WT and a-catenin-KO

EpH4 cells with the indicated antibodies. (C)
WT and a-catenin-KO EpH4 cells were fixed and
costained with an anti-claudin-3 pAband an anti-
E-cadherin mAb (left) or with an anti-JAM-A pAb
and an antioccludin mAb (right). (D) a-Catenin-
KO EpH4 cells stably expressing GFP-tagged
mouse a-catenin were fixed and costained with
an anti-claudin-3 pAb and an anti-E-cadherin
mAb. (E) Immunoblotting of whole-cell lysates
of WT EpH4 cells, a-catenin-KO EpH4 cells,
and a-catenin-KO EpH4 cells stably expressing
GFP-tagged a-catenin (rescue) with the indicated
antibodies. Molecular masses are given in kilo-
daltons. (F) a-Catenin-KO EpH4 cells were fixed
and costained with an anti-claudin-3 pAb (green)
and an anti-EEA1 mAb (red, top), an anti-LAMP1
mAb (red, middle), or an anti-GM130 mAb (red,
bottom). Arrowheads indicate colocalization.
(G) a-Catenin-KO EpH4 cells were treated with
DMSO (control, top), 10 ug/ml chlorpromazine
(middle) for 1 h, or 100 uM dynasore (bottom) for
2 h, fixed, and stained with an anti-claudin-3 pAb.
Bars: (A, C, D, and F) 20 pm; (G) 25 pm.
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Cytoplasmic vesicles containing claudin-3 were prominent in
a-catenin-KO cells (Fig. 1 C). These vesicles partially colocalized
with the early endosome marker EEA1 and the lysosome marker
LAMP1 but not with the Golgi marker GM130, suggesting that
claudins were endocytosed and degraded in lysosomes in these
cells (Fig. 1 F). Treatment with inhibitors of endocytosis such as
chlorpromazine and dynasore partially restored the retention of
claudin-3 in the PM of a-catenin-KO cells (Fig. 1 G). These data
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suggest that stable localization of claudins in the PM depends on
the formation of AJs.

The subcellular distribution of cholesterol is altered in
a-catenin-KO epithelial cells

The association of membrane proteins with lipid rafts was
recently reported to affect their subcellular localizations (Diaz-
Rohrer et al., 2014). To investigate why claudins were removed
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from the PM in the absence of AJs, we compared the lipid pro-
files of WT and a-catenin-KO EpH4 cells. Total lipids were
extracted from these cells according to the method of Bligh and
Dyer. Lipid extracts were analyzed by electrospray ionization
tandem mass spectrometry as previously reported (Ikenouchi
et al., 2012). The profile of sphingomyelin (SM) species was
altered in a-catenin-KO cells (Fig. 2 A). To analyze SM species,
the positive ion mode spectra of these lipid extracts were com-
pared. For peak assignment, each major ion was subjected to
product ion scan analysis. There were three major molecular
species of SM: SM (d18:1-16:0), SM (d18:1-22:0), and SM (d18:
1-24:1) in WT cells. The level of very-long-chain SM (d18:1-24:
1) was significantly lower in a-catenin-KO cells than in WT
cells (Fig. 2 B).

