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Metabolic regulation of chromatin modifications

and gene expression
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Dynamic regulation of gene expression in response to changing local conditions is critical for the survival of all organisms.
In metazoans, coherent regulation of gene expression programs underlies the development of functionally distinct cell
lineages. The cooperation between transcription factors and the chromatin landscape enables precise control of gene
expression in response to cell-intrinsic and cell-extrinsic signals. Many of the chemical modifications that decorate DNA and
histones are adducts derived from intermediates of cellular metabolic pathways. In addition, several of the enzymes that
can remove these marks use metabolites as part of their enzymatic reaction. These observations have led to the hypothesis
that fluctuations in metabolite levels influence the deposition and removal of chromatin modifications. In this review,

we consider the emerging evidence that cellular metabolic activity contributes to gene expression and cell fate decisions
through metabolite-dependent effects on chromatin organization.

Introduction

All organisms must adapt to changing environmental conditions
to survive and thrive. Therefore, scientists have long studied how
changes in nutrient availability influence cellular behaviors.
Seminal work by Jacob and Monod (1961) investigating how
single-cell organisms adapt to alterations in nutrient supply
led to the discovery of the lac operon and laid the groundwork
for the modern understanding of gene regulation. After the
observation that bacteria could, after a small lag in growth,
switch to lactose as a fuel source once glucose was exhausted,
Jacob and Monod systematically dissected how bacteria adapt
to this metabolic challenge by inducing the expression of genes
involved in lactose uptake and catabolism. They proposed a model
wherein a metabolite acting as an “inducer” blocks the action of a
“repressor” molecule that inhibits expression of a suite of related
genes (Fig. 1 A). Subsequent work showed that two metabolic
pathways converge to regulate the activity of the lac operon.
Allolactose, a product of lactose metabolism, serves as the
inducer by binding the repressor, thereby reducing the fraction
of repressor that can bind and repress the operon. Cyclic AMP
(cAMP), which increases dramatically in the absence of glucose,
positively increases transcription of the operon by promoting the
binding of a coactivator that recruits RNA polymerase (Fig. 1 A;
Lewis, 2005). Thus, the lac operon serves as an AND gate that
integrates multiple metabolic inputs to coordinate appropriate
gene expression in response to environmental fluctuations.

This model, whereby sequence-specific DNA binding proteins
regulate the transcription of genes that contain their cognate
sequence (Ptashne, 1988) in direct proportion to the ability
to bind and recruit RNA polymerase, serves as a basis for how
specific gene regulation is thought to be effected.

Nutrient signaling in metazoan organisms is more complex
than in prokaryotes. Multicellular organisms have evolved
signaling pathways that respond to specific nutrients as
well as hormones that reflect organismal metabolic status
(Chantranupong et al., 2015). The response of an individual cell
(e.g., whether to rewire metabolic pathways to favor an anabolic
vs. catabolic state) to such extracellular signals depends in turn
on a variety of intracellular nutrient and bioenergetic sensors
including AMP-activated protein kinase (AMPK), mammalian
target of rapamycin (mTOR), and GCN2. These enzymes sense
changes in intracellular metabolites and convert these variations
into an output, substrate phosphorylation, which is able to
be effected at all ratios of ATP/ADP that exist in viable cells.
Collectively, these signaling pathways enable cells to coordinate
organismal metabolic status (through extracellular signaling
pathways) with intracellular metabolic status. Furthermore,
these kinases allow metazoan organisms to enact changes in gene
expression over a wide range of variation in the substrates used
to maintain bioenergetics.

However, metazoan cells also retain features of direct nutri-
ent sensing within their nuclear organization. All organisms
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Figure 1. Paradigms of metabolic regulation of gene expression. (A) Summarized model of the E. coli lac operon as outlined by Jacob and Monod (1961).
In low glucose/high lactose conditions, the lac repressor (Lacl) binds allolactose and RNA polymerase is able to activate transcription of genes required for
lactose metabolism. Conversely, in high glucose/low lactose conditions, Lacl is not bound to allolactose and can bind to the operator sequence, repressing the
ability of RNA polymerase to transcribe operon genes. CAP, catabolite activator protein. (B) Schematic representation of how sequence-specific DNA binding
proteins recruit chromatin modifying enzymes that serve to deposit inhibitory (left) or activating (right) marks. In this model, transcription factors recruit local
chromatin modifying enzymes. YFG, your favorite gene; 5mC, 5-methyl-cytosine; K9, histone H3 lysine 9; K27, histone H3 lysine 27; K4, histone H3 lysine 4.

harbor variable levels of chemical modification on their DNA
and DNA-associated proteins (Yung and Elsisser, 2017). The
deposition and removal of these marks require metabolites that
are intermediates of distinct metabolic pathways. This has led
to the hypothesis that these chromatin modifications respond to
fluctuations in nutrient availability to modulate gene expression.
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In contrast to the basic model of transcription proposed by Jacob
and Monod (1961) in Escherichia coli, it appears gene regulation
in more complex organisms has evolved to also be regulated
by chemical modifications of DNA and its attendant proteins
(Fig. 1 B). In this review, we discuss examples of how metabolite
availability shapes gene expression in mammalian cells through
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effects on chromatin modifications. In particular, we focus on
the hypothesis that levels of specific metabolites provide signals
that can be integrated in chromatin modifications to influence
gene expression.

