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The cell biology of systemic insulin function

Victoria L. Tokarz»?*, Patrick E. MacDonald**@®, and Amira Klip*>*@®

Insulin is the paramount anabolic hormone, promoting carbon energy deposition in the body. Its synthesis, quality control,
delivery, and action are exquisitely regulated by highly orchestrated intracellular mechanisms in different organs or
“stations” of its bodily journey. In this Beyond the Cell review, we focus on these five stages of the journey of insulin through
the body and the captivating cell biology that underlies the interaction of insulin with each organ. We first analyze insulin’s
biosynthesis in and export from the B-cells of the pancreas. Next, we focus on its first pass and partial clearance in the liver
with its temporality and periodicity linked to secretion. Continuing the journey, we briefly describe insulin’s action on the
blood vasculature and its still-debated mechanisms of exit from the capillary beds. Once in the parenchymal interstitium
of muscle and adipose tissue, insulin promotes glucose uptake into myofibers and adipocytes, and we elaborate on the
intricate signaling and vesicle traffic mechanisms that underlie this fundamental function. Finally, we touch upon the renal
degradation of insulin to end its action. Cellular discernment of insulin’s availability and action should prove critical to
understanding its pivotal physiological functions and how their failure leads to diabetes.

Introduction

Preceded by valiant efforts in Berlin, Strasbourg, Baltimore,
and Bucharest, insulin was discovered in Toronto in 1921 by
Fredrick Banting and Charles Best, with auspicious advice and
support from John Macleod, and its purification was made pos-
sible by James Collip. The story of its discovery is legendary and
was awarded the Nobel Prize in Physiology or Medicine in 1923
(Karamitsos, 2011), but the journey of this hormone in the body
has not been “romanced” as much. Insulin is the paramount
anabolic hormone (promoting dietary carbon source deposi-
tion), and its synthesis, quality control, delivery, and action
are exquisitely regulated in different organs or “stations” of its
bodily journey. These functions are enacted by highly orches-
trated intracellular mechanisms, starting with production in
the B-cells of the pancreas, on to its partial clearance by the
liver hepatocytes, followed by its delivery and action on the
vascular endothelium and its functions at level of the brain,
muscle fibers, and adipocytes (major action sites), and ending
with insulin degradation in the kidney. As such, the journey
of insulin in the body is a superb example of integrated cel-
lular physiology.

In this Beyond the Cell review, we focus on five stages of the
journey of insulin through the body and the captivating cell biol-
ogy that underlies its connections with each organ. We analyze
insulin’s biosynthesis in and release from -cells of the pancreas,
its first pass and partial clearance in the liver, its action on the

blood vasculature and exit from the capillary beds, its action in
the central nervous system in brief, followed by its stimulation
of muscle and adipose cell glucose uptake, and its degradation in
the kidney to finalize its action (Fig. 1).

By necessity, many aspects of the metabolic actions of insulin
are not reviewed here; rather, we present the most current pic-
ture of each phenomenon, highlighting up-to-date concepts and
spatial-temporal coordinates. By applying a cell biology lens to
the five fundamental stages in insulin’s journey in the body, we
hope to render an integrated view of insulin “within and beyond
the cell.” Of major relevance, though not individually discussed
here, defects in each station of the hormone’s journey in the body
have been correlated and often causally related to insulin resis-
tance, hypertension, and type 2 diabetes (Taniguchi et al., 2006;
Hoehn et al., 2008; Odegaard and Chawla, 2013; Boucher et al.,
2014; DeFronzo et al., 2015; Samuel and Shulman, 2016; Haeusler
etal., 2018; also see other important highlights in the text box).

Biosynthesis and export of insulin in pancreatic B-cells

Insulin synthesis, processing, and packaging in pancreatic 8-cells
Humans have a single insulin gene, INS (rodents have two, insl
and ins2), located on chromosome 11, the transcription of which
is controlled largely by upstream enhancer elements that bind
key transcription factors that include IDX1 (PDX1), MafA, and
NeuroD1 along with numerous coregulators (Artner and Stein,
2008). In the insulin-producing pancreatic B-cells, these are
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Figure 1. Journey of insulin in the body. Insulin is transcribed
and expressed in the B-cells of the pancreas, from whence it is
exported through the portal circulation to the liver. During this
first pass, over 50% of insulin is cleared by the hepatocytes in
the liver. The remaining insulin exits the liver via the hepatic vein,
where it follows the venous circulation to the heart. Insulin is
distributed to the rest of the body through the arterial circu-
lation. Along the arterial tree, insulin promotes vasodilation.
Arterially delivered insulin exerts its metabolic actions in the
liver and is further cleared (second pass). Insulin exits the circu-

CLEARANCE lation at the level of the microvasculature, reaching muscle and
fat cells, where it stimulates GLUT4 translocation and glucose
uptake. Remaining circulating insulin is delivered to and finally

GLUCOSE degraded by the kidney. This review analyzes the cellular pro-
UPTAKE Liver cesses at each stage of this journey. This figure was created using
g‘ ’ - Q Servier Medical Art (available at https:/smart.servier.com/).
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required for insulin gene expression and contribute to the regu-
lation of INS transcription in response to glucose and autocrine
insulin signaling (Andrali et al., 2008). Given the role of these
enhancer elements, transcription factors, and their coregulators
in controlling the expression of insulin and many additional
components of the B-cell secretory pathway, such as glucose
transporter 2 (GLUT2) and the insulin processing enzyme PC1/3,
they are key defining contributors to the establishment and
maintenance of B-cell identity (Gao et al., 2014).

Insulin is translated initially as a preproinsulin (Fig. 2 A),
which is then processed to proinsulin in the RER upon cleavage

Selected examples of mechanistic defects in the five stages of the
journey of insulin, associated with insulin resistance and type 2 diabetes

« Defective insulin exocytosis from diabetic B-cells (Ferdaoussi and
MacDonald, 2017; Gandasi et al., 2017) and impaired pulsatile secretion
of insulin in diabetic individuals (Lang et al., 1981; Hollingdal et al., 2000;
Laedtke et al., 2000)

« Reduced hepatic insulin clearance (Jung et al.,, 2018) and CEACAM1
expression (Lee, 2011) in obesity

« Impaired vasoactive effects of insulin during insulin resistance, includ-
ing capillary recruitment (de Jongh et al.,, 2004; Clerk et al., 2006; Keske
et al, 2009); reduced insulin delivery to muscle in obesity and diabetes
(Broussard et al., 2016)

« Diminished GLUT4 translocation to the muscle membrane in diabetic
rodents and humans (Klip et al., 1990; Zierath et al., 1996; Garvey et al., 1998;
Hoehn et al., 2008; Czech, 2017) and lowered expression of Racl (Sylow et
al., 2013) as well as a number of proteins of the GLUT4 vesicle fusion machin-
ery (Aslamy and Thurmond, 2017); the underlying defects include alterations
in the maintenance of the storage compartment (Foley et al., 2011; Samuel
and Shulman, 2012) and in the insulin-derived signals that trigger GLUT4
vesicle release from storage and interaction with the plasma membrane

« Compromised glomerular function in obesity (Kanasaki et al., 2013)
that may alter insulin bioavailability; sodium retention and down-regulation
of the natriuretic peptide system in insulin resistance (Spoto et al., 2016)
that may herald hypertension

Tokarz et al.
The journey of insulin in the body

BIOSYNTHESIS

Pancreas

of its signal sequence by a signal peptidase. In the RER, pro-
insulin is folded and stabilized in its 3D proinsulin configura-
tion, linking the semihelical A domain and helical B domain
via the formation of three disulfide bonds. After transit to the
Golgi apparatus, the properly folded proinsulin is sorted into
still-immature secretory granules where it is processed via
the prohormone convertases PC1/3 and PC2, which cleave the
C-peptide. Subsequently, carboxypeptidase E removes C-termi-
nal basic amino acids from the resulting peptide chains, yield-
ing mature insulin consisting of A- and B-peptide chains linked
by disulfide bonds (Hutton, 1994).