SM species containing very long acyl chains preferentially
interact with cholesterol and form membrane microdomains
(Sezgin et al., 2017); therefore, we next examined the subcel-
lular distribution of cholesterol using the cholesterol-binding
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Figure 2. The level of cholesterol is reduced in the
PM of a-catenin-KO cells. (A) Positive ion mass spectra
of SM species in WT and a-catenin-KO EpH4 cells. The
SM molecular species corresponding with each peak are
indicated. The x and y axes show the total carbon chain
length and the number of carbon-carbon double bonds
of individual lipid molecular species, respectively. The
results are representative of three independent exper-
iments. (B) Quantification of the indicated SM species
in WT EpH4 cells and a-catenin-KO EpH4 cells. Error
bars show SD calculated based on three independent
experiments (Student’s t test, *, P < 0.05). (C) WT and
a-catenin-KO EpH4 cells were fixed with 4% parafor-
maldehyde and stained with 50 pg/ml filipin prepared
in PBS to visualize the subcellular localization of choles-
terol. (D) WT EpH4 cells expressing GFP-claudin-3 were
fixed with 4% paraformaldehyde and stained with 50
ug/ml filipin prepared in PBS. (E) Confluent WT EpH4
cells expressing GFP-claudin-3 were cultured in low-Ca?*
medium containing 5 uM Ca?* overnight to disrupt AJs
completely (left) and then in normal Ca?* medium con-
taining ECCD-1 (1:500 dilution) for 1 h (middle). Thereaf-
ter, ECCD-1 was washed out, and cells were cultured in
normal Ca?* medium for 1 h (right). After fixation with
4% paraformaldehyde, cells were stained with 50 pg/ml
filipin prepared in PBS. Bars, 20 pm.

dye filipin. Enrichment of cholesterol in the PM was reduced in
a-catenin-KO cells (Fig. 2 C). Of note, in WT cells, cholesterol
was highly enriched at cell-cell contacts and partially colocalized
with claudin-3 (Fig. 2 D).

a-Catenin is involved in various signal transduction pathways
including the Hippo pathway (Takeichi, 2018). Consequently,
the decrease in cholesterol in the PM of a-catenin-KO cells may
occur independently of loss of AJs. Therefore, we investigated
whether the distributions of cholesterol and claudins in the PM
were affected when the formation of AJs was inhibited by an
E-cadherin-blocking antibody (ECCD-1; Ogou et al., 1983).

We first treated confluent WT cells with low-Ca?* medium
containing 5 pM Ca?*. The level of very long chain SM (d18:
1-24:1) decreased as compared with the level of SM (d18:1-16:
0), when AJs were gradually destroyed by the treatment with
low-Ca®* medium (Fig. S1 A). The enrichment of cholesterol in
the PM was decreased by the treatment with low-Ca** medium
for 6 h (Fig. S1 B).
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(5 pg) was separated by SDS-PAGE, transferred
to a nitrocellulose membrane, and probed with
antibodies against the indicated marker proteins
(left). Coomassie brilliant blue (CBB) staining is
shown on the right. (D) Positive ion mass spectra
CBB of SM species in the PM fractions of L and C1L
cells. The SM molecular species corresponding
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Confluent WT cells were cultured in low-Ca?* medium con-
taining 5 uM Ca** overnight to disrupt AJs completely and then
in normal Ca?* medium containing ECCD-1. In both types of
medium, claudin-3 remained in cytoplasmic vesicles, and choles-
terol did not accumulate in the PM (Fig. 2 E). When ECCD-1 was
washed out and AJs rapidly formed, the accumulation of choles-
terol in the PM and the formation of TJs were restored (Fig. 2 E).
Collectively, we conclude that loss of AJs impairs strong enrich-
ment of cholesterol at the PM.

SM species containing very long acyl chains and cholesterol
are enriched in the T)-containing PM fraction

To examine whether reduction of cholesterol in the PM of
a-catenin-KO cells perturbs the formation of TJs, we analyzed
the lipid profile of the TJ-containing PM fraction. Detergents
cannot be used to isolate this fraction because they accelerate
mixing of lipids between different membrane fractions; there-
fore, itis technically difficult to obtain the T] fraction of epithelial
cells. Instead, we used claudin-1-expressing L (C1L) cells (Furuse
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et al., 1998). L cells do not express any cell adhesion molecules.
Whereas TJ formation requires the preceding formation of AJs in
epithelial cells, exogenous expression of claudins is sufficient to
induce TJ formation across the entire PM in L cells. In C1L cells,
claudins formed huge networks of TJ strands across the entire
cell surface at cell-cell contacts (Fig. 3 A).

