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Hsp40/70/110 chaperones adapt nuclear protein
quality control to serve cytosolic clients

Rupali Prasad®, Chengchao Xu, and Davis TW. Ng®

Misfolded cytosolic proteins are degraded by the ubiquitin proteasome system through quality control (QC) pathways
defined by E3 ubiquitin ligases and associated chaperones. Although they work together as a comprehensive system to
monitor cytosolic protein folding, their respective contributions remain unclear. To bridge existing gaps, the pathways
mediated by the Sanl and Ubrl E3 ligases were studied coordinately. We show that pathways share the same complement

of chaperones needed for substrate trafficking, ubiquitination, and degradation. The significance became clear when Ubr1,
like Sanl, was localized primarily to the nucleus. Appending nuclear localization signals to cytosolic substrates revealed that
Ydj1 and Ssel are needed for substrate nuclear import, whereas Ssal/Ssa2 is needed both outside and inside the nucleus.
Sislis required to process all substrates inside the nucleus, but its role in trafficking is substrate specific. Together, these
data show that using chaperones to traffic misfolded cytosolic proteins into the nucleus extends the nuclear protein QC

pathway to include cytosolic clients.

Introduction
Proteins are involved in all cellular functions. Accordingly, intri-
cate intracellular pathways have evolved that govern the syn-
thesis, quantity, delivery, activity, and lifetime of their protein
constituents. As they work in concert, these mechanisms are
collectively termed the protein homeostasis (or proteostasis)
network (Balchin et al., 2016). Their importance is underscored
by the prevalence and diversity of human disease when they
become compromised (Labbadia and Morimoto, 2015). Although
specialized mechanisms heighten the fidelity of information
flow from genes to proteins, rare errors emanating from DNA
replication, transcription, and translation can result in aberrant
protein products. In addition, stochastic deviations from protein
folding and maturation processes contribute to the total load.
Because misfolded proteins can be cytotoxic through interfer-
ence with cellular functions, quality control (QC) pathways are
positioned throughout to monitor the folding state of nascentand
preexisting polypeptides. Molecules beyond repair are targeted
for degradation via the ubiquitin-proteasome system (UPS) or in
lysosomes (Amm etal., 2014; Brandman and Hegde, 2016; Casson
etal., 2016; Voos et al., 2016; Preston and Brodsky, 2017).
Aberrant proteins exist in two basic forms: aggregate and
soluble. Protein aggregates, both ordered and amorphous, are
associated with various human diseases including Alzheimer’s,
Huntington’s, and Parkinson’s (Currais et al., 2017; Dubnikov
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et al., 2017; Pearce and Kopito, 2018). Although it remains con-
troversial whether large aggregates are harmful or protective,
cellular mechanisms exist to counter them. They can undergo tar-
geted degradation through autophagy or the UPS (Gamerdinger
et al., 2009; Scior et al., 2016). Alternatively, they can be found
sequestered as ubiquitin-modified and/or chaperone-associated
macromolecular structures (Kopito and Sitia, 2000; Kaganovich
etal., 2008). Intracellular segregation presumably reduces their
toxicity by limiting inappropriate interactions. Although many
misfolded proteins have the tendency to aggregate on their own,
they can be maintained in a soluble state through direct chaper-
one interactions (Balchin et al., 2016). Substrate solubility is par-
ticularly important for protein QC pathways that rely on the UPS
(Amm et al., 2016; Comyn et al., 2016). In the better-understood
ER-associated degradation (ERAD) pathways, luminal substrates
must translocate across the ER membrane, and integral mem-
brane proteins must be extracted for ubiquitination and degra-
dation by the 26S proteasome (McCaffrey and Braakman, 2016;
Preston and Brodsky, 2017). ER proteins forming large aggre-
gates cannot use ERAD and are instead degraded in lysosomes
through an autophagic mechanism (Kruse et al., 2006; Jackson
and Hewitt, 2016).

Currently, the best understood protein QC mechanism is gly-
can-directed ERAD (Caramelo and Parodi, 2015; Cherepanova

Correspondence to Davis T.W. Ng: davisnglab@gmail.com; Rupali Prasad: rupali.prasad@bc.biol.ethz.ch; R.Prasad’s present address is ETH Zirich, Institute of
Biochemistry, Zirich, Switzerland; C. Xu's present address is Whitehead Institute for Biomedical Research, Cambridge, MA.

© 2018 Prasad et al. This article is distributed under the terms of an Attribution-Noncommercial-Share Alike-No Mirror Sites license for the first six months after the
publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution-Noncommercial-Share Alike 4.0
International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

Rockefeller University Press
J. Cell Biol. 2018 Vol. 217 No. 6  2019-2032

'.) Check for updates

https://doi.org/10.1083/jcb.201706091

920z Ateniged 20 uo 3senb Aq ypd 160902102 Al/L L L L09L/610Z/9/L 1 Z/spd-8jonie/qol/Bio sseidnu//:dny woy pepeojumoq

2019


http://crossmark.crossref.org/dialog/?doi=10.1083/jcb.201706091&domain=pdf
http://orcid.org/0000-0002-2251-6505
http://orcid.org/0000-0002-4452-4901
http://www.rupress.org/terms/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:
mailto:

et al., 2016; Neubert and Strahl, 2016; Roth and Zuber, 2017). In
this study, a series of glycosidases sequentially trim N-linked
glycans to generate a degradation signal recognized by the Yos9
(0S9 and XTP3-B in mammals) lectin receptor located at the ER
membrane. The sum of the steps is believed to set a timer for
folding, culminating in degradation should it fail at the end of the
sequence. Because N glycosylation doesn’t occur anywhere else in
the cell, this mechanism is not generally applicable.

The QC of cytoplasmic proteins (CytoQCs) also relies on the
UPS, but this is where the similarity to ERAD ends. In budding
yeast, CytoQC is surprisingly complex, with at least five E3 ubig-
uitin ligases that function in substrate recognition and ubiquiti-
nation identified so far (Park et al., 2007; Eisele and Wolf, 2008;
Kohlmann et al., 2008; Lewis and Pelham, 2009; Heck et al.,
2010; Prasad et al., 2010; Fang et al., 2011, 2014; Stolz et al., 2013;
Summers et al., 2013; Maurer et al., 2016). Interestingly, each
already had established roles in other pathways. Sanl ubiquiti-
nates damaged nuclear proteins for degradation, where it resides
(Gardneretal., 2005); Ubrl is best known for its role in recogniz-
ing N-terminal degrons (N-end rule) of folded proteins (Bartel et
al., 1990; Varshavsky, 2011); Doal0, located in the ER and inner
nuclear envelope, mediates membrane protein ERAD (Swanson
et al., 2001; Huyer et al., 2004; Vashist and Ng, 2004); Ltnl tar-
gets to ribosomes to ubiquitinate stalled translation products
(Bengtson and Joazeiro, 2010; Brandman et al., 2012); and Rsp5 is
found throughout the cell and has a broad array of targets (Rotin
and Kumar, 2009; Lauwers et al., 2010; Domanska and Kaminska,
2015). In addition, the E4 ubiquitin ligase Hul5 is required for the
degradation of heat-damaged proteins, particularly those that
display low solubility (Kohlmann et al., 2008; Fang et al., 2011).
None of these enzymes are functionally redundant, so it remains
enigmatic how they are organized within the CytoQC system.