Transit of immature secretory granules through the TGN, and
their subsequent budding and maturation, is controlled by a host
of regulatory proteins, including newly identified vesicle-sorting
by proteins such as SORCS1 (Kebede et al., 2014) and HID-1 (Du
et al., 2016). Insulin biosynthesis in this manner is generally
rapid (less than ~2 h) and efficient, with only 1-2% of the pro-
tein remaining as proinsulin within mature secretory granules
where insulin couples with Zn?* and exists as a hexameric crystal
with the cation. Transport of the insulin hexamer into the secre-
tory granules is thought to be mediated by ZnT8 or related zinc
transporters (Lemaire et al., 2009).

Insulin granule pools and their intracellular traffic

Most insulin granules (perhaps 75-95% of an estimated 10,000)
are stored within the B-cell cytoplasm at some distance away
from the cell membrane (Rorsman and Renstrém, 2003). The
remainder move to the cell periphery along microtubule net-
works in an AMPK- and kinesinl-dependent manner (McDonald
etal., 2009). To reach the plasma membrane, however, granules
must cross a cortical actin network that acts as a physical bar-
rier to insulin secretion (Li et al., 1994). Actin reorganization is
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Figure 2. Insulin biosynthesis and secretion. (A) Insulin maturation along the granule secretory pathway. Preproinsulin mRNA is transcribed from the INS
gene and translated to preproinsulin peptide. As this transits through the RER and TGN, the prepropeptide is processed to its mature form and ultimately
stored as hexameric insulin/Zn?* crystals within mature secretory granules. (B) Glucose sensing and metabolic signals leading to insulin granule secretion. The
release of insulin via exocytosis of secretory granules from pancreatic B-cells is controlled by a series of metabolic and electrical signals arising as a result of
glucose entry through GLUTs, phosphorylation by GK, and entry into the TCA cycle. The closure of ATP-dependent K* (Kxrp) channels triggers electrical events
that culminate in Ca?* entry through voltage-dependent Ca®* channels (VDCCs), which triggers exocytosis mediated by SNARE complex proteins. The overall
secretory response is modulated by numerous receptors, channels, intracellular Ca?* stores, metabolic signals, and cytoskeletal elements. (C) Islet communi-
cation for coordinated pulsatile insulin secretion. Within an islet, B-cells communicate with each other and with glucagon-producing a-cells and somatostatin
(SST)-producing &-cells to coordinate their activity. Many putative intraislet messengers have been implicated, including ATP, Zn?*, y-aminobutyric acid (GABA),
glucagon-like peptide-1(GLP-1), acetylcholine (ACh), and others. These, along with electrical coupling via gap junctions, are likely important for the physiological

coordination of pulsatile insulin secretion.

therefore an important component of the early journey of insulin
before it can exit the B-cell. The process is coordinated by the
action of several small G-proteins and their activating nucleotide
exchange factors. This includes the glucose- and Cdc42-depen-
dent activation of Racl, which, when released from an inhibi-
tory RhoGDI and in its GTP-bound form, promotes cortical actin
remodeling, perhaps via an interaction with gelsolin (Kalwat and
Thurmond, 2013). Finally, secretory granules must dock at the
plasma membrane and be chemically “primed” in response to an
intracellular Ca®* signal (Fig. 2 B).
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The coordinated interaction of exocytic machinery proteins in
association with Ca?* channels (Gandasi etal., 2017) ensures assem-
bly of an insulin granule-exocytic site complex that is “ready to
go” when needed. These events likely underlie the well-described
biphasic nature of glucose-evoked insulin secretion seen in vitro:
a rapid first phase resulting from fusion and secretion by already
“docked and primed” secretory granules that in human lasts up to
10 min, and a subsequent second-phase secretion that is associated
with actin reorganization thought to allow granule recruitment to
the plasma membrane (Wang and Thurmond, 2009).
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The orderly arrival, priming, docking, and fusion of granules
is exquisitely coordinated in response to physiological inputs
initiated by glucose and decoded by the B-cell, as described next.

Sensing glucose: Metabolism-controlled electrical signals

and Ca?* activity

Glucose is the paramount metabolic signal eliciting insulin
secretion, and a consensus model reveals a relay of chemical to
electrical on to mechanical signals (Fig. 2 B). In brief, glucose
enters through the cell membrane glucose transporters GLUT2
in rodents and GLUTI in humans (McCulloch et al., 2011). Glu-
cose is rapidly phosphorylated by glucokinase (GK) to generate
glucose-6-phosphate, which, through glycolysis, feeds the mito-
chondrial TCA cycle. GK, an isoform of hexokinase, effectively
generates downstream signaling metabolites (i.e., ATP and pyru-
vate) within a range of glucose concentrations that matches the
normal physiological range for plasma glucose homeostasis
(Meglasson etal., 1983). For this reason, the tandem GLUT1/2 and
GK is often referred to as a glucose-sensor controlling blood sugar
levels. Mutations that alter the glucose-dependent activity of GK
effectively adjust the set point for whole-body glucose homeosta-
sis (Gloyn et al., 2003).

Pyruvate generated from glycolysis enters the mitochondria
via mitochondrial pyruvate carriers (Patterson et al., 2014),
where the TCA cycle-dependent generation of NADH promotes
the export of H* from the mitochondrial matrix by the electron
transport chain, and then generation of ATP from ADP by ATP
synthase, which itself appears dependent on mitochondrial Ca2*
uptake (Tarasov etal., 2013). Subsequent increases in the cytoso-
lic ATP/ADP ratio control cell membrane potential by inhibiting
ATP-sensitive K* (Kurp) channels, eliciting a membrane depolar-
ization that is modulated by a number of additional ion channels
(Fig. 2 B). This represents the conversion of chemical to electrical
signaling. When the membrane potential depolarizes sufficiently
(approximately -50 mV), the activation of voltage-dependent
Na* and Ca?* channels cause repetitive action potential spik-
ing and a rise in intracellular Ca?* (Rorsman et al., 2012). Ca*
thus becomes the “currency” that triggers granule fusion with
the plasma membrane. The increase in cytosolic Ca?* is rapidly
reversed by very active Ca?* pumps such as the ER sarco-ER
Ca2"-ATPase (SERCA), and the use of ATP in the entire process
might feed back to activate AMPK and promote insulin granule
migration toward the cell periphery. Additional important feed-
back between Ca?* and intracellular signals should be noted. For
example, feedback from oscillatory Ca?* signals controls mito-
chondrial ATP generation (Tarasov et al., 2012), and recent work
shows that Ca?* oscillations and the ER protein TMEM24 interact
at ER-plasma membrane contact sites to maintain phosphatidy-
linositol levels required for -cell signaling and insulin secretion
(Lees et al., 2017).