We used the detergent-free colloidal silica method to isolate
the PM fraction from these cells (Ikenouchi et al., 2012). In brief,
cells were coated with cationic silica particles to increase the
density of the PM membrane and then mechanically disrupted,
and then the PM was obtained by gradient centrifugation. Clau-
din-1 was markedly enriched in the PM fraction (Fig. 3 B). How-
ever, levels of marker proteins of the inner-membrane (IM)
fraction such as the Golgi marker GM130, the nuclear membrane
marker NP62, and the ER marker Grp78/BiP were much lower
in the PM fraction than in the IM fraction (Fig. 3 C). Next, we
compared the lipid profiles of the PM fractions of parental L
cells and CIL cells. The level of very-long-chain SM (d18:1-24:
1) was significantly increased in the PM fraction of CIL cells as
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compared with the level of SM (d18:1-16:0; Fig. 3, D and E). In
addition, the cholesterol level was significantly higher in the PM
fraction of CIL cells than in that of parental L cells (Fig. 3 F). Col-
lectively, we conclude that SM with very-long-chain fatty acids
and cholesterol are enriched in the TJ-containing PM fraction.
These findings suggest that claudins are preferentially found in
the DRM fraction, in which SM species with very-long-chain
fatty acids and cholesterol are enriched.

Therefore, we next examined whether the proportion of clau-
dins in the DRM fraction differs between WT and a-catenin-KO
cells. DRM fractions were directly purified using a Triton X-100
lysis method followed by separation via a sucrose gradient as
previously reported (Nusrat et al., 2000). The proportion of
claudin-3 in the DRM fraction was significantly reduced in a-cat-
enin-KO cells (Fig. 3, G and H).

We next investigated whether depletion of cholesterol
impairs the formation of TJs in epithelial cells. As previously
reported (Francis et al., 1999), removal of cholesterol from the
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Figure 4. Depletion of cholesterol specifically
impairs the formation of Tjs. (A) WT EpH4 cells were
cultured in transwell chambers and treated with PBS
(control) or 75 mM MBCD for the indicated duration,
and then cells underwent TER analysis (means + SD;
n = 4). (B) WT EpH4 cells were treated with PBS (con-
trol), 25 mM MBCD, 50 mM MBCD, or 75 mM MBCD for
30 min, fixed, and costained with an anti-claudin-3 pAb
and an anti-E-cadherin mAb. (C) WT EpH4 cells were
treated with PBS (control) or 75 mM MBCD for 30 min,
fixed, and costained with an anti-claudin-3 pAb and an
anti-desmoglein-2 mAb. (D) WT EpH4 cells were treated
with PBS (control) or 50 mM MBCD for 30 min, fixed, and
costained with an anti-E-cadherin mAb and an antiocclu-
din pAb. Bars, 20 pm.

PM via treatment with methyl-B cyclodextrin (MBCD) rapidly
disrupted the barrier function of epithelial cells as revealed by
measuring trans-epithelial resistance (TER; Fig. 4 A). Treat-
ment with MBCD led to loss of claudins from cell-cell contacts
in a dose-dependent manner but did not affect the localization
of E-cadherin or desmoglein-2 (Fig. 4, B and C). As previously
reported (Francis et al., 1999), occludin was more resistant to
cholesterol depletion than claudins because staining of occludin
was only attenuated upon treatment with =50 mM concentra-
tions of MBCD (Fig. 4 D). These results indicate that claudins
are more sensitive to a reduction in cholesterol than other cell
adhesion molecules in epithelial cells.

Addition of cholesterol restores the formation of T strands in
a-catenin-KO cells

Our results indicate that TJs form when cholesterol is enriched
at the PM. However, concentration of cholesterol at the PM was
decreased in a-catenin-KO cells. Therefore, we hypothesized that
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AJs mediate the formation of TJs by increasing the amounts of
cholesterol in the PM.