Among CytoQC pathways, the Sanl and Ubrl pathways share
several similarities. Although the pathways have some distinct
substrates, there is substantial substrate overlap whereby both
genes must be disabled to fully disrupt degradation (Lewis and
Pelham, 2009; Heck et al., 2010; Khosrow-Khavar et al., 2012;
Prasad et al., 2012; Guerriero et al., 2013; Amm and Wolf, 2016).
Both pathways use the Hsp70 proteins Ssal and Ssa2 and the
Hsp40 proteins Ydjl and Sis1 (Park et al., 2007, 2013; Heck et al.,
2010; Prasad et al., 2010; Stolz et al., 2013; Summers et al., 2013;
Amm etal., 2016). As Sanl is a nuclear protein, misfolded cytoso-
lic proteins must traffic into the nucleus for ubiquitination and
degradation (Gardner et al., 2005). The localization of Ubrl has
not been unequivocally determined, partly because of its low lev-
els, but its substrates can be found in both the nucleus and cyto-
sol, so it should be active in both. Ssal and Ssa2 are required for
substrate transport, but this could be a consequence of protein
aggregation in their absence, a state incompatible with nuclear
import should aggregates exceed size constraints of nuclear
pores (Kaganovich et al., 2008; Amm et al., 2016). Importantly,
Ssal facilitates Sanl-substrate interactions so that it sequen-
tially facilitates nuclear transport and targeting to the E3 ligase
(Guerriero et al., 2013). Accordingly, the Hsp70 nucleotide
exchange factor Fesl is required for CytoQC. Cells lacking FESI
fail to ubiquitinate and degrade misfolded proteins (Gowda et
al., 2013). Sisl facilitates nuclear import likely through substrate
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handoff from Hsp70 in the cytosol, but the role of Ydj1 remains
unclear (Park et al., 2013; Gowda et al., 2016).

To analyze the functional relationship between the Sanl and
Ubrl pathways, we measured the behavior of pathway-specific
substrates in well-characterized mutant strains. Importantly,
Ubrl, whose localization was unclear, is shown to reside pri-
marily in the nucleus. Although the Hsp70 chaperones Ssal
and Ssa2 are functionally redundant in the Sanl and Ubrl path-
ways, their cochaperones Ydjl and Sisl are equally critical but
act sequentially. Ydj1 functions specifically to traffic substrates
into the nucleus, whereas Sisl cooperates with Ydjl and also
plays a role in the nucleus to facilitate ubiquitination and deg-
radation. The Hspll0 protein Ssel, however, is entirely dispens-
able for nuclear QC and functions primarily to traffic misfolded
cytosolic substrates into the nucleus. These data show that the
Hsp40/Hsp70/Hspl10 chaperone system is recruited by CytoQC
to adapt the nuclear protein QC system to degrade misfolded
cytosolic proteins.

Results
Ydj1 and Ssel chaperones mediate trafficking of misfolded
cytosolic proteins to the nucleus
The cytosolic/ER membraneJ class chaperone Ydjl is required for
CytoQC, but its role in the pathway is unclear (Park et al., 2007;
Fang et al., 2014; Maurer et al., 2016). To understand its contri-
bution, we analyzed three model substrates in conditional and
null mutants of YDJI (Caplan et al., 1992). A2GFP and AssPrA are
Sanl-dependent substrates, and Ste6*C is a Ubrl-dependent sub-
strate (Prasad etal., 2010, 2012). The conditional ydjI-15I mutant
strongly stabilized each substrate at the restrictive temperature
as expected (Fig. 1). At the permissive temperature, substrate
stabilization remained strong in mutant cells. This suggests that
the 37°C growth restriction reflects a loss of function other than
Sanl/Ubrl-dependent CytoQC, which is nonessential (Park et al.,
2007; Eisele and Wolf, 2008; Heck et al., 2010; Prasad et al., 2010;
Maurer et al., 2016). We also observed that the higher incubation
temperature also reduced substrate degradation rates in the WT
cells (Fig. 1, A, C, and E). This likely reflects competition from
endogenous substrates that increase under stress conditions or
the formation of aggregates that are more difficult to degrade
(Fang et al., 2014). In all cases, stabilization was accompanied by
a proportional reduction in polyubiquitination, indicating that
Ydj1 functions at or upstream of this step (Fig. 1, B, D, and F).
Because CytoQC is a dynamic process, we examined whether
Ydj1 plays a role in substrate trafficking. For this question, we
first performed indirect immunofluorescence to localize sub-
strates in WT and mutant cells. In WT cells, A2GFP and AssPrA
were enriched in the nuclei as expected (Fig. 2, A and B). Ste6*C
displayed a similar pattern, which was interesting because it
was unclear where Ubrl-dependent substrates are degraded
(Fig. 2 C). Intriguingly, all three substrates displayed reduced
nuclear localization in ydji-151 and Aydjl mutant cells (Figs. 2
and S1 A). The effect is specific and not a general consequence
of substrate stabilization because A2GFP and AssPrA accumu-
late strongly in the nuclei of Asanl cells (Prasad et al., 2010). The
import defect is specific for misfolded proteins because folded
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nuclear proteins are unaffected (Fig. S1 D). Together, these data
suggest a role for Ydjl in substrate trafficking into the nucleus.
To test the hypothesis, the superfolder (sf) GFP variant was
appended to A2GFP to analyze substrate dynamics in live cells.
sf-A2GFP behaves indistinguishably from A2GFP except that it
more readily forms large intracellular foci at 37°C, reminiscent
of structures termed insoluble protein deposits (IPODs) and jux-
tanuclear QC compartments (] UNQs; Figs. S1, E-G; Kaganovich et
al., 2008). Live WT, ydjI-151, and Assel cells expressing sf-A2GFP
were given a high-intensity laser pulse to bleach fluorescent
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Figure 1. Ydjlis required for both Sanl and
Ubrl pathways. (A, C, and E) All constructs
were appended with a C-terminal HA epitope
tag. The turnover of A2GFP, AssPrA, or Ste6*C
in WT and ydjI-151 cells was determined by
metabolic pulse chase. Cells were grown to
log phase at indicated temperatures before
labeling. Each strain was pulse labeled for
10 min and chased for the times indicated.
After immunoprecipitation (IP), proteins were
resolved by SDS-PAGE and quantified by phos-
phorimager analysis. Representative phosphor
screen scans are shown. All data plotted were
processed using Excel, reflecting three inde-
pendent experiments with the means and
SD indicated. (B, D, and F) A2GFP, AssPrA, or
Ste6*C expressed in WT and ydjI-151 cells was
immunoprecipitated, resolved by SDS-PAGE,
and analyzed by immunoblotting (IB) to detect
the ubiquitinated proteins. Protein amounts
used forimmunoprecipitation were normalized
using an Odyssey infrared imaging system.