Importantly, cells across the entire islet, and islets across the
entire pancreas, coordinate their Ca?* signals to effect insulin
secretion that occurs as rhythmic oscillations. Although pancre-
atic B-cells are electrically excitable in response to glucose, they
do not work in isolation: they talk to each other. The electrical
and Ca**-responses of B-cells within an islet are synchronized
(zarkovic and Henquin, 2004) and perhaps even coordinated
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by pacemaker (or “hub”) B-cells within the islet (Johnston et al.,
2016). Gap junction coupling between B-cells via connexin36
plays a critical role, the loss of which results in dysregulation of
insulin secretion (Ravier et al., 2005). Paracrine and autocrine
signaling among B-cells also likely contributes to the coordina-
tion and amplification of electrical and Ca?* responses. Transmit-
ter molecules secreted by B-cells themselves, such as ATP (Gylfe
etal., 2012), among others, likely modulate the excitatory activity
of nearby B-cells, thus controlling islet Ca?* and insulin secretory
responses (Fig. 2 C).

Thus, communication between cells within an islet likely con-
tributes to the well-described phenomenon of insulin secretory
oscillations, which occur in healthy humans with a periodicity
of 5-10 min (Satin et al., 2015). The electrical activity and intra-
cellular Ca?* responses in B-cells within rodent and human islets
also oscillates, ranging from tens of seconds to ~5 min (Dean
and Matthews, 1970; Henquin et al., 1982). Further information
is provided in Fig. 2 B and in recent modeling that integrates
metabolic, electrical, and Ca?* feedback to produce these oscil-
lations (Bertram et al., 2018). Importantly, this translates into
oscillations of insulin secretion from isolated islets, again with
a periodicity of 1-5 min (Bergsten et al., 1994).

On top of this, the translation of this single-islet oscillatory
activity into a pulsatile release of insulin from the whole pan-
creas in vivo requires coordination among many individual islets
(perhaps a million within a human pancreas). It is not entirely
clear how islets within a pancreas communicate in order to
synchronize their oscillations. Strong recent evidence suggests
a key role for an intrapancreatic neural network, which could
coordinate activity among disparate islet populations. This “neu-
roinsular network” was most recently demonstrated by elegant
3D imaging techniques in rodent (Tang et al., 2018a) and human
(Tang et al., 2018b) pancreata.

The glucose-dependent increase in cytosolic ATP/ADP, closure
of Kurp channels, and initiation of electrical activity to increase
Ca?* and trigger insulin exocytosis has been a useful consen-
sus model for regulated insulin secretion for more than 35 yr.
However, this model oversimplifies the physiological regulation
of insulin secretion. It has been long recognized that additional
signals from gut-derived hormones, autonomic inputs, glucose
metabolism itself, and paracrine signals from neighboring a- and
§8-cells impinge on this model to exert important control on insu-
lin secretion (Fig. 2 C). Many of these signals “amplify” the secre-
tory response, either by modulating the electrical/Ca?* responses
of B-cells or by controlling the efficacy of Ca**-triggered insulin
exocytosis. For example, the gut-derived hormones glucagon-like
peptide-1 and glucose-dependent insulinotropic polypeptide
together mediate the “incretin” effect whereby nutrient sens-
ing in the gut signals to islets to augment the insulin secretory
response to glucose (Drucker et al., 2017). These hormones act on
classical G-protein-coupled receptors via Gas-activation of ade-
nylate cyclase to increase cAMP, which causes PKA-dependent
phosphorylation of the exocytic machinery and PKA-indepen-
dent effects mediated by Epac2A to promote the release of Ca%*
from intracellular stores (Kolic and MacDonald, 2015). Recently,
Epac2A was also shown to regulate insulin granule priming
(Alenkvist et al., 2017).
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Although a glucose-dependent rise in the intracellular
ATP/ADP ratio is critical for eliciting B-cell electrical and Ca?
responses, other mitochondria-derived signals are also import-
ant determinants of the secretory response to that Ca?* rise.
Hence, glucose not only controls the Ca?* signals that trigger
insulin secretion but also generates signals that improve the
efficacy of Ca®* on the secretory process, likely by acting on the
Ca?* sensitivity of diverse components in the pathway (Henquin,
2000). This is likely behind the glucose-dependent improvement
in insulin granule docking-priming, which is also promoted by
additional metabolism-derived signals such as glutamate, the
fatty acid metabolite monoacylglycerol, and NADPH (Ferdaoussi
and MacDonald, 2017). Together, these inputs interact with var-
ious elements of the downstream signaling machinery to effec-
tively amplify secretory responses to a Ca* signal. The metabolic
signals controlling electrical activity and exocytic function ulti-
mately determine the timing and magnitude of insulin secretion.
This concerted mechanism accounts for the first phase insulin
that takes place with 30 min (during a glucose tolerance test in
humans). A second phase lasting up to 120 min ensues that may
involve new insulin synthesis.

Insulin granule exocytosis

Insulin granules in apposition to the plasma membrane dock with
the membrane through the coordinated interaction and recruit-
ment of exocytic SNARE proteins that include SNAP-25, VAMP-8,
and syntaxins 1A and 3 (Gaisano, 2017). Loss of key SNARE pro-
teins results in impaired insulin secretion (Liang et al., 2017). The
formation and fidelity of the SNARE complex mediating granule
docking is regulated by a number of proteins such as Muncl8
and syntaxin isoforms (Gandasi and Barg, 2014; Zhu et al., 2015).
Assembly of the exocytic site in B-cells includes the association of
insulin granules with L-type Ca?* channels (Gandasi et al., 2017),
which ensures efficient delivery of Ca®* to the secretory vesicle
Ca?* sensor, synaptotagmin VII. Collectively, these mechanisms
trigger the fusion of the insulin granule bilayer with the plasma
membrane, with subsequent release of insulin.

Insulin release occurs directly into the interstitial space of
the pancreas, which is surrounded by a fenestrated endothelial
vasculature. In this way, released insulin readily finds its way
into the portal circulation to be delivered directly to the liver
for “first pass.”

Insulin clearance by the liver: Its receptor-mediated
endocytosis and degradation

Pulsatile delivery of insulin through the portal vein to the liver
The liver is the first organ that insulin encounters along its
journey. Accordingly, the liver is uniquely exposed to higher
concentrations of insulin than other insulin-responsive tissues
such as muscle and fat. The portal vein delivers insulin from the
pancreas to the liver in discrete pulses that occur every ~5 min
(Songetal., 2000), where the amplitude of these insulin pulses
is 0.5-1nmol/liter in the fasted state and rises to ~5 nmol/liter
after a meal (Pgrksen et al., 1995; Song et al., 2000). Pulsatile
insulin delivery to the liver is an important physiological sig-
nal that regulates both hepatic insulin action (Matveyenko et
al,, 2012) and insulin clearance (Meier et al., 2005), although

Tokarz et al.
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the cellular underpinnings of how hepatocytes sense pulsatil-
ity are unknown.