Given that the level of cholesterol at the PM was reduced in
a-catenin-KO cells, we investigated whether addition of choles-
terol to the PM induces TJ strand formation in these cells. To this
end, we treated a-catenin-KO cells with cholesterol-saturated
MPBCD. After this treatment, claudin-3 rapidly accumulated in
the PM and concentrated at cell-cell contacts within 30 min
(Fig. 5, A and B; and Video 1). We quantitatively measured the
increase of signal intensity of claudin-3 at cell-cell contact
areas in a-catenin-KO EpH4 cells after loading of cholesterol in
the PM (Fig. 5 C). We also quantitatively measured the degree
of colocalization between claudin-3 and ZO-1 in a-catenin-KO
cells before and after addition of cholesterol. Addition of cho-
lesterol increased the colocalization of claudin-3 and ZO-1 in
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Figure 5. Addition of cholesterol to the PM
induces TJ strand formation in a-catenin-KO
cells. (A) Time-lapse imaging of a-catenin-KO
EpH4 cells expressing GFP-claudin-3. At time 0,
75 mM cholesterol-saturated MBCD was added
to the medium to restore the level of choles-
terol in the PM. (B) a-Catenin-KO EpH4 cells
were treated with PBS (control) or 75 mM cho-
lesterol-saturated MBCD, fixed, and costained
with an anti-claudin-3 pAb (green) and an
anti-Z0-1 mAb (red). (C) Quantification of the
signal intensity of claudin-3 at cell-cell con-
tact areas in a-catenin-KO EpH4 cells before
and after loading of cholesterol in the PM. (D)
Quantification of the colocalization of claudin-3
and ZO-1 in a-catenin-KO EpH4 cells before
and after loading of cholesterol in the PM. The
degree of colocalization between claudin-3 and
Z0-1 was calculated using ImageJ FljI software.
The value of Pearson’s coefficient of two signals
were quantitated. Error bars show SD calculated
based on four independent experiments (Stu-
dent’s t test, *, P < 0.05). (E) Freeze-fracture EM
images of T) strands in a-catenin-KO EpH4 cells
treated with PBS (control, top) or 75 mM choles-
terol-saturated MBCD (bottom) for 30 min. (F)
a-Catenin-KO EpH4 cells were treated 75 mM
cholesterol-saturated MBCD, fixed, and stained
with an anti-claudin-3 pAb (green) together with
an anti-E-cadherin mAb (red, top) or an antivin-
culin mAb (red, bottom). (G) a-Catenin-KO EpH4
cells expressing GFP-claudin-3 were treated with
75 mM cholesterol-saturated MBCD, fixed with
4% paraformaldehyde, and stained with 50 pg/ml
filipin prepared in PBS. (H) a-Catenin-KO EpH4
cells expressing GFP-claudin-3 were treated
with DMSO (control, top) or 100 pM dynasore
(bottom), fixed with 4% paraformaldehyde, and
stained with 50 pg/ml filipin prepared in PBS.
(1) Immunoblotting of whole-cell lysates of WT
and E-cadherin-KO EpH4 cells with the indicated
antibodies. (J) WT and E-cadherin-KO EpH4
cells were fixed with 4% paraformaldehyde and
stained with 50 pg/ml filipin prepared in PBS. (K)
E-cadherin-KO EpH4 cells were treated with PBS
(control) or 75 mM cholesterol-saturated MBCD,
fixed, and stained with an anti-claudin-3 pAb.
Bars: (A, B, F=H, J, and K) 20 um; (E) 200 nm.

+ Cholesterol

+ Cholesterol

a-catenin-KO cells (Fig. 5 D). We also confirmed that TJ strands
formed at cell-cell contacts by freeze-fracture EM (Fig. 5 E).
The TJ strands that formed after addition of cholesterol were
fragmented and nonfunctional because they did not circum-
ferentially surround cells. Thus, the formation of AJs lined by
the circumferential actin belt is essential for the formation of
functional TJs. However, addition of cholesterol was sufficient
to restore the formation of TJ strands even in the absence of AJs.