proteins in the nucleus. Our analysis was extended to cells lack-
ing the Hspl10 factor Ssel because these cells suggested a defectin
substrate trafficking from immunofluorescence images (Prasad
et al., 2010). The experiment was performed at 25°C to avoid
the formation of the intracellular foci. Fluorescence intensities
over photobleached areas were then measured at short intervals
over a 100-s span and plotted (Fig. 3 A). Nuclear sf-A2GFP fluo-
rescence recovered within a minute, revealing a significant lag
between import and degradation. In both mutant strains, import
was strongly impaired (Fig. 3, B and C). These data show that the
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Figure 2. Localization of misfolded cytosolic proteins is defective in ydj1-151 cells. (A-C) WT and ydjI-151 cells expressing AssPrA, A2GFP, and Ste6*C
were grown to log phase at room temperature and incubated at 37°C for 30 or 60 min. Cells were prepared for indirect immunofluorescence as described in
Materials and methods. Substrates were detected using anti-HA antibodies in the green channel. ER and nuclear envelope were visualized in the red channel
using anti-Kar2 antiserum. Nuclei were localized using DAPI staining. Cell imaging and acquisition were performed by confocal microscopy. Quantification of
fluorescence intensity was done as described in Materials and methods. One-way ANOVA was used to test for significance (35 < n < 50; ****, P < 0.0001). The
results shown are representative of two independent experiments. Bars, 2 um.

Prasad et al. Journal of Cell Biology
Chaperones manage misfolded proteins in the nucleus https://doi.org/10.1083/jcb.201706091

920z Ateniged 20 uo 3senb Aq ypd 160902102 Al/L L L L09L/610Z/9/L 1 Z/spd-8jonie/qol/Bio sseidnu//:dny woy pepeojumoq

2022



WT

ydj1-151

Asset

Prebleach Bleach Recovery
B 100 - WT
=@ ydj1-151
~ 807 —@— Assel
w
22
3 B
® o
s 2 % ns NS
® g 407 ‘ .
[=}
2 : hibosoteet
[ > —_ :Q@C”j@\/“}ﬁf‘f\’i\lﬁ YL
i i i
i
0 T T T 1
0 25 50 75 100
Time (S)
C 2.0 x1072
°
| =
3
8 1.5x10-24
°
®
5 2
2 1.0x1074+
£
(]
T
E
8 5.0x10-34
o
Q
©
0.0 - |

WT  ydj1-151 Assel

Figure 3. Misfolded protein nuclear trafficking is defective in YDJ1 and SSE1 mutants. (A) Nuclear import of sf-A2GFP in WT, ydj1-151, and Assel cells
was analyzed by FRAP. Nuclei were photobleached (100% 488-nm laser transmission; 15-20 iterations) after three images, and recovery was monitored
by acquiring images immediately after bleaching (postbleach). Images show cells before bleaching (prebleach), immediately after bleaching (0 s), and 9, 30,
60, and 90 s after the initial bleach (postbleach). Dashed circles indicate positions of bleached nuclei. Bars, 2 um. (B) The recovery of nuclear localized
sf-A2GFP was plotted over the time. The fluorescence intensity (F. I.) of sf-A2GFP was quantified using Image). Unpaired t test: *, P < 0.033; **, P < 0.002;
*¥% P < 0.0002; ****, P < 0.0001. n = 10. (C) Import rates were calculated using a pseudo-first order association kinetics curve using the model equation
Y = Yo + (Yinger - Yo) x [1 - e(-K x £)]. n = 10. The result shown is representative of three independent experiments. Error bars indicate means + SEM.
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import of misfolded cytosolic proteins into the nucleus is rapid
and that the Ydjl and Ssel chaperones are required for this step.

Ubrlis a nuclear E3 ubiquitin ligase

The dependence of both substrate classes on Ydjl suggests a
shared mechanism in the cytosol, which deviates only after
nuclear import (Fig. 1). Although Sanl is an established nuclear
enzyme, Ubrl’s location was unclear because of its low abun-
dance, but it is often described as a cytosolic protein in yeast
(Amm et al., 2014). However, some fraction of Ubrl must be in
the nucleus because that is the location of some of its folded sub-
strates. Applying two independent algorithms, Ubrl is predicted
to be a nuclear protein containing a strong nuclear localization
signal (NLS; Fig. 4 A; Brameier et al., 2007; Kosugi et al., 2009).
To test the prediction, we applied complementary experimental
approaches. First, functional FLAG-tagged Ubrl was expressed
in WT cells using the strong TDH3 promoter to enhance detec-
tion (McAlister and Holland, 1985). For known nuclear proteins,
expression from this promoter does not cause mislocalization
(Gardner et al., 2005). Using indirect immunofluorescence,
Ubrl localizes entirely within the nucleus, discerned by the
ER/nuclear envelope marker Kar2 and DAPI (Fig. 4 B). In addi-
tion, Ubrl localization is identical to Sanl, indicating that they
function within the same compartment (Fig. 4 B). In the second
experiment, a Ubrl-specific polyclonal antiserum was gener-
ated to detect endogenous Ubrl protein (Fig. S2 B). Initially,
cell fractionation experiments using standard protocols were
unsatisfactory because the integrity of the nucleus was partially
compromised (Fig. S2 C). For this reason, we applied a gentler
method to maintain the integrity of nuclei. The proprietary
Y-PER detergent solution is designed to extract cytosolic proteins
from yeast cells (Thermo Fisher Scientific). Because Y-PER is
also used as a first step to remove excess proteins before nuclear
DNA isolation, we surmised that it could serve this role only if
nuclear factors are excluded (yeast DNA extraction kit; Thermo
Fisher Scientific). After treatment of whole cells, the cytosolic
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protein Pgkl was extracted efficiently in the cytosolic fraction
(C), whereas the nuclear protein Sanl is recovered exclusively
in the post-cytosolic fraction (Fig. 4 C, Sanlp post-cytosolic frac-
tion [PCF] lane). Indeed, we observed the expected patterns for
GFP, which is mostly cytosolic in yeast, and for nuclear GFP-NLS
(Fig. 4 C). As the GFP pair is well below the molecular weight cut-
off for passive diffusion through nuclear pores, the assay proves
effective for distinguishing nuclear and cytosolic proteins. When
probed for endogenous Ubrl, it too was found almost exclusively
in the pellet fraction (Fig. 4 C). Although it is necessary that some
Ubrl remain in the cytosol for cytosolic substrates (Shemorry et
al., 2013; Stolz et al., 2013; Amm and Wolf, 2016), these data show
that the bulk is localized in the nucleus under unstressed condi-
tions. Collectively, these data show that like Sanl, Ubrl is primar-
ily anuclear enzyme in Saccharomyces cerevisiae and provide an
explanation for why some misfolded cytosolic proteins traffic to
the nucleus for degradation.