Theories and limitations
Regulation of gene expression
Viewed from an enzymatic perspective, gene expression involves
the recruitment of RNA polymerase to a specific DNA template
and the activation of its transcribing ability (Sainsbury et al.,
2015). However, in more complex organisms, it appears a prereq-
uisite to this reaction is that the chromatin regions to which RNA
polymerase is recruited have previously been rendered acces-
sible (Levine et al., 2014). Accessibility is largely a result of the
combined activity of transcription factors, nucleosome remod-
eling complexes, and chromatin-modifying enzymes that add or
remove marks that favor recruitment of specific coactivators. Key
to the links between metabolism and gene expression is the fact
that these marks are derived from intermediary metabolites.
This hypothesis does not challenge the importance of
transcription factors in directing gene expression. However,
transcription factors act in concert with a number of chromatin-
modifying activities that may sense the metabolic state of a cell.
Although controversy still exists as to the causative or correlative
nature of chromatin modifications with respect to gene
expression, it is clear that metazoan transcription factors do not
survey the entire genome landscape (Kolomeisky, 2011) and that
chromatin accessibility can be increased or decreased by various
chromatin modifications. As demonstrated by the inefficiency
of the inducible pluripotent stem cell reprogramming process
(Takahashi and Yamanaka, 2006), transcription factors are not
free to bind and/or activate any genomic region. In contrast
to the deterministic effect of metabolites on gene expression
in E. coli as demonstrated by the Iac operon model (Fig. 1 A),
metazoan cells engage a model in which transcription factors,
chromatin remodelers, and metabolic state cofactors act in
concert to influence whether specific gene loci are activated or
repressed (Fig. 1 B).

Links between metabolites and chromatin modifications

The repertoire of annotated chromatin modifications islarge and
continually expanding. To date, the most common modifications
include methylation of nucleicacids and acetylation, methylation,
phosphorylation, and ubiquitination of histones. Additional
histone acylations, such as crotonylation, succinylation, and
propionylation, arise in the presence of high levels of the specific
acyl-donor (Sabari et al., 2017). Here, we focus on the common
histone and DNA modifications that are most affected by the
metabolic state of the cell.

All methylation reactions require the metabolite S-adenosyl-
methionine (SAM) as a methyl donor. This metabolite is directly
derived from the combined activities of serine-glycine-one carbon
metabolism and the methionine cycle (Fig. 2 A). Cytosine DNA
methylation is catalyzed by the three DNA methyltransferases,
DNMT1, DNMT3a, and DNMT3b (Lyko, 2018). DNMTI, the
maintenance methyltransferase, recognizes hemimethylated
DNA to produce a symmetrically modified DNA duplex
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(Gruenbaum et al., 1982). DNMT3a and 3b, in contrast, are de
novo methyltransferases that deposit methyl marks on previously
unmodified cytosines (Okano et al., 1999). A wide variety of
histone methyltransferases, including lysine methyltransferases
and arginine methyltransferases, similarly use SAM as a methyl
donor. This can result in mono- or dimethylation of arginine
residues or mono-, di-, or trimethylation of the amide nitrogen of
lysine (Fig. 2 B). In all cases, the reaction results in the donation
of a methyl group from SAM to the substrate and the release
of S-adenosylhomocysteine, which can serve as a competitive
inhibitor of these enzymes or be restored to SAM via intracellular
metabolic pathways (Fig. 2 A).

Although DNA and histone methylation can be lost passively
through replication or nucleosome eviction, the active removal
of methylated moieties can proceed through one of two major
chemical mechanisms. The LSD1 family of histone demethy-
lases uses oxygen and a flavin-dependent reaction mechanism
to remove methyl moieties from mono- or dimethylated histone
residues (Shi et al., 2004). A second, more general mechanism
of methyl removal involves the family of a-ketoglutarate (aKG)-
dependent dioxygenases (Gao et al., 2017), which encompasses a
diverse array of enzymes responsible for histone demethylation
(JmjC family of histone lysine demethylases), DNA 5-methyl-cy-
tosine hydroxylation (Tet family of DNA modifying enzymes),
RNA NS-methyladenosine (m®A) demethylation (FTO, fat mass
and obesity-associated protein, and ALKBH5), and EgIN pro-
lyl-4-hydroxylation, among others. All aKG-dependent dioxy-
genases use oxygen and oKG as substrates and release CO, and
succinate as products. This reaction requires ferrous iron (Fe(II))
as a cofactor and, like LSD1-dependent demethylation, results in
hydroxylation of the enzymatic substrate (Fig. 2 B). In the case
of lysine or arginine demethylation, this hydroxyl-methyl inter-
mediate is released as formaldehyde, which can ultimately be
recycled into formate to fuel nucleotide biosynthesis (Burgos-
Barragan et al., 2017).

DNA methylation and several histone lysine methylation
states are traditionally considered to exert repressive effects
on gene expression (Mozzetta et al., 2015; Rao et al., 2017;
Schuettengruber et al., 2017). In contrast, histone acetylation
is primarily associated with actively transcribed loci (Xu et al.,
2005; Tessarz and Kouzarides, 2014; Fig. 2 B). The acetylation
of histone lysines is performed by acetyl-transferases that use
acetyl-CoA to modify target proteins, which may not always be
histones. Acetyl-CoA can be generated either through the mito-
chondrial oxidation of carbon sources including glucose, amino
acids, and fatty acids or the recycling of acetate groups (Fig. 2 A).
Three classes of histone deacetylases (HDAC classes I, I, and IV)
remove acyl moieties from histone lysine residues though simple
amide hydrolysis (Seto and Yoshida, 2014). Class III HDACs, also
known as sirtuins, use a more complex method of deacylation in
which the cosubstrate NAD* is cleaved to form acyl-ADP-ribose
and nicotinamide.