The liver acts as a gatekeeper that regulates the amount of
insulin reaching peripheral tissues through a process called
insulin clearance, which was first observed in dogs (Stevenson
et al.,, 1985). The concentration of insulin arriving to the liver
by the portal vein can be up to 10-fold higher than the concen-
tration in the peripheral circulation (Horwitz et al., 1975), and
the maintenance of this portal-systemic gradient is mediated by
substantial insulin degradation by the liver. In humans, simulta-
neous measurements of portal vein and peripheral vein insulin
concentrations during constant glucose infusion revealed that
upwards of 50% and possibly even 80% of insulin arriving to
the liver by the portal vein is degraded during first-pass hepatic
clearance (Meier et al., 2005), and ~25% of the circulating insu-
lin is degraded upon its second pass through the liver, so that
the circulating concentration of insulin is one third that in the
portal circulation (Stevenson et al., 1985). This degradation is
coupled to pulsatile delivery, such that the liver preferentially
clears insulin that arrives in pulses (Meier et al., 2005). Although
it seems counterintuitive that so much insulin would be disposed
of, degradation appears to be the default mechanism that is how-
ever modulated by demand to achieve the insulin concentration
required at the periphery. Indeed, adaptive decreases in the rate
of hepatic insulin clearance (Ader et al., 2014; Jung et al., 2018)
have been observed during insulin resistance and act to compen-
sate for decreased insulin sensitivity (Jung et al., 2018). More-
over, although insulin internalization is not required for many
of the metabolic actions of insulin in the liver, the internalized
insulin receptor (IR) continues to signal at least within early
endosomes (Bevan et al., 1995). Endosomal signaling may have
a differential impact from that emanating exclusively from the
cell surface, akin to the differential location-based signaling of
the EGF receptor (Bergeron et al., 2016).

The portal circulation delivers insulin into the capillaries of
the sinusoids, which are not supported by a basement membrane
and their endothelial cells contain fenestrations (Wisse, 1970;
Braet et al., 1995), together permitting the exchange of contents
between the blood and the surrounding liver cells. The unique
structure of the hepatic sinusoids allows insulin to easily diffuse
out of the circulation and into the perisinusoidal space, where it
comes into contact with hepatocytes (Fig. 3 A).

Hepatocytes are the major site of insulin clearance. Early
electron microscopy studies revealed that IRs bind **I-insulin
on microvilli (interdigitations) of the hepatocyte membrane
(Carpentier et al., 1985). After binding, *I-insulin-IR com-
plexes move to the base of the microvilli, where they associ-
ate with clathrin-coated pits (Pilch et al., 1983) and internal-
ize by clathrin-mediated endocytosis (Fehlmann et al., 1982).
Although still unknown for hepatocytes, IR autophosphory-
lation is required for insulin uptake by CHO cells (Carpentier
et al., 1992). Consistent with earlier studies, liver-specific IR
knockout mice provided direct evidence that receptor-me-
diated degradation regulates systemic insulin levels and that
impairments in this process lead to severe hyperinsulinemia
that, in turn, contributes to whole-body insulin resistance
(Michael et al., 2000). Of note, mice lacking in the liver the IR
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Figure 3. Insulin clearance in the liver. (A) Insulin is delivered to the
hepatic sinusoid, where it freely accesses the liver hepatocytes through
the fenestrated sinusoidal endothelium. (B) Proposed mechanism for insu-
lin degradation in hepatocytes. Insulin binds to the IR and forms a complex
with CEACAML. Prior to internalization, extracellular IDE begins to degrade
receptor-bound insulin. After internalization, endosomal IDE degrades recep-
tor-bound insulin and, once the endosome acidifies and the complex disso-
ciates, also frees insulin. Any remaining insulin or insulin fragments progress
toward lysosomes for their complete proteolytic degradation.

substrates 1and 2 (IRS1,2; adaptor proteins that can bind to the
IR to initiate signal transduction) have less severe hyperinsu-
linemia (Dong et al., 2008) than mice lacking the IR (Michael et
al., 2000; Cohen et al., 2007), suggesting that canonical insulin
signaling via IRS1,2 may not participate in insulin clearance.
However, there is no direct mechanistic proof of this or of the
involvement of other classical insulin signals.

After insulin binds to its receptor on the hepatocyte surface,
endocytosis of the receptor-ligand complex causes a concomi-
tant loss of surface IR (Goodner et al., 1988), which is followed
by rapid recycling and reinsertion of intact, unbound IRs in the
plasma membrane (Goodner et al., 1988). These findings are
concordant with the physiological intervals of pulsatile delivery,
suggesting that hepatocyte IR internalization and reinsertion
into the membrane is adaptively entrained to insulin delivery
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(Meier et al., 2005). In contrast to IR recycling, the fate of inter-
nalized insulin differs, as we will describe.

CEACAM1 and insulin-degrading enzyme (IDE): Hepatic molecules
driving insulin clearance

Although hepatocytes are not exclusive in their ability to inter-
nalize insulin, they highly express the transmembrane glycopro-
tein CEACAMI (carcinoembryonic antigen-related cell adhesion
molecule 1), which mediates rapid and effective IR-mediated
insulin endocytosis (Najjar, 2002). Mechanistically, CEACAMI is
phosphorylated by the IR, enhancing the formation of an insulin-
IR-CEACAM1 complex (Najjar et al., 1995; Fig. 3 B). It is hypoth-
esized that a so-far-unidentified adaptor protein targets the
tripartite complex to the AP2 adaptor complex for clathrin-medi-
ated endocytosis (Najjar, 2002). Tests in nonhepatic cells, on the
other hand, show that the IR target protein SHC binds dynamin (a
GTPase required for the scission of endocytic vesicles), and this
complex contributes to IR internalization (Baron et al., 1998). It
is tempting to hypothesize that, in hepatocytes, SHC might be
the protein linking the IR to CEACAMI and thus brings the com-
plex to dynamin-rich regions prone for endocytosis. Consistent
with the crucial role of CEACAM] in hepatic insulin clearance,
impairments in insulin-stimulated hepatic CEACAM1 phos-
phorylation or whole-body depletion of hepatic CEACAMI cause
severe hyperinsulinemia and, consequently, insulin resistance
and hyperglycemia (Poy et al., 2002; Russo et al., 2017). Notably,
hepatocytes from these mice have impaired insulin-dependent IR
endocytosis, which can be rescued by liver-specific reexpression
of CEACAMI (Poy et al., 2002; Russo et al., 2017). Hence, the level
of CEACAMI at the plasma membrane and its phosphorylation
may impart physiological fine-tuning regulation to the process
of insulin clearance.