Hsp40/Hsp70/Hsp110 chaperones adapt nuclear QC for
cytosolic proteins

We next sought to better understand how misfolded proteins
selectively traffic into the nucleus. For this, monopartite NLSs
were appended to A2GFP and AssPrA to generate A2GFP-NLS and
AssPrA-NLS, respectively (Fig. S2 D). As shown in Figs. 5 D and
S2 E, A2GFP-NLS and AssPrA-NLS are exclusively nuclear local-
ized in WT and mutant cells. Because the appended substrates no
longer depend on CytoQC for import, their analyses can reveal
factors specifically required for the import and/or degradation
of misfolded cytosolic proteins. In pulse-chase experiments, NLS
substrates require Sanl, Ubrl, and Ssal/Ssa2, like their cytosolic
counterparts (Figs. 5 A and S3 A). In contrast, the Ssel chaperone,
required for A2GFP and AssPrA (Prasad et al., 2010), is entirely
dispensable for their NLS counterparts (Figs. 5 A and S3 A). This
shows that the function of Ssel in A2GFP and AssPrA CytoQC
is exclusively for their nuclear import. Similarly, A2GFP-NLS
bypasses the degradation block of A2GFP in ydj1-151 cells (Figs. 5
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Figure 5. Appending an NLS to A2GFP bypasses requirement for Ydj1 and Ssel. (A and B) Turnover of A2GFP-NLS in WT, Asanl, Aubrl, AsanlAubr],
AssalAssa2, Assel, and ydjl-151 cells was determined by pulse chase at temperatures indicated. All data plotted were processed using Excel, reflecting three
independent experiments with the means and SD indicated. (C) Ubiquitination of A2GFP-NLS was determined as described in Fig. 1 B. IB, immunoblot;
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A2GFP-NLS and Kar2 were visualized by immunostaining with respective primary and secondary antibodies. Nuclei were marked by DAPI staining. Arrowheads

indicate positions of nuclei. Bars, 2 pm.

B and S3 B). As ubiquitination and degradation of A2GFP-NLS is
only slightly impaired in ydjI-151 cells, the data indicate that like
Ssel, the primary role of Ydjl in CytoQC is in the nuclear import
step (Fig. 5, Band C; and Fig. S3, Band C).

The efficient degradation of NLS-marked substrates in ydjI-
151 background suggested a role for alternative Hsp40-like pro-
teins. Of the 22 ] domain proteins in budding yeast, we examined
mutants of those localized in the nucleus or cytosol (Kampingaand
Craig, 2010). Other than YDJI, only SISI displayed a role in cyto-
solic/nuclear protein QC. Its role in CytoQC was already demon-
strated previously in mediating the nuclear transport of the model
protein CG* (AssCPY*-GFP fusion protein). It is also the target of
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polyglutamine aggregates, which helped explain the toxicity of such
disease-related proteins (Park et al., 2013). Sisl is also involved in
localizing aberrant proteins to stress-inducible foci comprised of
chaperones and misfolded proteins (Malinovska et al., 2012). In
this study, analysis was performed in cells with SISI expression
controlled by the tetracycline-responsive promoter (Tet-Off).
Sisl levels in Tet-Off SISI cells were 10-15% the level of WT even
in the absence of doxycycline (Fig. 6, A and B; Summers et al.,
2013). When misfolded proteins were expressed, these strains
grew like WT (Fig. S5 D). At the same time, nuclear localization
of Sanl and Ubrl was completely intact in these strains (Fig. S5,
A and B). Thus, in this strain, reduced Sisl impairs degradation
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Figure 6. Sisl is required for CytoQC and nuclear QC but dispensable for A2GFP nuclear import. (A and B) Cycloheximide decay experiments were
performed in WT cells (R1158) and Tet-Off SIS1 cells expressing A2GFP or A2GFP-NLS in the absence and presence of doxycycline (DOX; 10 pg/ml, 20 h treat-
ment before the experiment). Total protein extract was prepared as described above, and immunoblotting (IB) was performed to quantify the protein level of
substrates. Sisl and Pgkl were used as loading controls. All data plotted were processed using Excel, reflecting three independent experiments with means and
SD indicated. (C and D) The ubiquitination of A2GFP or A2GFP-NLS was determined in cells with or without S/S1 expression as described in Fig. 1 B. IP, immu-
noprecipitation. (E and F) The cellular localization of A2GFP or A2GFP-NLS in cells with or without SISI expression was examined by indirect immunostaining

as described in Fig. 2. Arrowheads indicate positions of nuclei. Asterisks indicate the position of a nonspecific band. Bars, 2 um.