Enzymatic considerations for the metabolic regulation of

gene expression

Thus, metabolites are integral components of the reactions that
regulate chromatin modifications. A multitude of factors can
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Figure 2. Metabolic pathways provide substrates for enzymes that modify chromatin. (A) Metabolic pathways implicated in the generation of carbon
groups required for methylation (turquoise), acetylation (orange), or demethylation (dark blue) of chromatin. Note that TCA cycle metabolites serve to provide
carbon units for both acetylation and demethylation via aKG. THF, tetrahydrofolate; SAH, S-adenosylhomocysteine; MTs, methyltransferases; PDC, pyruvate
dehydrogenase complex. Details in the text. (B) Chromatin modification reactions that require intermediary metabolites. Repressed chromatin is shown on the
left; open chromatin is shown on the right; and a poised state is indicated in the center. Color coding is as in A, with methyl marks in turquoise and acetylation in
orange. 5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5ShmC) are indicated, but their reactions are omitted for clarity. HATs, histone acetyltransferases;

JMJD, Jumonji-domain containing histone demethylases; KMTs, histone lysine methyltransferases; YFG, your favorite gene. For simplicity, the flavin-dependent
LSD1 family of histone demethylases and the sirtuin family NAD-dependent HDACs are omitted but are discussed in the text.

influence the efficiency of these enzymatic reactions. As has
been reviewed previously (Fan et al., 2015; Su et al., 2016; Reid et
al., 2017), the Ky of the enzyme must be equal to, or higher than,
the range of substrate concentrations for physiological fluctua-
tions in substrate concentration to affect the rate of the reaction.
Therefore, if substrate concentrations are well above enzymatic
Ky, small variations in substrate concentration will not influ-
ence enzymatic rate. For example, cellular ATP concentrations
(~10 mM) are far higher than the levels needed to saturate kinase
activity. Furthermore, in viable cells, the ADP and Pi levels are
much lower than the ATP levels and therefore play essentially no
role in product inhibition. Thus, kinases are unlikely to be influ-
enced by fluctuations in substrate or product concentrations. In
the case of enzymes that regulate methylation or acetylation,
however, the measured Ky, is frequently in the range of observed
substrate concentrations in cells (Su et al., 2016; Reid et al., 2017).

Therefore, a key question in the field is whether or not sub-
strate concentrations are limiting or product levels are too high
to allow constitutive activity of the suite of enzymes that regu-
late chromatin modifications. This is not a trivial question. First,
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several additional factors influence enzymatic rate, including
cofactor availability, pH, and allosteric regulation by metabolites
or enzymatic partners. As an example, high acetyl-CoA levels in
the mitochondria (0.1-1.5 mM) coupled with high mitochondrial
pH (7.9-8.0) enable nonenzymatic acetylation of mitochondrial
proteins to proceed as an energetically favorable event (Wagner
and Payne, 2013). At the lower levels of cytoplasmic acetyl-CoA
(2-13 puM; Lee et al., 2014) coupled with a lower pH, acetylation
of proteins occurs only if catalyzed by cytoplasmic and nuclear
acetyltransferases (Wagner and Payne, 2013).

Second, the determination of enzyme Ky, in vitro does not
necessarily provide a reliable measure of enzyme function in
vivo. It is impossible to recapitulate in a test tube the complex
microenvironment an enzyme would experience in cells, includ-
ing the presence of multiple metabolites that could compete for
the substrate binding site and thus raise the effective Ky of the
enzyme for its normal substrate. Similarly, measures of in vitro
Ky do not account for the inclusion of the enzyme in a multipro-
tein complex as found for the majority of chromatin-modifying
enzymes (e.g., histone H3K4 methyltransferases as part of Setl/
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COMPASS [complex of proteins associated with Setl; Miller
et al., 2001] or polycomb repressive complex 2 [PRC2] histone
H3K27 methyltransferases as part of PRC2 [Klymenko et al.,
2006] methyltransferase complexes). Moreover, local concen-
trations of enzyme cofactors, allosteric regulators, cosubstrates,
end products, and any existing posttranslational modifications
of the chromatin-modifying enzymes may influence in vivo Ky.

Third, it is almost impossible with current technology to esti-
mate the local concentration of individual metabolites. To date,
most estimates of metabolite availability are based on whole-cell
analyses and thus scramble different pools with vastly different
substrate concentrations (Chen et al., 2016). However, local-
ization of enzymes that produce key metabolites can provide
a clue as to the mechanisms cells use to generate local pools of
substrates for chromatin modifications (Fig. 3). For example,
the pyruvate dehydrogenase complex, traditionally found in the
mitochondrial matrix adjacent to the inner mitochondrial mem-
brane, can transit to the nucleus where it generates locally high
concentrations of acetyl-CoA to fuel histone acetylation required
for transcription of genes involved in S phase (Sutendra et al.,
2014) or lipid biosynthesis (Chen et al., 2018). Similarly, nuclear
ATP-citrate lyase generates acetyl-CoA pools upon DNA damage,
facilitating the histone acetylation required for efficient dou-
ble-strand break repair by homologous recombination (Sivanand
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Figure 3. Subcellular localization of selected
metabolic pathways. A simplified schematic depicting
the interplay between mitochondrial, cytoplasmic,
and nuclear metabolism. Metabolic enzymes found to
localize to the nucleus: methionine adenosyl-transferase
(MAT), ATP-citrate lyase (ACL), pyruvate dehydrogenase
complex (PDC), and ACSS2. Metabolite transport across
the inner mitochondrial membrane requires transporters
that are shown in simplified form. Note: complete
enzymatic reactions are not depicted; we highlight the
metabolites directly relevant to chromatin regulation
for simplicity.