The majority of insulin that binds to hepatic IRs is degraded
(Duckworth, 1988). The degradation process begins on the mem-
brane immediately after insulin binding, where some insulin is
reported to be partially degraded by extracellular IDE before inter-
nalization (Yokono et al., 1982). After internalization, additional
IDE is thought to be targeted to endosomal membranes through
its interaction with phosphatidylinositol phosphates (Song et al.,
2017), where it begins to degrade receptor-bound insulin in endo-
somes (Yonezawa et al., 1988) before acidification occurs (Hamel
etal., 1991). As endosomes acidify, any remaining insulin or par-
tially degraded insulin that escaped complete degradation by IDE
dissociates from the IR (Murphy et al., 1984; Fig. 3 B). Ultimately,
these degradation products and any remaining intact insulin
are delivered to lysosomes for complete proteolysis (Duckworth,
1988), although lysosomal degradation of insulin is thought to
play a minor role in insulin clearance (Duckworth et al., 1981).

Although the in vitro data strongly indicate that IDE is essen-
tial for hepatocyte insulin degradation, the role of IDE in hepatic
insulin clearance in vivo is controversial, as some studies report
that loss of IDE results in hyperinsulinemia (Farris et al., 2003;
Abdul-Hay et al., 2011), whereas others observed no changes
in systemic circulating insulin in the absence of the enzyme
(Steneberg et al., 2013).

Insulin that is not degraded in the liver exits through the
hepatic vein, reaching the heart, which pumps insulin into the
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arterial circulation to be delivered to its target tissues (e.g., skel-
etal muscle, liver, adipose tissue, and the brain). It is important
to note that insulin returns to the liver, this time via the hepatic
artery, which pours again into the hepatic sinusoid, where the
hormone is subject to a second round of insulin degradation (sec-
ond pass) within hepatocytes.

Beyond first- and second-pass insulin clearance, the hepato-
cytes are essential metabolic responders to insulin, where one
of the major actions of the hormone is to suppress gluconeogen-
esis and glycogenolysis (Lin and Accili, 2011). This ensures that
a portion of dietary glucose is effectively stored in the liver and
is only released to the rest of the body upon cessation of insu-
lin action (between meals) or upon metabolic demand enacted
by other “counterregulatory” hormones (Samuel and Shulman,
2018). This is a vast area of study that is however not further
discussed here.

Insulin interaction with the vasculature

Hemodynamic insulin action on arteries and arterioles

The peripheral actions of insulin begin inside the vessels of the
systemic circulation, where the hormone exerts its hemodynamic
effects on endothelial cells to promote blood flow and ensure its
delivery to peripheral tissues (Barrett et al., 2009). Endothelial
cells line each blood vessel and constitute a crucial interface
between the circulation and the tissue parenchyma. In large
blood vessels such as the aorta and large arteries, insulin acts on
the IR of endothelial cells, causing phosphorylation of the major
endothelial IR substrate, IRS2. This leads to activation of class I
phosphatidylinositol 3-kinase (PI3K), which signals downstream
to the serine and threonine kinase Akt/PKB. In turn, Akt activates
endothelial NO synthase to catalyze the conversion of L-arginine
to NO (Palmeretal., 1988; Zeng et al., 2000). NO is a potent vaso-
dilator that rapidly diffuses to the vessels’ outer layer of smooth
muscle cells, where it activates intracellular guanylate cyclase to
increase cyclic guanosine monophosphate production (Arnold et
al.,1977). Cyclic guanosine monophosphate-dependent reductions
inintracellular Ca** concentration (Carvajal etal., 2000) prevent
phosphorylation of myosin light chain required for cytoskeletal
cross-bridge formation and contraction (Lee et al., 1997; Mizuno
etal., 2008), thereby resulting in vessel relaxation (Fig. 4 A).

As a consequence of endothelial NO production, insulin stim-
ulates dilation of arteries and arterioles (Steinberg et al., 1994;
Vincent et al., 2002). Within minutes, vasodilation of precap-
illary arterioles irrigates previously collapsed capillaries with
blood carrying insulin (capillary recruitment), thereby pro-
moting insulin delivery to the tissue (Vincent et al., 2002). With
continued insulin circulation (~30 min), the hormone induces
relaxation of larger, upstream resistance vessels to further pro-
mote limb blood flow (Baron et al., 1996). Insulin action in target
tissues is temporally linked to these vascular effects (Barrett et
al., 2009); in particular, the full stimulation of skeletal muscle
glucose uptake in vivo is contingent on prior NO-mediated vaso-
dilation (Vincent et al., 2003; Bradley et al., 2013).

Insulin transit across the microvascular endothelium
Once insulin arrives at the capillaries of skeletal muscle and adi-
pose tissue, it must exit the circulation to reach the parenchymal
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Figure 4. Insulin interactions with the vasculature. (A) Endothelial insu-
lin signaling leading to vasodilation in the macrovasculature. The endothelial
cell IR engages its major substrate in these cells, IRS2, leading downstream
to activation of Akt. Akt phosphorylates endothelial NO synthase (eNOS),
which catalyzes the production of NO from L-arginine. NO freely diffuses to
the underlying vascular smooth muscle layer, where it leads to cyclic guano-
sine monophosphate production to induce vasorelaxation. (B) Possible routes
for insulin exit across microvascular endothelial cells toward the interstitial
space in muscle and fat tissue. Insulin may cross the microvascular capil-
lary endothelium either paracellularly (between adjacent endothelial cells)
or transcellularly (through individual endothelial cells). For the transcellular
route, both receptor-mediated and fluid-phase mechanisms of transport
have been proposed.

cells (muscle fibers and adipocytes). Unlike the fenestrated cap-
illaries of the liver, the capillary endothelium in skeletal and
adipose tissues is continuous, functioning as a stringent barrier
between the circulation and the interstitial space. Each capillary
is constituted by a single layer of endothelial cells, supported by
interendothelial junctions that selectively restrict the passage of
contents between the blood and the tissue. Bergman et al. first
reported a delay in muscle insulin action relative to the rise in
insulin in the circulation (Kolka and Bergman, 2012), and sev-
eral studies have documented that the capillary endothelium
is a barrier to insulin delivery to muscle in vivo, maintaining a
disequilibrium between circulating and interstitial insulin levels
(Jansson et al., 1993; Herkner et al., 2003).

Insulin may cross the tight capillary endothelia by two poten-
tial routes: transcellular (through individual cells) or paracellular
(between neighboring endothelial cells; Fig. 4 B). Although there
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is evidence that expression of the IR or vascular insulin signaling
is required for overall insulin egress from the circulation toward
tissues (Kubota et al., 2011; Majumdar et al., 2012; Meijer et al.,
2016; Konishi et al., 2017), opposing studies challenge a recep-
tor-mediated (Vicent et al., 2003; Duncan et al., 2008; Williams
et al., 2018) or saturable process (Steil et al., 1996). To this day,
the exact route (intracellular vs. paracellular) and supporting
mechanisms remain a matter of debate (Lee and Klip, 2016). The
impasse in discerning this route lies in the limitation to differen-
tiate in vivo between a distinctly local role of the endothelial IR
in the cellular transport of insulin across the endothelium from
its complementary role in capillary recruitment. Recent studies
that have bypassed the hemodynamic concerns have also yielded
opposite results. Thus, even with chemically induced vasodila-
tion, a new endothelial cell-specific IR knockout mouse model
(Konishi et al., 2017) shows defective insulin delivery and action.
In contrast, sophisticated imaging of the muscle distribution
of somewhat high doses of fluorescent insulin injected into the
circulation was best fitted to a model of distribution that does
not obey saturation kinetics, suggesting that the IR may not be
a major conduit under these conditions (Williams et al., 2018).