of both cytosolic and NLS-targeted substrates, with the strongest
effects in the presence of doxycycline (Fig. 6, A and B; and Fig. S4,
A and B). Sisl is required for the ubiquitination of QC substrates
carrying the DegAB degron (Shiber et al., 2013). To test whether
Sisl is required for ubiquitination, A2GFP, AssPrA, and their NLS-
modified variants were immunoprecipitated, resolved by SDS-
PAGE, and immunoblotted. Membranes were probed with anti-Myc
antibodies to detect ubiquitinated substrates. PolyUb-substrate
conjugates were recovered from WT cells, whereas Tet-Off SisI
cells produced diminished levels for all substrates (Fig. 6, Cand D;
and Fig. S4, C and D). This was expected for the CytoQC substrates
because Sisl was reported to play a role in substrate import so it
would act upstream of ubiquitination (Malinovska etal., 2012; Park
etal.,2013). It was more surprising that the NLS-tagged substrates
were similarly affected. Thus, we wondered whether Sisl also is
required for their import. To address this question, the same strains
were processed for indirect immunofluorescence to localize sub-
strates. In the absence of doxycycline, under which substrate deg-
radation is moderately disrupted, A2GFP and AssPrA can be found
in both cytosol and nucleus, whereas A2GFP-NLS and AssPrA-NLS
are primarily in the nucleus (Fig. 6, E and F; and Fig. S4, E and F).
The complete depletion of Sisl did not change the pattern, indicat-
ing that the degradation defect cannot be attributed to a defect in
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nuclear import alone (Fig. 6, E and F; and Fig. S4, E and F, +DOX).
Collectively, these data show that Sislis required for ubiquitination
and degradation of both substrate classes, independent of its role
in substrate nuclear import.

Discussion

Of the broad classes of protein QC pathways, CytoQC is emerging
as the most complex. In budding yeast, the numbers of E2, E3,
and E4 enzymes of the UPS and chaperones involved in CytoQC
are numerous and continue to grow (Park et al., 2007; Eisele and
Wolf, 2008; Kohlmann et al., 2008; Lewis and Pelham, 20009;
Heck et al., 2010; Prasad et al., 2010; Fang et al., 2011, 2014; Stolz
et al., 2013; Summers et al., 2013; Ibarra et al., 2016; Maurer et
al., 2016). Unlike ER mechanisms, distinct CytoQC pathways are
deployed for normal and stress conditions (Kaganovich et al.,
2008; Fang et al., 2011, 2014, 2016; Khosrow-Khavar et al., 2012).
Some proteins traffic to the nucleus for processing, whereas oth-
ers are degraded in the cytosol (Prasad et al., 2010; Park et al.,
2013; Fang et al., 2014; Amm and Wolf, 2016). The reasons for the
complexity remain unclear. The rationale to the complexity of
CytoQC can only emerge through the coordinate analyses of the
various pathways and their clients.
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The discovery of Sanl as a key CytoQC ubiquitin ligase
upended the nascent field because Sanl is a nuclear enzyme
active in nuclear protein QC (Lewis and Pelham, 2009; Heck et al.,
2010; Prasad et al., 2010). These studies led to the demonstration
that misfolded cytosolic proteins traffic into the nucleus, where
they are ubiquitinated and degraded (Heck et al., 2010; Prasad
et al., 2010; Park et al., 2013). Such behavior is consistent with
proteasomes being distributed mainly in the nucleus in dividing
yeast cells (Russell et al., 1999). A nuclear import mechanism was
confirmed and extended with additional Sanl-dependent sub-
strates. The CG* substrate (AssCPY*-GFP fusion) traffics into the
nucleus for degradation in a Sisl-dependent manner (Park et al.,
2013). Importantly, this mechanism is disrupted in the presence
of polyglutamine protein aggregates, providing a biochemical
basis for the toxicity of polyQ disease proteins. This study fur-
ther demonstrates a nuclear import-based CytoQC mechanism in
mammalian cells, indicating that the basic pathway is conserved.

Although previously thought to be unique, we now know
that the cytosol-to-nucleus mechanism is comprised of multiple
pathways. This view was borne out of the expansion of model
CytoQC substrates. Indeed, an early hint came from the discov-
ery that Ura3 models (Ura3-2/3 and Ura3-CL1) use the Doal0 E3
ubiquitin ligase (Metzger et al., 2008; Lewis and Pelham, 2009).
This was notable because DoalO also mediates the degradation
of some integral membrane proteins by ERAD (Swanson et al.,
2001; Huyer et al., 2004; Vashist and Ng, 2004). Although it is
not yet determined where the Ura3 substrates are ubiquitinated
and degraded, Doal0 is found in the inner nuclear envelope and
the ER (Deng and Hochstrasser, 2006). DoalO certainly functions
in the nucleus for QC because a misfolded variant of the kineto-
chore protein Ndc10 (Ndc10-2) requires DoalO for its degradation
(Furth etal., 2011). Thus, Doal0 is involved in ERAD, CytoQC, and
nuclear protein QC, making it the most versatile E3 in protein
homeostasis. Whether its CytoQC mode also requires the traf-
ficking of substrates into the nucleus remains to be determined.

Ubrl is yet another CytoQC ubiquitin ligase that straddles
pathways. The RING-type enzyme is best known as the E3 ligase
of the well-characterized and conserved N-end rule degradation
pathway (Bartel et al., 1990; Varshavsky, 2011). Here, the recogni-
tion mechanism is through substrate N-terminal sequences that
directly bind pockets within Ubrl (N degrons; Choi et al., 2010;
Matta-Camacho et al., 2010). Ubrl works with HECT-type Ufd4
E3 enzyme, and together, the complex plays a role in QC (Hwang
et al., 2010; Nillegoda et al., 2010). Although this recognition
was first characterized for folded proteins, Ubrl’s QC mode also
uses substrate N-terminal sequences for recognition (Kim et al.,
2014). However, why it incorporates the N-end rule for the recog-
nition of misfolded proteins was enigmatic. More recently, it was
shown that some proteins bearing Ubrl N degrons are normally
stable (Shemorry et al., 2013). Their stability is caused by “shield-
ing” of N degrons by interacting partners or ligands. Should such
partners be limiting, the N degron is exposed and recognized by
Ubrl, thus underlying a mechanism of QC for protein complexes.