et al., 2017). Another example that involves local nuclear pro-
duction of acetyl-CoA depends on the function of acetyl-CoA
synthetase 2 (ACSS2). Under normoxic conditions, cytoplasmi-
cally localized ACSS2 drives the use of acetate for lipogenesis
(Kamphorst et al., 2014; Schug et al., 2015). Under hypoxia, how-
ever, ACSS2 translocates to the nucleus where it allows the recy-
cling of acetate produced by histone deacetylation reactions for
histone reacetylation (Bulusu et al., 2017).

SAM-generating enzymes can also localize to the nucleus.
Methionine-adenosyltransferase complex II associates with the
large protein complex associated with transcriptional repres-
sion of the COX2 locus mediated by methylation of H3K9 by the
methyltransferase SETDBI (Katoh et al., 2011; Kera et al., 2013).
Interestingly, this mechanism is not restricted to targeting SAM
for repressive functions. The serine-responsive SAM-contain-
ing metabolic enzyme (SESAME) complex interacts with the
Setl methyltransferase complex to coordinate H3K4 methyla-
tion and H3T11 phosphorylation at the pyruvate kinase M2 locus
(Li et al., 2015), leading to its transcriptional activation. These
examples suggest that despite the free passage of metabolites
from cytoplasm to nucleus through the large nuclear pore com-
plex, local generation of metabolite pools can have biologically
relevant functions. Nonetheless, a great deal of work remains
to explore how regional pools of metabolites might affect
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chromatin modifications. A combination of in nucleo chemical
assays to probe enzyme responsiveness to variations in metab-
olites (Shrimp et al., 2015) and chemoproteomic approaches to
quantitate metabolite/enzyme interactions in native contexts
(Montgomery and Meier, 2016) may begin to answer this question.

Regulation of gene expression by metabolites
Metabolites as substrates
Despite the challenge of estimating the biochemical milieu of
chromatin-modifying enzymes in living cells, increasing evi-
dence suggests that changes in metabolite availability do influ-
ence chromatin modifications and ultimately gene expression
in mammalian cells. In cultured cells, nucleocytosolic pools of
acetyl-CoA for histone acetylation are derived primarily through
the action of ATP-citrate lyase, which converts mitochondri-
al-derived citrate to oxaloacetate and acetyl-CoA. Signaling-in-
duced changes in glucose oxidation and ATP-citrate lyase activ-
ity increase acetyl-CoA availability and total histone acetylation
(Wellen etal., 2009; Lee et al., 2014). Outside idealized cell culture
conditions, acetate may provide a major source of carbon for his-
tone acetylation: in hypoxia and in tumors, conversion of acetate
to acetyl-CoA by ACSS2 provides an additional source of nucleo-
cytosolic acetyl-CoA and could represent an important recycling
mechanism for recapture of acetate after histone deacetylation
(Comerford et al., 2014; Schug et al., 2015; Bulusu et al., 2017).
Perturbations in SAM availability likewise influence total
levels of histone methylation. In contrast to human cells or dif-
ferentiated mouse cells, some strains of mouse embryonic stem
cells (ESCs) can generate SAM from threonine catabolism; con-
sequently, threonine depletion reduces H3K4me3 levels in these
ESCs (Shyh-Chang et al., 2013). In both stem cells and differen-
tiated cells, methionine restriction similarly reduces SAM pools
and compromises histone methylation (Shiraki et al., 2014).
Human pluripotent cells regulate SAM pools through the action
of nicotinamide N-methyltransferase, an enzyme that consumes
SAM and buffers low levels of H3K27me3 at key developmental
genes (Sperber et al., 2015). In all cases, a major experimental
hurdle is to uncouple direct effects on chromatin from second-
ary changes driven by reduced viability or proliferation that may
result from depletion of critical metabolites. This is especially
true for studies attempting to manipulate aKG levels, as cultured
cellslargely derive aKG from glutamine, a metabolite that is crit-
ical for proliferation and survival of cultured mammalian cells
(Wise et al., 2008). However, mouse ESCs in the ground state of
naive pluripotency exhibit the unusual ability to proliferate in
the absence of exogenous glutamine. Restricting glutamine in
these cells triggered accumulation of several trimethylated his-
tone lysine residues, consistent with impaired aKG-dependent
demethylation (Carey et al., 2015). Together, these cell-based
studies have begun to lay the groundwork for our understanding
of how metabolic networks provide the substrates that regulate
chromatin modifications.