Controversy about the mechanism of insulin transit across
the microvasculature also arises upon scrutiny in vitro, as cell
culture studies have rendered inconsistent results regarding the
precise role of the endothelial IR in the uptake of fluorescently
conjugated insulin, potentially dependent on their niche origin:
microvascular (Azizi et al., 2015) or macrovascular (Wang et al.,
2008). Moreover, imaging the internalized insulin, needed to
establish the hormone’s intracellular route, has required the use
of supraphysiological doses of insulin to achieve detectable levels
(Wang et al., 2008; Azizi et al., 2015), confounding the identifi-
cation of the physiological mechanism. On the other hand, the
uptake of physiological levels of 2°I-insulin into microvascular
endothelial cells has uniformly revealed participation of the IR
(Jialal et al., 1984; Gray et al., 2017; Jaldin-Fincati et al., 2018).
This includes the transfer of insulin across cells of the blood-
brain barrier (Jialal et al., 1984; Gray et al., 2017), an important
conduit for the now-recognized neuronal actions of the hormone
evinced by the neuron-specific IR gene depletion (Briining et al.,
2000). How internalized insulin is spared from degradation in
endothelial cells, as opposed to its fate in hepatocytes (described
in Insulin clearance by the liver: Its receptor-mediated endocy-
tosis and degradation), remains unsolved. Potentially, this may
involve routing of insulin into sorting tubules akin to those
recently described for transferrin receptor-mediated transcyto-
sis through blood-brain endothelia (Villasefior et al., 2017).

Central insulin action: Brief focus on the brain

Emerging from the circulation, insulin begins its multifaceted
action on central and peripheral tissues. As outlined above, insu-
lin crosses the blood-brain barrier through a receptor-mediated
process (Woods et al., 2003). Thought to be insulin unrespon-
sive in the past, the central nervous system is well recognized
to be exquisitely responsive to the incoming hormone (Porte et
al., 2005). The concentration of insulin in the cerebrospinal fluid
is one third that in the circulation, but it nonetheless fluctuates
according to the latter and acts on IR on neurons and glial cells.
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Notable among the evoked central functions is the regulation
of appetite and energy expenditure (Filippi et al., 2013; Garcia-
Céceres et al., 2016). Insulin regulates appetite by reducing
expression of neuropeptide Y and Agouti-related peptide (orex-
igenic) and, conversely, elevating expression of pro-opiomelano-
cortin (anorexigenic; Schwartz et al., 2000). Insulin also exerts
trophic and developmental actions on neurons and glial cells,
and new evidence suggests it modulates cognition, memory, and
mood (Lee et al., 2016). Conversely, central defects in insulin
action are emerging as a potential contributor to the development
of Alzheimer’s disease (Griffith et al., 2018), possibly as a result
of abnormal phosphorylation of tau protein (Kleinridders et al.,
2014). Insulin acting centrally also evokes efferent inputs into
peripheral tissue metabolism (Ferris and Kahn, 2016), contrib-
uting to the suppression of gluconeogenesis in the liver and the
counterregulatory response to hypoglycemia (Diggs-Andrews et
al., 2010). Acting centrally on IR, insulin contributes to thermo-
regulation by activating heat-liberating mechanisms in brown
adipose tissue (Kleinridders et al., 2014).

The cellular mechanisms underlying each of these complex,
integrated responses are still to be elucidated, especially in so far
as identification of the specific intra- and intercellular neuronal
responses that are likely to be carefully decoded through spatial,
temporal, and amplitude parameters. Although rich information
is being gathered through electrophysiological approaches (van
der Heide et al., 2005; Kénner et al., 2007; Korol et al., 2018),
there is a rich opportunity to explore additional mechanisms
through the advent of real-time intravital imaging of the central
nervous system (Forli et al., 2018).

Insulin in action: Stimulation of glucose uptake in

muscle and fat cells

The actions of insulin on the parenchyma of peripheral tissues
are diverse, and paramount among them is the regulation of glu-
cose metabolism. The major function of insulin in muscle and
adipose tissues is to increase their uptake of carbon sources and
store them for the energetic needs of tissue. With glucose trans-
port into these tissues being rate limiting for its storage (as glyco-
gen and triglycerides, respectively), it is no surprise that insulin
regulates glucose uptake. This is brought about by an exquisite
series of signals that cooperate in bringing glucose transporters
(GLUT4 isoform) to the cell surface. This process is generically
known as GLUT4 translocation, and 30 years of research has
revealed regulation at a number of stages in this intracellular
process (Bryant and Gould, 2011; Kandror and Pilch, 2011; Stéckli
et al., 2011; Bogan, 2012; Leto and Saltiel, 2012; Klip et al., 2014;
Jaldin-Fincati et al., 2017).

GLUT4 translocation takes places within minutes of insulin
binding to its receptors at the surface of myocytes and adipo-
cytes and does not involve internalization of the hormone. Major
aspects of GLUT4 translocation are illustrated in Fig. 5.

The unique GLUT4 compartment

The molecular signature of GLUT4 allows it to be diverted away
from the continuously recycling pathway (a ubiquitous intracel-
lular route that constantly removes and returns membrane pro-
teins by internalization toward endosomes and reexternalization)
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Figure 5.

Insulin signaling in muscle and adipose cells leading to recruitment of GLUT4 to the plasma membrane. Insulin binds to its receptor on the

surface of muscle or fat cells and activates the canonical insulin-signaling cascade to PI3K and Akt. Downstream of Akt, phosphorylation of AS160 allows for
the full activation of Rab8A and Rab13 (in muscle cells) and Rab10 (in adipocytes). In the perinuclear region, Rab8A engages with its effector, MyoVa, and Rab10
with its effector, Sec16A, to promote outward vesicle traffic. Near the plasma membrane, Rab13 engages with MICAL-L2 and Actinin-4, whereas Rab10 engages
with RalA, Myolc, and Exocyst components. Simultaneously, downstream of PI3K; insulin leads to activation of Racl that promotes a dynamic cycle of cortical
actin remodeling. Together, these actions tether GLUT4 vesicles to the actin cytoskeleton near the plasma membrane. Inset: Docked GLUT4 vesicle ready to
fuse with the plasma membrane. Immobilized GLUT4 vesicles fuse with the membrane through formation of a SNARE complex between vesicular VAMP2 and

syntaxin4 and SNAP23 on the plasma membrane.

to constitute a functionally defined “organelle” called GLUT4
storage vesicles. Several elements contribute to the genesis and
maintenance of this storage compartment, including sortilin
(Huang et al., 2013), the Rab GTPase-activating protein (GAP)
AS160/TBC1D4, syntaxin 6/16 (Bryant and Gould, 2011; Klip et
al., 2014), the cleavable tether protein TUG (Belman et al., 2015),
and, in human muscle, clathrin heavy chain 22 (Vassilopoulos et
al., 2009). The storage compartment is in dynamic communica-
tion with recycling endosomes (Coster et al., 2004; Karylowski
etal., 2004; Kandror and Pilch, 2011). This dynamic sorting gen-
erates a steady state whereby the majority (~90-95%) of GLUT4
resides intracellularly at any point in time in both muscle and
adipose cells. This effective removal from the plasma membrane
atany point in time is rather unique for GLUT4, as is its intracel-
lular sorting to a compartment that is only slowly or ineffectively
available for recycling.