In addition to claudin-3, E-cadherin also accumulated at cell-
cell contacts in a-catenin-KO cells treated with cholesterol-sat-
urated MBCD (Fig. 5 F). However, E-cadherin is not bound to the
actin cortex and is not under tension in a-catenin-KO because
vinculin is absent from cell-cell contacts in a-catenin-KO cells
(Fig. 5 F; Maddugoda et al., 2007). In a-catenin-KO cells treated
with cholesterol-saturated MBCD, cholesterol accumulated at
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the PM and colocalized with claudin-3 (Fig. 5 G). Treatment with
dynasore partially restored the accumulation of cholesterol in
the PM of a-catenin-KO cells, indicating that retention of clau-
dins in the PM upon treatment with an endocytosis inhibitor is
mediated by an increase in cholesterol in the PM (Fig. 5 H).

Next, to examine whether this restoration of E-cadherin in
the PM is involved in the induction of TJ strands, we generated
E-cadherin-KO EpH4 cells (Fig. 5 I). These cells were round
and could not adhere with each other, similar to a-catenin-KO
cells. The enrichment of cholesterol in the PM was reduced in
E-cadherin-KO cells (Fig. 5J). Upon treatment with cholester-
ol-saturated MBCD, TJ strands formed in E-cadherin-KO cells as
observed in a-catenin-KO cells (Fig. 5 K). Therefore, we conclude
that T] formation is dependent on the presence of cholesterol, but
not of E-cadherin, in the PM. Based on these findings, we propose
that the lack of TJs in a-catenin-KO cells is primarily caused by
the reduced level of cholesterol in the PM.

Concluding remarks

The expression pattern of lipid-metabolizing enzymes was
thought to regulate the lipid composition of cells. However, our
study demonstrates that the amount of cholesterol is changed
in the PM of epithelial cells lacking AJs, although the underly-
ing mechanism remains unclear. The insolubility of E-cadherin
increases in the early stage of cell-cell contact formation in epi-
thelial cells (McNeill et al., 1993; Hinck et al., 1994). During cell-
cell contact formation, the actin cortex lining the cell membrane
is reorganized (Acharya etal., 2017). On the other hand, the actin
cortex promotes the formation of cholesterol-rich membrane
domains (Chichili and Rodgers, 2009). Thus, cadherin-based cell
adhesion may remodel the PM. It will be interesting to examine
how accumulation of cholesterol at the PM occurs during cell-
cell contact formation in a future study.

Similarly to cell-cell adhesion, cell-ECM adhesion markedly
changes the composition of the PM. Adhesion of cells to the
ECM via integrins facilitates the transport of cholesterol-en-
riched vesicles to the PM (del Pozo et al., 2004; Norambuena and
Schwartz, 2011). This study showed that the amount of choles-
terol in the PM was decreased when the formation of AJs was
impaired. This suggests that cell-cell adhesion via AJs controls
vesicular transport of cholesterol to the PM in addition to cell-
ECM adhesion. Cholesterol is transported to the PM via a com-
plicated pathway involving synthesis of cholesterol at the ER,
nonvesicular transport of cholesterol from the ER to the TGN,
and vesicular transport of cholesterol from the TGN to the PM
(Mesmin and Antonny, 2016). Although our understanding of
how integrin-mediated adhesion regulates vesicular transport
of cholesterol is limited, it was recently reported that Arfé and
microtubules are involved in this process (Balasubramanian et
al., 2007). In the case of cell-cell adhesion, AJs are crucial for the
regular organization of microtubules in epithelial cells (Meng
and Takeichi, 2009). Furthermore, Arf6 is activated at cell-cell
contacts of epithelial cells (Ikenouchi and Umeda, 2010). It is
important to clarify the molecular mechanisms by which the
formation of AJs facilitates the transport of cholesterol to the
PM in the future.
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Materials and methods