Metabolites as inhibitors

An additional determinant of enzymatic rate is the inhibitory
effect of enzymatic products and other closely related metabo-
lites. The biological importance of enzyme inhibition by small
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molecules is underscored by the observation that mutations
in metabolic enzymes occur in a variety of human malignan-
cies (Kaelin and McKnight, 2013). For example, loss-of-func-
tion mutations in the metabolic enzymes succinate dehydro-
genase (SDH; Baysal et al., 2000) and fumarate hydratase (FH;
Tomlinson et al., 2002) were originally associated with cancer
syndromes including hereditary paraganglioma and pheochro-
mocytomas and hereditary lelomyomatosis and renal cell carci-
noma, respectively. Subsequent large scale sequencing studies
found FH and SDH mutations in a number of other malignancies
(Carvajal-Carmona et al., 2006; Bardella et al., 2011). Mechanisti-
cally, high levels of succinate and fumarate driven by loss of SDH
or FH function, respectively, can act as competitive inhibitors of
aKG-dependent enzymes. In particular, SDH and FH mutations
are associated with impaired DNA and histone demethylation
and the accumulation of repressive chromatin modifications
that contribute to malignant progression (Laukka et al., 2016).
In addition, high levels of succinate can inhibit the activity of
EgIN prolyl-4 hydroxylases, leading to stabilization of the het-
erodimeric transcription factors HIFla and HIF2a, which may
represent possible mediators of the oncogenic effects of succi-
nate and fumarate accumulation seen in SDH and FH mutant
tumors, respectively (Koivunen et al., 2012; Laukka et al., 2016).

The discovery of neomorphic point mutations in the genes
coding for isocitrate dehydrogenase 1 and 2 in a number of dif-
ferent cancers was a key finding in expanding the understand-
ing of the connections between metabolism and gene expression.
Point mutations in IDH1 (R132) and IDH2 (R172K or R140Q) are
seen in tumors including acute myelogenous leukemia (AML),
grade II-III glioblastoma, chondrosarcoma, cholangiocarcinoma,
and many other tumors at low frequencies. Wild-type IDHI1 and
IDH2 catalyze the interconversion of isocitrate and aKG, with
concurrent reduction of NAD(P)* to NAD(P)H and release of
CO, in the forward reaction. The neomorphic mutant enzymes
catalyze the irreversible partial reduction of aKG to p-2-hydrox-
yglutarate (D-2HG), a metabolite not normally present in physi-
ological conditions (Dang et al., 2009; Ward et al., 2010). D-2HG
is in turn a competitive inhibitor of aKG-dependent enzymes
(Xu etal., 2011).

As aresult of D-2HG-mediated inhibition, tumors harboring
IDHI or IDH2 mutations show various degrees of hypermethyl-
ation of DNA and histone marks, which are thought to mediate
the transcriptional changes that block terminal differentiation
(Figueroa et al., 2010; Chowdhury et al., 2011; Lu et al., 2012).
Interestingly, not all D-2HG effects are pro-oncogenic. In non-
IDH mutant leukemias, D-2HG leads to inhibition of the m°A
demethylase FTO and consequent hypermethylation and desta-
bilization of Myc transcripts (Su et al., 2018).

Metabolites that accumulate in physiological conditions can
also inhibit chromatin-modifying enzymes. For example, fast-
ing-induced increases in circulating levels of the ketone body
B-hydroxybutyrate inhibit class I HDACs in multiple tissues and
induce expression of genes associated with resistance to oxi-
dative stress (Shimazu et al., 2013). Similarly, short-chain fatty
acids such as propionate and butyrate derived from commensal
bacterial populations increase histone acetylation and promote
extrathymic maturation of regulatory T cells (Arpaia et al., 2013).
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Low oxygen or acidic pH induce chromatin hypermethylation in
part by stimulating the production of L-2HG (the enantiomer of
D-2HG) by wild-type forms of malate dehydrogenase or lactate
dehydrogenase (Intlekofer et al., 2015, 2017; Oldham et al., 2015).
These selected examples illustrate how cell-autonomous and cir-
culating metabolites serve as signals that transmit information
about environmental changes to individual cells to induce appro-
priate adjustments in gene expression.

Metabolic modulation of enzyme activity

To maintain their activity, aKG-dependent dioxygenases use
ascorbate (vitamin C) to facilitate regeneration of the required
Fe(II) cofactor (Myllyl4 et al., 1978). Providing exogenous ascor-
bic acid potently enhances aKG-dependent dioxygenase activ-
ity (Knowles et al., 2003). This effect can have biological rele-
vance. Defective collagen production—a process mediated by
the aKG-dependent prolyl hydroxylases—is a major driver of the
pathogenesis of scurvy. The therapeutic effect of vitamin C-rich
fruits in patients with scurvy provides a dramatic example of the
relevance of this cofactor for organismal homeostasis (Kuiper
and Vissers, 2014).

Tet enzymes are known to be particularly sensitive to ascor-
bate levels, and multiple studies have shown that variations in
ascorbate levels can affect stem cell biology via Tet enzymatic
activity (Blaschke et al., 2013; Chen et al., 2013b; Minor et al.,
2013; Yin et al., 2013; Cimmino et al., 2017). Metabolite profil-
ing of isolated hematopoietic progenitors revealed 2-20-fold
higher levels of ascorbate in hematopoietic stem cells (HSCs)
and multipotent progenitors compared with other hematopoietic
precursors (Agathocleous et al., 2017). Reducing ascorbate avail-
ability in vivo increased HSC frequency and function as a result
of impaired Tet2 function. Consequently, ascorbate depletion
results in increased leukemogenesis in the setting of a cooper-
ating oncogene (Agathocleous et al., 2017). These collective find-
ings suggest that HSC expansion is favored by the inhibition of
Tet2 that results from decreased ascorbate. As such, conditions of
ascorbate depletion would mimic loss of Tet2 and favor leukemo-
genesis in the setting of additional oncogenic events.