Insulin signals quickly mobilize GLUT4-containing vesi-
cles of ~70 nm in diameter from perinuclear/cytosolic depots
toward the cell periphery. These emanate directly from the
storage compartment; however, insulin also appears to redirect
vesicles from this compartment toward the general recycling
endosomes, from whence they reach the cell periphery in the
form of somewhat larger vesicles (Xu et al., 2011). A current
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model proposes that the initial gain in surface GLUT4 ema-
nates from the storage compartment, whereas maintenance
of the steady state involves the endosomal route (Bryant and
Gould, 2011; Kandror and Pilch, 2011; Stdckli et al., 2011; Bogan,
2012; Leto and Saltiel, 2012; Klip et al., 2014; Jaldin-Fincati et
al., 2017). However, another prevailing model proposes that the
majority of vesicles furnishing the cell membrane with GLUT4
contain the fusogenic protein VAMP2, which segregates away
with the storage compartment and is largely absent from recy-
cling endosomes (Randhawa et al., 2000, 2004; Torok et al.,
2004). Once at the cell periphery, insulin signals further pro-
mote vesicle fusion with the plasma membrane. Within min-
utes, this concerted action brings about a new steady state with
double the number of GLUT4 units at the plasma membrane in
muscle cells. Although this gain represents only ~20% of the
total GLUT4, given the large mass of muscle in vivo, this gain
sustains the vastly preferential deposition of diet-ingested glu-
cose into skeletal muscles. In adipocytes, the insulin-dependent
gain in surface-exposed GLUT4 ranges from twofold (human) to
10-fold or higher (rodents) and is typically calculated that this
gain involves 30-50% of the total GLUT4 complement in these
cells. In both muscle and fat cells, the new steady state lasts for
as long as insulin is present.
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The GLUT4 polypeptide has a very long lifetime (~40 h);
hence, its continuous removal from the membrane allows for
multiple rounds of endocytosis, sorting, and translocation. It is
understood that insulin promotes GLUT4 exit from retention in
the storage compartment (Xu and Kandror, 2002; Coster et al.,
2004; Martin et al., 2006; Bogan et al., 2012) and also regulates
GLUT4 vesicle tethering, docking, and fusion with the plasma
membrane through mechanisms that borrow principles from
those of synaptic vesicle and insulin granule fusion.

Insulin signals involved in GLUT4 translocation

The connection between IR-derived signals (Klip et al., 2014) and
the elements that mobilize GLUT4 vesicles and enact their fusion
with the membrane is beginning to unravel. Insulin activates the
IR tyrosine kinase activity toward autophosphorylation by induc-
ing structural rearrangement of the transmembrane domains to
bring them into close proximity with each other (Gutmann etal.,
2018), and the consequent activation of the IR tyrosine kinase
toward phosphorylation of its major substrates IRS1,2 (Copps
and White, 2012). Phosphorylation sites on IRS1,2 constitute
entropic information to attract class I PI3K, which rapidly gen-
erates membrane domains enriched in PI(3,4,5)P; (PIP;) within
minutes (Ruderman et al., 1990). Two major consequences of the
PIP; burst relevant for GLUT4 translocation are activation of the
kinases Aktl, 2 (Brozinick and Birnbaum, 1998; Wang et al., 1999)
and of the Rho-family GTPase Racl (Chiu et al., 2011).

For the first signal, PIP; attracts the PH domain of Akt, which
makes the protein available for phosphorylation by two kinases,
PDK-1, and mTORC2. Activated Aktl,2 migrates to the cytosol
and intracellular membranes (Zheng and Cartee, 2016), where it
phosphorylates AS160, a substrate of 160 kD more appropriately
named TBCID4 (Sano et al., 2003; Lansey et al., 2012). The TBC
domain of AS160/TBC1D4 defines its GAP activity toward Rab
family small GTPases. Phosphorylation of AS160/TBC1D4 inhib-
its its GAP activity; hence, insulin signaling leads to inactivation
of an inhibitor of Rab GTPases. This realization constituted the
first involvement of elements capable of specifically regulating
vesicle traffic in the pathway, as Rab GTPases regulate vesicle fis-
sion, destination, and fusion. AS160/TBC1D4 targets a cluster of
Rabs, particularly the phylogenetically related Rabs 8A, 10, and
13. In addition, these three GTPases are stabilized by the holdase
chaperone RABIF/MSS4 (Gulbranson et al., 2017). As a result of
AS160/TBC1D4 inactivation, these Rab GTPases prevail in their
active, GTP-loaded state; hence, their regulation is largely via
inhibition of their GAP (whereas their currently incompletely
identified guanine nucleotide exchange factors (GEFs) might be
constitutively active, as in the case of the Sec10, the GEF for Rab10
(Sano etal., 2011; Fig. 5).

In parallel to activation of this “Akt cascade,” the burst in
plasma membrane-associated PIP; leads to activation of GEFs
(and possibly inhibition of GAPs) for Racl (Takenaka et al., 2014,
2016). The resulting Racl activation leads to a dynamic remod-
eling of cortical actin filaments via cycles of actin filament
branching enacted by Arp2/3 and actin severing enacted by cofi-
lin, which is best mapped in muscle cells (Chiu et al., 2010) and
tissue (Sylow et al., 2013; Fig. 5).
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From signals to effectors: Mechanical elements of GLUT4

vesicle translocation

Rab GTPases lie at the crux of signal transmission to mechanical
transduction, as several Rab GTPase effectors collude with actin
filaments (whether those remodeling at the cell cortex and/or
other filamentous configurations) to de facto mobilize GLUT4
to the plasma membrane. In adipocytes, Rabl0 is the preferred
GTPase in GLUT4 translocation (Sano et al., 2008), whereas in
muscle cells, it is Rab8A and Rab13 (Ishikura et al., 2007; Sun et
al., 2010, 2014, 2016). Although Rab10, Rab8A, and Rab13 have
been studied the most, other Rab family GTPases contribute to
the overall GLUT4 traffic, such as Rab28, which is also a substrate
of AS160/TBC1D4; Rabl4, involved in intracellular GLUT4 sorting;
Rabs 4 and 11, involved in constitutive GLUT4 cycling; and Rab5,
involved in early GLUT4 endocytosis (Jaldin-Fincati et al., 2017).

In adipocytes, Rabl0 promotes GLUT4 mobilization from the
perinuclear region toward the plasma membrane (Sano et al.,
2007; Bruno et al., 2016), specifically by interacting with Secl6A
(Sano et al., 2007; Bruno et al., 2016). In addition, a function
for Rabl0 at the cell periphery was also proposed (Chen and
Lippincott-Schwartz, 2013), as will be discussed.