Because thelocation of Ubrl was previously unclear, misfolded
Ubrl substrates were thought to be ubiquitinated and degraded
in the cytosol (Heck et al., 2010; Stolz et al., 2013). The data in this
study support the view that Ubrl is mainly a nuclear enzyme, and
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Figure 7. Proposed mechanism of nuclear-based CytoQC. The cell uses
the Ssal/2, Sis1, Ydj1, and Ssel chaperone system to traffic misfolded cytosolic
proteins to the nucleus for degradation. In the cytosol, Ssal/2 and Sisl are
generally required for recognition as well as nuclear trafficking of misfolded
cytosolic and nuclear proteins. If the misfold protein does not contain NLS,
additional factors such as Ssel and Ydj1 are needed for the trafficking step.
Once inside the nucleus, these two factors are no longer essential. Misfolded
proteins are chaperoned by Ssal/2 and Sisl and presented to the nuclear
E3 ligases Ubrl and Sanl for degradation. Thus, by adapting Hsp40/70/110
chaperones, the nuclear protein control system can be exploited to serve
cytosolic clients.

some of its substrates—misfolded proteins in particular—traffic
into the nucleus for ubiquitination and degradation (Fig. 7). This
explains the substrate overlap between Sanl and Ubrl (Lewis and
Pelham, 2009; Heck et al., 2010; Khosrow-Khavar et al., 2012;
Prasad et al., 2012; Guerriero et al., 2013; Amm and Wolf, 2016).
Despite its preponderance as a nuclear enzyme, a fraction of
active Ubrl functions in the cytosol as some substrates are ubig-
uitinated there (Heck et al., 2010; Stolz et al., 2013). Perhaps diag-
nostic to identify such substrates is their exclusive dependence
on Ubrl because Sanl has the intrinsic ability to recognize any
unfolded protein in the nucleus (Rosenbaum et al., 2011).
Although the Sanl, Ubrl, and DoalO pathways provide surveil-
lance during normal conditions, stress conditions that increase
protein misfolding require additional pathways. The Rsp5
and Hul5 ubiquitin ligases play specialized roles in targeting
heat-damaged proteins for degradation (Fang et al., 2011, 2014).
Although Rsp5 is involved in diverse cellular processes, during
heat stress, it partners with the Ubp2 and Ubp3 deubiquitinases
to efficiently degrade misfolded proteins (Fang et al., 2016).
Interestingly, Rsp5 is also involved in the clearance of damaged
membrane proteins that have already trafficked out of the ER
(Haynes et al., 2002; Wang et al., 2011). Thus, it follows the theme
of CytoQC ubiquitin ligases that participate in multiple path-
ways. Some damaged proteins localize to large intracellular com-
plexes called JUNQs and IPODs under heat stress (Kaganovich et
al., 2008), so it would be interesting to learn whether Rsp5 and
Hul5 are constituents of these sites. Sanl, Ubrl, and DoalO are
less likely to function at cytosolic JUNQs and IPODs because they
are localized primarily in the nucleus. However, it is possible
they play a role in the processing nuclear inclusions (Miller et
al., 2015). Sanl and Ubrl also play significant roles during heat
stress (Khosrow-Khavar et al., 2012). Thus, the nuclear route is
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active under broad conditions, whereas the Rsp5/Huls5 ligases
may be better suited to process more aggregate-prone proteins.

There is broad agreement that cytosolic and nuclear chaper-
ones are important for CytoQC in budding yeast (McClellan et
al., 2005; Park et al., 2007, 2013; Metzger et al., 2008; Lewis and
Pelham, 2009; Heck et al., 2010; Stolz et al., 2013; Comyn et al.,
2016). Although it is known that the Hsp70 Ssal/Ssa2 and the
Hsp40 Sisl proteins traffic some misfolded cytosolic proteins to
the nucleus, how other chaperones act was less clear (Prasad et
al., 2010; Park et al., 2013). A simple modification of established
substrates with NLSs to bypass the CytoQC import step provided
some clarity. These experiments showed that Ssal/Ssa2 and Sisl
are also required for degradation after nuclear import (Figs. 5 A
and 7). The Hspl10 protein Ssel, however, is only required for
the import step (Figs. 5 A and 7). Similarly, Ydjl is required for
the import step, but its role in the nucleus is less clear (Fig. 7).
Although the degradation of A2GFP-NLS is efficient in ydji-
151 cells, it is delayed somewhat compared with WT (Fig. 5 B).
Because ydjl mutant cells grow poorly compared with WT, it’s
possible that the small difference is attributable to one of Ydjl’s
critical housekeeping functions.

Collectively, these data clarify the functional relationship
between Sanl and Ubrl, which were previously linked mostly
through substrate overlaps. Their shared localization in the
nucleus helps to explain much of the previous observations. In
this study, we show that chaperones serve to traffic their cyto-
solic substrates to the nuclear protein QC system for processing
(Fig. 7). This critical step suggests that chaperones make the first
decision for which proteins should be degraded. However, the
established mechanisms of substrate recognition by Sanl and
Ubrl suggest that they comprise an additional step that improves
stringency. Sanl functioning through direct recognition of mis-
folded structures while Ubrl’s binding of N-terminal degrons
(Rosenbaum et al., 2011 Kim et al., 2014) might also broaden the
scope of potential substrates. Sanl recognizes grossly misfolded
proteins of all types, whereas Ubrl recognizes orphan subunits
whose N termini are normally shielded by partners or ligands
(Shemorry et al., 2013). Thus, the N degron mechanism of Ubrl
would be particularly important for orphan subunits that do not
grossly misfold. The purpose of segregating QC E3 enzymes to
the nucleus could be as simple as to prevent promiscuous tar-
geting of newly synthesized folding polypeptides, activities that
occur in the cytosol. Thus, the complexity of the multistep pro-
cess quickly can be seen as elegant and efficient if it is used also
to protect newly synthesized proteins in their most vulnerable
state. To accomplish this by making use of a standalone QC sys-
tem for nuclear proteins makes the system even more efficient.

Materials and methods

Plasmids used in this study

Plasmids were constructed using standard cloning protocols
(Sambrook et al., 1989). All genes encoding expression constructs
were verified by DNA sequencing. All substrates contained an
engineered single HA epitope tag at their C termini. Unless oth-
erwise noted, expression plasmids were constructed by placing
coding sequences under the control of the constitutive TDH3
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promoter in yeast centromeric vectors. Plasmid descriptions and
oligonucleotide primers used in plasmid construction are listed
in Tables S2 and S3, respectively.

pRP86, pRP88, and pRP120: A2GFP-HA, AssPrA-HA, and
Ste6*C-HA fragments were released from pRP44, pRP42, and
pRP22 (Prasad et al., 2012), respectively, by digesting the plas-
mids with BamHI and Xbal. Digested fragments were placed
under the control of the TDH3 promoter in pRS316 vector to gen-
erate pRP86 and pRP88. pRP90: the SV40 NLS sequence SPKKKR
KVEASGS was added to C terminus of A2GFP-HA by site-directed
mutagenesis (Sawano and Miyawaki, 2000) using primers RP163
and pRP44. pRPI1: an SV40 NLS sequence was added to the C ter-
minus of AssPrA-HA by site-directed mutagenesis using primers
RP164 and pRP42. pRP92 and pRP93: A2GFP-HA-NLS and AssPrA-
HA-NLS fragments were released from pRP90 and pRP91, respec-
tively, by digesting the plasmids with BamHI and Xbal. Digested
fragments were ligated into pRP86 to generate pRP92 and pRP93,
respectively. pRP96: an sf-A2GFP-HA fragment was released from
pSK172 (Ng Laboratory plasmid collection) by digesting the plas-
mid with BamHI and Xbal. The digested fragment was ligated
into pRP44 to generate pRP96. pRP97: an sf-A2GFP-HA fragment
along with ACT1 terminator was released from pRP96 by digest-
ing the plasmid with BamHI and Sphl. The digested fragment was
placed under the control of the TDH3 promoter in pRS314 vector
to generate pRP97.