Integrating metabolism and gene expression

Transcription factors are required but may not be sufficient

for cell fate decisions

Although metabolites may contribute to gene regulation, the abil-
ity of a cell to make state or fate changes relies on the expression
of specific transcriptional programs. One explanation for how
specific biological events lead to activation of appropriate tran-
scriptional programs is through the DNA binding specificity of
transcription factors. Transcription factors are hence an essential
force determining cell identity, as demonstrated by the pivotal role
of MyoD in directing muscle differentiation and factors such as
Oct4, Sox2, and Klf4 in directing the acquisition of the pluripotent
state (Davis et al., 1987; Takahashi and Yamanaka, 2006). At a first
approximation, it is difficult to see how the metabolic changes
discussed above can lead to specific transcriptional programs that
effect cell specification. The modifications affected by interme-
diary metabolite levels are often present genome-wide, and the
metabolites themselves are not localized to specific genomic loci.
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However, gene expression is not simply a binary output
driven by the presence or absence of transcription factor bind-
ing. Rather, gene expression is the result of multiple inputs
including the recruitment of chromatin-modifying activities
that deposit activating marks (e.g., acetylation at H3K9 and
H3K27 and methylation at H3K4) and remove inhibitory marks
(e.g., methylation of H3K9 and H3K27). These marks can in turn
enhance gene expression by altering charge-driven nucleosomal
contacts or promoting recruitment of additional coactivators.
Gene expression therefore represents the integrated output
of multiple disparate inputs, including metabolite availability.
Taken together, metabolic alterations may influence the prob-
ability of expressing a given gene, and, therefore, in aggregate
may contribute to the induction or repression of specific gene
expression programs.

Modification-specific effects

A major challenge to the hypothesis that metabolites provide
important information that links gene expression programs to
environmental conditions is the problem of specificity. First,
the same chemical modification on different residues can exert
vastly different biological effects. For example, H3K9me3 and
H3K27me3 are associated with gene repression (Mozzetta et al.,
2015), H3K4mel with gene enhancers, and H3K4me3 with gene
expression (Shilatifard, 2012; Rao et al., 2017; Schuettengruber
et al,, 2017), and yet all of these modifications are derived from
SAM. Likewise, the enzymatic removal of the trimethyllysine
modification always requires oKG, regardless of the residue
being modified. Second, to exert coherent effects on gene expres-
sion, marks must be deposited on specific regulatory regions
and not distributed randomly genome-wide. How, then, do cells
translate global shifts in metabolite availability into specific gene
expression programs?

One answer to the first problem may be hardwired in the bio-
chemistry of the enzymes themselves. The Ky of each enzyme
for its substrate can vary even between closely related members
of a protein family, thus providing a hierarchy of enzymes that
will be more or less sensitive to fluctuations in the availability of
a specific substrate. For example, PCAF and GCN5, which acetyl-
ate H3K9 and H3K14 residues, exhibit a Ky of ~0.6 uM for ace-
tyl-CoA, whereas p300, which acetylates H3K27 residues, has a
10-fold higher Ky, for acetyl-CoA (Jin et al., 2011; Fan et al., 2015).
Acetyltransferases also exhibit diversity in their susceptibility to
inhibition by free CoA (Montgomery et al., 2015).

In yeast, the H3K4 methyltransferase, Setl, has a compar-
atively high Ky for SAM (Sadhu et al., 2013). Consequently,
H3K4me3 is most sensitive to conditions that restrict SAM avail-
ability (Shyh-Chang et al., 2013; Shiraki et al., 2014; Mentch etal.,
2015). Conversely, whereas most histone trimethyllysine modi-
fications were increased by restricting intracellular aKG pools,
H3K4me3 was comparatively unaffected (Carey et al., 2015).
These findings lead to the intriguing hypothesis that activating
histone modifications (acetylation, H3K4me3) may be sensitive
toan ON rate driven by acetyl-CoA and SAM availability, whereas
repressive modifications may be sensitive to an OFF rate medi-
ated by aKG pools. In this manner, gene activation may require
disparate metabolic inputs that signal nutrient sufficiency.
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Alternatively, metabolic regulation of individual marks might
have context specificity: in addition to H3K4 methylation, H3K9
and H3K27 methylation were responsive to methionine restric-
tion in vitro, although in vivo this could only be seen for H3K4
(Dann et al., 2015; Mentch et al., 2015).

Locus-specific effects

Even more challenging is the question of how metabolites could
affect a particular chromatin modification in a site-specific
manner. One possibility is that DNA sequence-specific tran-
scription factors enable recruitment of chromatin-modifying
complexes that respond to fluctuations in metabolite levels.
Similarly, enzymes that produce or consume metabolites may
also be directly recruited to specific chromatin loci to influence
local substrate concentrations. Alternatively, the local landscape
of transcription factors, chromatin-modifying enzymes, and
chromatin readers may collectively determine the likelihood of
specific marks being deposited or removed.

Although most examples of differential expression programs
are a consequence of local changes in chromatin, some biological
processes are driven by global alterations in the chromatin land-
scape. Global erasure of parental methylation patterns occurs
early in vertebrate embryonal development and is followed by a
transient pluripotent period marked by globally accessible chro-
matin. This has been observed in a number of species by both
electron microscopy and the pattern of chromatin modifications
(Ahmed et al., 2010; Borsos and Torres-Padilla, 2016).