In muscle cells, the perinuclear Rab8A engages its effector
Myosin Va thereby promoting GLUT4 exit from the storage com-
partment (Sun et al., 2014). This processive molecular motor
allows migration of GLUT4 vesicles along actin filaments toward
the cell periphery. Rabl3 is more peripherally located, and its
effector is the cortically located protein MICAL-L2, which in turn
binds the cortical cytoskeleton protein a-actinin4. In response
to insulin, these three proteins can be visualized near the cell
surface along with GLUT4 and cortical actin (Sun et al., 2016).
In this way, Rab8A and Rab13 ensure GLUT4 vesicle mobilization
toward the periphery and tethering to cytoskeletal elements in
this region, respectively.

In addition to the Rabl13-MICAL-L2-a-actinin4 connection,
GLUT4 vesicles tether to actin filaments via Myosin 1c (Bose et
al., 2002; Boguslavsky et al., 2012). This restricts GLUT4 mobil-
ity beneath the membrane, a phenomenon nicely documented
through total internal reflection fluorescence microscopy of
muscle and adipose cells (Bai et al., 2007; Xiong et al., 2010;
Boguslavsky et al., 2012; Lizunov et al., 2012). GLUT4 vesicle
retention near the membrane also involves the exocyst subunit
Ex070 (Lizunov et al., 2012). Tethering may be regulated by insu-
lin, as stimulation leads to phosphorylation of Exo84 (Uhm et al.,
2017). In addition, active Rab10 binds to Exoc6/6b (Sano et al.,
2015), and the Rab10 effector RalA and its GEF, RIf, interact with
exocyst components (Karunanithi et al., 2014).

The GLUT4 vesicle fusion machinery

GLUT4 vesicles immobilized at the cell periphery rapidly fuse
with the membrane. This is brought about through formation
of a SNARE complex between VAMP2 on the vesicles and syn-
atxin4 and SNAP23 on the plasma membrane (Cheatham et al.,
1996; Foster and Klip, 2000; Thurmond and Pessin, 2001). The
formation of the SNARE complex is regulated by a fine balance
of a number of proteins such as Muncl8c, Synip, and Doc2b,
which receive input emanating from Akt and the phosphatase
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PTP-1B (Yamada et al., 2005; Fukuda et al., 2009; Bakke et al.,
2013; Garrido-Sanchez et al., 2013; Fig. 5).

The kinetics, stoichiometry, and upstream regulation of the
fusion step still need to be fully investigated. Intriguingly, there are
studies of additional participation of Ca?*-regulated proteins such
as Doc2b, Tctex1d2, and E-Sytl (Lalioti et al., 2009; Friedrich et
al.,2010; Shimoda etal., 2015), and insulin-dependent Ca?*-spikes
have been recorded in muscle cells (Contreras-Ferratetal., 2014),
suggesting that the ion may impart some fine-tuning to the fidelity
and timeliness of GLUT4 vesicle fusion. Lastly, and importantly,
the fusion event requires insulin-induced actin polymerization,
evincing the contribution of the actin cytoskeleton at different
steps in the process of GLUT4 translocation (Lopez et al., 2009).

The end: Insulin degradation in the kidney

Insulin is no longer detectable in the circulation 30 min after its
release from the pancreas, and its half-life once in the circula-
tion is ~6 min (Robbins et al., 1985; Marino, 2009). In addition
to its clearance by the liver (50% in first and another 25% in
second pass), the hormone is also slowly internalized by most
cells, including myoblasts and adipocytes, where it is routed to
the lysosome for degradation. This is a mechanism to end insu-
lin action, but it accounts for the destruction of only a fraction
of the circulating insulin. The brunt of the degradation of the
circulating hormone remaining after second pass through the
liver occurs when it reaches the kidney. Here, its fate is three-
some. Upon filtration at the level of the glomeruli, insulin
enters the luminal space and reaches the proximal tubule, from
whence it is rapidly reabsorbed by the renal epithelial cells.
This reabsorption involves saturable binding to low-affinity,
high-capacity sites at the brush border membrane, which are
demonstrated to be not the IR (Meezan et al., 1988; Sato et al.,
1991; Nielsen, 1993, 1994) but possibly scavenger receptors such
as megalin (member of the low-density lipoprotein receptor
family; Christensen et al., 1998; Kolman et al., 2009) and cubi-
lin, proteins that recover a number of proteins by endocytosis.
Insulin thus internalized enters the retroendocytic pathway,
where it dissociates from its binding sites to proceed to lyso-
somes for degradation.

Second, about an equal amount of insulin also enters renal
tubular cells from the contraluminal side facing the renal per-
itubular capillaries, especially in the convoluted tubule (Rabkin
et al., 1984). Here, IRs on the epithelial cells bind insulin and
transport it intracellularly for degradation (Nielsen et al., 1987).
In addition, these IR are important sites sensing the hormone to
stimulate important functions such as reabsorption of sodium,
phosphate, and glucose (Rabkin et al., 1984; Hale and Coward,
2013). It has been proposed that these two renal mechanisms
of insulin internalization are responsible for clearing up to 6-8
U insulin per day (Palmer and Henrich, 2017) amounting to up
to 25% of the insulin secreted by the pancreas, or ~50% of the
circulating insulin, although this might be an overestimation.
Nonetheless, renal insulin clearance may explain the curious fact
that type 1 diabetic patients with onset renal failure can end up
reducing their requirement for injected insulin (Rubenstein and
Spitz, 1968; Rabkin et al., 1984).
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Third, though most of the internalized insulin is degraded
by the above pathways, a small fraction is reabsorbed back to
the renal circulation through retroendocytosis (Dahl et al.,
1989). Notably, alterations in insulin renal clearance prolong
the permanence of insulin in the blood (Dahl et al., 1989),
evincing the importance of this process to insulin’s half-life in
the circulation.

Concluding remarks

We have analyzed the fundamental physiological journey of
insulin in the body by alternating a bird’s-eye view of the
integrative phenomenon with close-ups into the key cellular
processes of the hormone’s secretion, partial clearance in the
liver, distribution to the circulation and exit to target tissues,
its action to promote glucose uptake in muscle and fat, and
ultimately its degradation in the kidney. In spite of the depth
of knowledge available to us on each of these cellular stages
in the journey, there are many mechanistic and integrated
aspects that remain unknown. However, the current knowl-
edge already allows us to understand how each stage is in com-
munication with the other. The temporal periodicity of insu-
lin secretion out of the pancreas is sensed by the hepatocytes,
which synchronously clear a portion of the secreted insulin;
insulin action on the macrovasculature allows recruitment of
the microcirculation for full enactment of insulin delivery to
tissues; and insulin action in the liver, muscle, and fat cells
results in a lowering of blood glucose, thus terminating the
prime stimulus for insulin secretion. In pace with insulin
action, the kidney engages in its subsequent degradation, put-
ting an end to the hormone’s action with just the right time
delay to ensure optimal metabolic homeostasis.
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