Strains and antibodies

S. cerevisiae strains used in this study are described in Table S1.
Anti-HA monoclonal antibody (HA.11, raised in mouse) and anti-
myc monoclonal antibody (9E10 c-myc, raised in mouse) were
purchased from Covance. Anti-Kar2 and anti-Sec61 antibodies
(rabbit) were provided by P. Walter (University of California,
San Francisco, San Francisco, CA). Anti-Sisl antiserum (rabbit)
was a gift from D. Cyr (University of North Carolina, Chapel Hill,
NC). Monoclonal antiproteasome 20S o (mouse) and polyclonal
anti-histone H3 (rabbit) were purchased from Abcam. Mono-
clonal anti-3-phosphoglycerate kinase antibody (mouse) and
monoclonal anti-V5 antibody (mouse) were purchased from
Invitrogen, monoclonal anti-Ydjl antibody (mouse) was from
StressMarq, monoclonal anti-GFP antibody (mouse) was pur-
chased from Roche, and monoclonal anti-FLAG (mouse) was
purchased from Sigma-Aldrich. Secondary antibodies labeled
with Alexa Fluor 488 (anti-mouse) or Alexa Fluor 596 (anti-rab-
bit) were purchased from Molecular Probes. Anti-rabbit IRDye
680 and anti-mouse IRDye 800 secondary antibodies were
purchased from LI-COR Biosciences. Anti-Ubrl antiserum was
raised in rabbit against a recombinant protein containing the
100 N-terminal amino acids of Ubrl. Anti-Sanl antiserum was
raised in rabbit against a protein containing the 100 C-terminal
amino acids of Sanl.

Metabolic pulse-chase assay

Three ODg0o units of log-phase cells were labeled with 82.5 uCi of
[**S]methionine/cysteine (EasyTag EXPRESS [*°S]; PerkinElmer)
and chased with excess cold amino acids (final concentration,
2 mM methionine/cysteine) at the times indicated. Protein extract
preparation, immunoprecipitation, and SDS-PAGE analyses were
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carried as described previously (Prasad etal., 2010). In brief, 100 pl
0f 100% TCA was directly added to 900 pl cell culture to terminate
the metabolic labeling at each time point (e.g., 0, 30, and 60 min).
Cells were disrupted with zirconium beads. The whole-cell lysate
was transferred to a new tube and subjected to 10 min centrifu-
gation at 16,000 g. The resulting pellet was resuspended in TCA
resuspension buffer (100 mM Tris, pH 11.0, 3% SDS, and 1 mM
PMSF; 50 pl/OD) and boiled at 100°C for 10 min. The insoluble
fraction was removed after 10 min spin at 16,000 g. The volume
of the soluble cell extract used for the following immunoprecipi-
tation analysis was normalized based on the scintillation counting
of total isotopically labeled proteins. Typically, we added <50 pl
of total cell extract into solution containing 700 pl of IPS II buf-
fer (13.3 mM Tris-HC, pH 7.5, 150 mM NaCl, 1% Triton X-100, and
0.02% sodium azide), 6 pl of 100 mM PMSF, 1l of protease inhib-
itor cocktail (1:200; Sigma-Aldrich), and 1 pl of specific antibody.
After 1 h incubation at 4°C, the diluted extract was subject to 10
min centrifugation at 16,000 g. The soluble fraction was trans-
ferred a new tube, mixed with IgG agarose beads, and incubated at
4°C for an additional 2 h on a nutator plate. The precipitants were
washed three times with IPS I buffer (0.2% SDS, 20 mM Tris-HC],
pH 7.5, 150 mM NaCl, 1% Triton X-100, and 0.02% sodium azide)
and once with PBS. Lastly, the precipitants were eluted with pro-
tein loading buffer and analyzed by SDS-PAGE. The resulting gels
were vacuum dried and exposed to phosphor screens for 24-48 h
and then scanned and quantified using a Typhoon phosphorim-
ager and ImageQuant TL software (GE Healthcare). All data plot-
ted reflect three independent experiments with means and SD
indicated. They were processed in Excel (Microsoft) with the AVE
RAGE and STDEV functions.

Cycloheximide chase assay and immunoblotting

Cells were grown to mid-log phase in synthetic media. Cessation
of protein synthesis was initiated by adding cycloheximide to
200 pg/ml to begin the chase. Aliquots of cells were collected at
the times indicated, and total protein extract was prepared by
TCA precipitation as described above. A portion of total protein
extract was separated on a 4-15% gradient gel by SDS-PAGE and
transferred to nitrocellulose membranes. After blocking, the
membranes were incubated with appropriate primary antibodies
and followed by fluorescence dye-labeled secondary antibodies
(anti-mouse IRDye 800 and/or anti-rabbit IRDye 680). The pro-
tein level was quantified by the Odyssey infrared imaging system
(LI-COR Biosciences). All data plotted reflect three independent
experiments with means and SD indicated. They were processed
in Excel with the AVERAGE and STDEV functions.