Metabolites may play particularly important roles regulating
the global chromatin landscape in stem cells, which are charac-
terized by dynamic chromatin regulation. Mouse ESCs exhibit
global chromatin hypomethylation (Ficz et al., 2013; Habibi et
al., 2013; Hackett et al., 2013; Leitch et al., 2013; Pedersen et al.,
2016; von Meyenn et al., 2016), and interventions that elevate
aKG levels enhance demethylation and promote self-renewal of
mouse ESCs (Carey et al., 2015; Hwang et al., 2016). In contrast,
mouse epiblast stem cells and human primed pluripotent cells
must undergo demethylation to differentiate. As a result, aKG
accelerates differentiation of human ESCs (TeSlaa et al., 2016).
This is also the metabolic node that has been coopted by tumor
cells harboring IDH, SDH, and FH mutations. By preventing acti-
vation of genes associated with differentiation, these mutations
lock malignant cells into a dedifferentiated state (Figueroa et al.,
2010; Lu et al., 2012, 2013). AML stem cells can promote a sim-
ilar hypermethylated state in the absence of IDH mutations by
elevating activity of branched-chain amino acid transaminase 1,
thus restricting intracellular levels of aKG (Raffel et al., 2017).
Together, these findings suggest that aKG levels are limiting for
cells that must demethylate regions of repressed chromatin to
differentiate. Thus, pathological restriction of aKG or inhibition
of aKG-dependent enzymes locks cells in a malignant state.

Changes in availability of acetyl-CoA donors for histone
acetylation can likewise induce global chromatin alterations
defined by alterations in bulk histone acetylation. Both mouse
and human pluripotent cells consume high levels of glucose,
which can be used to generate nucleocytosolic acetyl-CoA by
the combined activities of the tricarboxylic acid (TCA) cycle
and ATP-citrate lyase (Fig. 2 B; Zhou et al., 2012; Gu et al., 2016;

Schvartzman et al.
Metabolic regulation of mammalian gene expression

Flores et al., 2017). Declines in glucose metabolism that accom-
pany differentiation are associated with decreased acetyl-CoA
availability and reduced histone acetylation (Moussaieff et al.,
2015). Similarly, restricting acetyl-CoA availability via loss of
ATP-citrate lyase has dramatic effects on broad gene expression
programs, including the ability to respond to growth factors or
differentiate (Wellen et al., 2009). Nevertheless, locus-specific
regulation still occurs, as not all transcription is shut off when
acetyl-CoA islimited. Bromodomain-containing proteins such as
Brd4 that recognize acetylated lysines provide one major mecha-
nism through which changes in histone acetylation can influence
gene expression (Dey et al., 2003; Jang et al., 2005). The identifi-
cation of recurrent translocations involving Brd4 in human can-
cer led to the development of JQ1, a small molecule that impairs
the ability of Brd4 to bind acetylated lysine (Filippakopoulos et
al., 2010). Although JQI has potent inhibitory effects on highly
expressed genes such as Myc, many chromatin loci remain active
despite the impaired ability of Brd4 to read acetylated histones
in the presence of JQ1. Although the mechanisms responsible
for this locus-specific JQ1 resistance are unclear, certain genetic
loci may have an advantage in recruiting transcription factors
and coactivators that mediate specific transcriptional pro-
grams (Finley et al., 2018). In support of this hypothesis, tumors
driven by mutant IDHI exhibit globally repressed chromatin
and enhanced sensitivity to JQ1 (Chen et al., 2013a), suggesting
that metabolic alterations that shape the chromatin landscape
may determine sensitivity to perturbations in gene expression
networks. This exemplifies the combinatorial effect of global
metabolically mediated expression changes and locus-specific
recruitment of transcriptional coactivators that collectively
define gene expression programs.

Dysregulation in cancer

As previously discussed, mutations in metabolic enzymes result
in accumulation of pathological levels of metabolites that can
interfere with normal regulation of histone and DNA meth-
ylation (Figueroa et al., 2010; Chowdhury et al., 2011; Lu et al.,
2012). Even in the absence of such mutations, cancer-associated
changes in metabolic networks can induce alterations in the
chromatin landscape (Sciacovelli et al., 2016). A recent study of
pancreatic adenocarcinoma (PDAC) highlights the global effects
of metabolic changes on gene expression in the context of met-
astatic progression (McDonald et al., 2017). Comparison of pri-
mary PDAC samples with liver and lung metastatic samples as
well as primary cell lines derived from these tumors revealed
widespread reprogramming of chromatin modifications at the
level of regions rich in H3K9me3 and DNA methylation (large
heterochromatin domains [LOCKs]). These changes occurred in
the absence of metastasis-specific driver mutations, arguing for
clonal chromatin drivers of metastatic progression. The decrease
in repressive marks in LOCKs correlated with increased expres-
sion of genes contained in these regions in metastaticlines. More-
over, metastatic lines showed increased activity in the oxidative
pentose phosphate pathway at the level of 6-phosphogluconate
dehydrogenase (PGD) in glucose tracing experiments. Genetic or
chemical inhibition of PGD, the enzymatic step that showed the
most increased flux in metastatic lines compared with primary
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lines, was sufficient to revert the chromatin changes of meta-
static lines to those seen in primary tumors. PGD inhibition also
led to impaired metastatic ability in metastatic lines but not
growth inhibition of the primary lines. These results argue that
a clonal metabolic adaptation at the level of PGD leads to chro-
matin alterations that drive prometastatic behaviors conducive
to dissemination and/or growth in highly vascularized organs
such as the lung or liver where glucose concentrations are high.
Although the direct link between higher PGD activity and loss
of heterochromatic marks has not been explored, it is tempting
to speculate that metabolic effects like the ones outlined in this
review are directly responsible for the observed phenotype.