Reagents

EpH4 cells and L fibroblasts were grown in DMEM supple-
mented with 10% FCS. a-Catenin-KO and E-cadherin-KO EpH4
cells were established using the CRISPR-Cas9 system. Oligonu-
cleotides were phosphorylated, annealed, and cloned into the
BsmBI site of the pLenti-CRISPR v2 vector according to protocols
of the Zhang laboratory (Massachusetts Institute of Technology,
Cambridge, MA). The target sequences for mouse a-catenin and
mouse E-cadherin were 5'-CAATGATGAAAACGCCAACG-3’ and
5'-ATTAGACGGCCCTTTACTAT-3', respectively. Three indepen-
dent clones were established for each construct.

The following primary antibodies were used for immunofluo-
rescence microscopy and immunoblotting: rabbit anti-claudin-1
(71-7800), rabbit antioccludin (71-1500), rabbit anti-claudin-3
(34-1700), and rabbit anti-JAM-A (36-1700) polyclonal antibod-
ies (pAbs; Thermo Fisher Scientific); mouse antivinculin and
mouse anti-a-tubulin mAbs and a rabbit anti-a-catenin pAb
(Sigma-Aldrich); mouse anti-GM130, mouse anti-LAMP1, mouse
anti-BiP/Grp78, and mouse antinucleoporin p62 mAbs (BD); a
mouse anti-desmoglein-2 mAb (Abcam); a rabbit anti-caveolin-1
pAb (Cell Signaling Technology); a rabbit anti-syntaxin-3 pAb
(Synaptic Systems); and mouse anti-ZO-1 (T8754), rat antioc-
cludin (MOC37), and rat ECCD-2 mAbs (Takara Bio Inc.). Ascites
fluid containing ECCD-1 was a gift from M. Takeichi (Center for
Developmental Biology, Kobe, Japan). Chlorpromazine hydro-
chloride, cholesterol, dynasore hydrate, and MBCD were pur-
chased from Sigma-Aldrich.

Fluorescence microscopy

Immunofluorescence microscopy was performed as described
previously (Shiomi et al., 2015). In brief, cells cultured on cover-
slips were fixed with 3% formalin prepared in PBS for 10 min at
RT, treated with 0.4% Triton X-100 prepared in PBS for 5 min, and
washed with PBS. Fixed cells were blocked with 5% BSA prepared
in PBS for 30 min at RT. Antibodies were diluted in this block-
ing solution. Cells were incubated with primary antibodies for
1h at RT and with secondary antibodies for 30 min at RT. Speci-
mens were observed at RT with a confocal microscope (LSM700;
ZEISS) equipped with a Plan Apochromat objective (63x 1.40 NA
oil-immersion objective) with appropriate binning of pixels and
exposure times. Images were analyzed with ZEN 2012 (ZEISS).
To visualize the subcellularlocalization of cholesterol, cells were
fixed with 4% paraformaldehyde and stained with 50 pg/ml fili-
pin (Sigma-Aldrich) prepared in PBS.

Live-cell imaging

Fluorescence imaging was performed using a 63x oil-immersion
objective on an inverted microscope (LSM700; ZEISS) interfaced
with alaser-scanning confocal microscope equipped with a stage
heated to 37°C as described previously (Aoki et al., 2016). Images
were captured on a device camera and acquired on a personal
computer using ZEN 2012 software (LSM700; ZEISS). Images
were acquired using an excitation wavelength of 488 nm. Each
frame is an eight-bit grayscale image, and the frame interval is
indicated in the legend.
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Freeze-fracture EM

Freeze-fracture EM was performed as described previously
(Shiomi etal., 2015). Confluent cells were fixed with 2.5% glutar-
aldehyde prepared in phosphate buffer, rinsed with phosphate
buffer, mixed with 30% glycerol prepared in phosphate buffer,
and frozen in liquid propane. Frozen samples were fractured at
-110°C and underwent unidirectional platinum shadowing at an
angle of 45° in a JFD-7000 apparatus (JEOL). Replica samples
were immersed in household bleach to remove cells and were
mounted on copper grids. Samples were examined using a JEOL
2000EX electron microscope.