Another notable example of how master regulators of cellu-
lar metabolism can affect gene expression globally was recently
outlined in the context of LKB1 mutant pancreatic adenocar-
cinoma (Kottakis et al., 2016). LKBI, a kinase that activates
AMPK, is a tumor suppressor inactivated in a variety of malig-
nancies, including pancreatic adenocarcinoma (Hawley et al.,
2003; Woods et al., 2003; Shaw et al., 2004). Using genetically
engineered mouse models harboring a KrasG12D and/or LKB1
homozygous loss, Kottakis et al. (2016) noted that a combination
of KrasGl12D mutation and LKBI loss led to an mTOR-depen-
dent rewiring of metabolism that resulted in increased activity
through the serine-glycine-one carbon network. This in turn
resulted in higher levels of SAM, increased global DNA meth-
ylation, and transcriptional silencing of retrotransposons. The
effect was specific to KrasG12D;LKB1~/~ cells and was validated
in human pancreatic adenocarcinoma cell lines with this genetic
makeup. Moreover, these cells were uniquely sensitive to DNA
methyltransferase inhibitors, outlining a potential therapeutic
vulnerability. This study exemplifies how changes in the met-
abolic state of a cell can have global effects on gene expression
that are mediated through a change in availability of substrates
of chromatin-modifying enzymes.

The interplay between metabolites and gene expression pro-
grams that sustain malignancy may provide opportunities for
therapeutic intervention. For example, glutamine, which pro-
vides many critical metabolic functions that fuel tumor growth
(DeBerardinis etal.,2007), also generates the oKG used by mutant
IDH to produce 2HG. Consequently, IDH mutant cells are more
sensitive than wild-type counterparts to glutaminase inhibitors
(Elhammali et al., 2014; Emadi et al., 2014). Glutamine metab-
olism may affect chromatin even in tumors lacking IDH muta-
tions. A number of studies have reported histone methylation
changes after treatment with glutaminase inhibitors, although
whether these effects are direct or a downstream consequence of
cellular adaptations to the drug remains unknown (Simpson et
al., 2012a,b). Reductive carboxylation of glutamine-derived aKG
has been shown to contribute to acetyl-CoA pools (Metallo et al.,
2011; Mullen et al., 2011; Wise et al., 2011). Therefore, glutaminase
inhibitors may also affect gene expression by decreasing citrate
pools that maintain acetyl-CoA levels. Hence, the glutamine
dependence of cancer cells may reflect its contributions to car-
bon pools used for both demethylation and acetylation reactions.

Alterations in glutamine levels, a common feature of human
tumors (Roberts and Frankel, 1949; Roberts and Tanaka, 1956;
Kamphorst et al., 2015), may allow tumor cells to change their
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chromatin environment in ways that allow escape from onco-
gene addiction. Studies in a panel of xenograft tumors revealed
that glutamine and aKG levels were decreased in the ischemic
central areas of tumors compared with the tumor periphery,
and these metabolic alterations contributed to increased his-
tone methylation in tumor cores (Pan et al., 2016). Decreased
aKG impaired activity of the histone demethylase KDM6B and
resulted in H3K27 hypermethylation. In BRAFV6C%E mutant mela-
noma cells, low glutamine promoted features of dedifferentiation
and resistance to BRAFV0E inhibitors driven in part by H3K27
methylation. Consequently, inhibiting the H3K27 methyltrans-
ferase EZH2 restored sensitivity to BRAFV6°E inhibition (Pan et
al., 2016). Thus, extracellular nutrient changes, in this case as
a result of ischemia in poorly vascularized tumors, may have
effects on tumor biology that are a result of changes to the chro-
matin landscape.

Conclusion

Across evolution, fluctuations in nutrient availability influence
gene expression programs. Increasing evidence supports the
hypothesis that the chromatin landscape of metazoan cells inte-
grates nutrient sensing with transcriptional control to effectively
regulate transcriptional programs. These effects of metabolites
on gene expression provide a supplemental layer of regulation on
top of the more canonical regulators of gene expression, includ-
ing sequence-specific binding proteins.

Fundamental questions regarding how metabolites affect
gene expression programs remain. What enzymes preferen-
tially respond to fluctuations in metabolite availability? Can
physiological changes in extracellular nutrient availability alter
levels of intracellular metabolites to a degree sufficient to affect
chromatin modifications? What are the factors that control local
generation of metabolites that serve as substrates or inhibitors
of chromatin modifying enzymes? How do specific chromatin
regions become sensitive (or resistant) to effects of metabo-
lism when similar chromatin marks are present genome wide?
Can the chromatin-modifying enzymes that link intermediary
metabolites with the recruitment of RNA polymerase be phar-
macologically targeted for therapeutic effect in cancer or other
disease states? Continued technological developments will aid
the pursuit of these questions. Measures of in vivo metabolic
activity of specific cell populations, determination of metabo-
lite concentrations in subcellular compartments, acute genetic
manipulation of developing tissues, and sequence-specific tar-
geting of chromatin-modifying enzymes will collectively enable
direct assessment of the extent to which changes in metabolite
availability influence chromatin modifications, gene expression,
and cell fate decisions in mammalian cells.
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