Isolation of the PM using colloidal silica

The PM fraction was isolated from L and CIL cells using the
method of Stolz et al. (1992) with slight modifications. In brief, L
and C1L cells were washed twice with coating buffer (CB; 135 mM
NacCl, 20 mM MES, 1 mM Mg?*, and 0.5 mM Ca?*, pH 5.5) and
coated with 1% (wt/vol) cationic colloidal silica prepared in CB.
Thereafter, cells were washed with CB, coated with 1 mg/ml
polyacrylic acid prepared in CB, pH 5.0, and washed again with
CB. Shear force was applied to the cells by squirting them with
CB containing a protease inhibitor cocktail using a 5-ml syringe
fitted with a flattened 18-gauge needle (Nacalai Tesque). Sam-
ples were observed underneath a light microscope to confirm
that all cells had been lysed. The lysate was mixed with the same
amount of 100% (wt/vol) Nycodenz prepared in CB and sedi-
mented through a cushion of 85% (wt/vol) Nycodenz prepared
in CB. Dense silica-coated PMs were pelleted by centrifugation
at 100,000 g (PM fraction). The supernatant was also retained
as the IM fraction.

Lipid analysis

Lipids extracted using the Bligh and Dyer method were subjected
to electrospray ionization tandem mass spectrometric analysis as
previously described (Ikenouchi et al., 2012). In brief, cultured
cells (106) were washed with PBS three times, and lipids were
extracted by Bligh and Dyer’s method. Concentrated lipid extract
was dissolved in 100 pl of chloroform/methanol (2:1). The elec-
trospray ionization mass spectrometry analysis was performed
on a 6420 triple-quadrupole liquid chromatography-mass spec-
trometer (Agilent Technologies) equipped with an HPLC system
and an auto sampler (Infinity 1260; Agilent Technologies). The
extracted phospholipids were directly subjected to electrospray
ionization mass spectrometry analysis. The mobile phase com-
position was acetonitrile/methanol/water = 18:11:1 (0.1% ammo-
nium formate). The flow rate was 4 ul/min. The mass range of
the instrument was set at 650-950 m/z. Cholesterol was quanti-
tatively measured using a total cholesterol assay kit (Cell Biolabs,
Inc.) in accordance with the manufacturer’s instructions.

TER measurement

Aliquots of 5 x 10* cells were plated on trans-well polycarbonate
filter supports with a pore size of 0.4 um and a diameter of 12
mm (Costar). The culture medium was changed every day. TER
was measured directly in culture media using an epithelial volt-
ohm meter (Millicell-ERS; EMD Millipore) and corrected for fluid
resistance between the potential-sensing electrodes.
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Preparation of the DRM fraction

Confluent cells were washed with HBSS and incubated with 1%
Triton X-100 prepared in HBSS for 30 min at 4°C. The DRM were
isolated after flotation on a sucrose gradient as described previ-
ously (Nusrat et al., 2000).

Preparation of MBCD-cholesterol inclusion complexes
MPBCD-cholesterol inclusion complexes were generated by mix-
ing a cholesterol suspension with an MBCD solution. In brief,
MBCD was dissolved in PBS to a concentration of 375 mM, and
then cholesterol was added to a concentration of 0.1 g/ml. This
saturated MBCD-cholesterol solution was incubated in a water
bath at 37°C overnight. Immediately before use, the solution was
filtered through a 0.22-pm syringe filter (EMD Millipore) to
remove excess cholesterol crystals. This solution was added to
the medium at a final concentration of 75 mM.

Online supplemental material

Fig. S1 shows changes of PM composition induced by treatment
with low-Ca?* medium. Video 1 shows time-lapse imaging of
a-catenin-KO EpH4 cells expressing GFP-claudin-3.
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