Indirect immunofluorescence microscopy

Indirect immunofluorescence was performed as described previ-
ously (Prasad etal., 2010) with minor modifications. In brief, log-
phase cells were fixed with 3.7% formaldehyde at 30°C for 90 min.
For temperature-sensitive mutants, cells were shifted to 37°C for
30 or 60 min and fixed at 37°C for 90 min by rotating in the incu-
bator. Cells were spheroplasted by zymolyase digestion (1 mg/ml
zymolase 20T [US Biological], 0.1 M potassium phosphate, pH 7.5,
and 1.4 M sorbitol). Spheroplasts were applied to a poly-L-lysine-
coated slide. Slides were sequentially immersed in methanol for
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6 min and in acetone for 30 s at -20°C. After blocking with 5%
BSA, cells were incubated with primary antibodies followed by
secondary antibodies. HA.11 mAb (Covance) and polyclonal anti-
Kar2 were diluted to 1:200 and 1:500, respectively. Secondary
antibodies Alexa Fluor 488 goat anti-mouse and Alexa Fluor 596
goat anti-rabbit were diluted to 1:500. Nuclei were visualized
by DAPI staining. Samples were examined at room temperature
with a three-photomultiplier-tube detector using a 100x 1.4 NA
oil Plan Apochromat objective in an upright confocal microscope
(EXCITER or LSM510; ZEISS) controlled by LSM5 program soft-
ware (ZEISS). Images were archived by LSM Image Browser
and Photoshop (Adobe). For Fig. 2, an upright confocal LSM880
microscope using a 63x 1.4 NA oil Plan Apochromat (controlled
by Zen 2012; ZEISS) with a tunable chameleon multiphoton laser,
two conventional PMTs, and a high-sensitivity GaAsP detector
(also with an airyscan detector) was used. For the analysis of
images, background-subtracted images were quantified by draw-
ing two regions of interest (ROIs) in the cytoplasm and one ROI
in nucleus of each cell, and the ROIs’ mean fluorescence intensi-
ties were calculated using Image] (National Institutes of Health).
Later for cytoplasm, means of two ROIs intensities were calcu-
lated. The reported relative nuclear enrichment was calculated
as the ratio between mean nuclear and cytoplasmic fluorescence
intensities. For drawing ROIs, the vacuole was avoided. Data
of replicates were pooled before significance testing. One-way
ANOVA was used to test for significance.

Substrate ubiquitination assay

The experiments were performed using mid-log-phase cells over-
expressing ubiquitin. For temperature-sensitive mutants, cells
were shifted to 37°C for 1 h before lysate preparation. 10 ODggo
units of cells were collected, and total protein extract was pre-
pared by TCA precipitation as described previously (Vashist and
Ng, 2004). Protein levels were normalized before immunopre-
cipitation, and lysates were then mixed with IPS II (50 mM Tris-
HCI, pH 7.4, 150 mM NaCl, and 1% Triton X-100) supplemented
with protease inhibitor cocktail (Roche), 100 mM PMSF, anti-HA
affinity matrix, and 10 mM N-ethylmaleimide (Sigma-Aldrich).
Immunoprecipitated samples were resolved by SDS-PAGE and
transferred onto nitrocellulose. Total substrates and ubiquiti-
nated substrates were detected by using anti-HA antibody and
anti-myc antibody, respectively.

GFP fluorescence microscopy

Cells expressing sf-A2GFP were grown at room temperature and
shifted to 37°C for 30 min. Cells were examined at room tempera-
ture using a Meta 510 confocal microscope under a 100x 1.4 NA
oil-immersion objective lens (ZEISS). Images were archived by
LSM Image Browser and Photoshop.

FRAP

For all FRAP experiments, fresh cells expressing sf-A2GFP were
grown at room temperature, resuspended in fresh Synthetic
Complete medium, and immobilized on a 2% agar pad containing
Synthetic Complete medium. An LSM780 microscope (controlled
by Zen 2012; ZEISS) with a multiarray 32PMT GaAsP detector and
an Apochromat 63x 1.4 NA oil differential interference contrast

Journal of Cell Biology
https://doi.org/10.1083/jcb.201706091

920z Ateniged 20 uo 3senb Aq ypd 160902102 Al/L L L L09L/610Z/9/L 1 Z/spd-8jonie/qol/Bio sseidnu//:dny woy pepeojumoq

2029



Plan Apochromat objective was used for acquiring FRAP. Each
nucleus was bleached with 15-20 iterations with 100% laser
power of 488-nm light at 30°C. The FRAP protocol involved five
prebleach images followed by bleaching and postbleach record-
ing at 3-s intervals for 100 s. Imaging was typically performed by
using a 488-nm argon laser at 3% laser intensity at 30°C. FRAP
quantification was performed using Image]. The mean fluores-
cence recovery signal was quantified in the bleached nucleus. As
a control, fluorescence of nonbleached nucleus of three neigh-
boring cells was measured. After background subtraction, the
fluorescence signals of nucleus were normalized to the means
of the three control nuclei and set to 100% at beginning of the
experiment. 10 different FRAP experiments were pooled and
transferred to Prism 6 (GraphPad Software) and plotted on an
exponential FRAP curve. Nuclear import rates were calculated
using nonlinear curve fitting of Prism software to a pseudo-
first order association kinetics curve using the model equation
Y=Y+ (Yinger— Yo) x [1-e(-K x t)] todetermine the apparent trans-
portrate constant K for each strain. Images were also archived by
Image] and Photoshop. All the error bars indicate +SEM.

Statistics

A two-tailed unpaired Student’s test was used for significance
of FRAP analysis. For Fig. 2, one-way ANOVA was used to test
for significance. Unless otherwise indicated, all the analyzed
mutants were always compared with WT.

Cytosol/membrane fractionation

Cells were grown to log phase (0D = 0.7-1) at 30°C. Cells (10
ODgoo equivalent) were resuspended in lysis buffer (20 mM
Hepes-KOH, pH 6.8, 250 mM sorbitol, 150 mM KOAc, and 5 mM
MgOAc containing 1 mM PMSF and protease inhibitor cocktail).
Glass beads (300 ul) were added, and cells were disrupted by agi-
tation on a Vortex mixer (at full speed) 10 times for 30 s with 30-s
intervals on ice between each cycle. The homogenate was col-
lected and pooled after rinsing the beads with buffer 88 (20 mM
Hepes, pH 7.4,150 mM KOAc, 250 mM sorbitol, and 5 mM MgOAc).
Unbroken cells were removed by centrifugation at 300 gfor 5 min
at 4°C twice. Subsequently, the supernatant was centrifuged at
18,000 gfor 30 min at 4°C. The membrane pellet was resuspended
inbuffer 88, pH 7.4. The resulting supernatant (S18K) and the pel-
let (P18K) fractions were further processed for Western blotting.

Separation of cytosol and post-cytosolic fraction

10 ODgpp units of log-phase cells were collected and resuspended
in 1 ml Y-PER reagent (Thermo Fisher Scientific) containing
1 mM PMSF and protease inhibitor cocktail (Sigma-Aldrich) and
then were incubated at room temperature for 30 min. Cells were
centrifuged at 4°C for 30 min at 18,000 g to separate the cytoso-
lic and post-cytosolic fractions. Each fraction was precipitated
in 10% TCA and analyzed on a 4-15% gradient gel by SDS-PAGE,
followed by immunoblotting.

Online supplemental material

The Supplemental material consists of three tables (Tables S1,
S2, and S3) and five figures (Figs. S1, S2, S3, S4, and S5). Supple-
mentary figures show extended control experiments and data of
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additional examples to those shown in main figures. Tables list
strains, plasmids, and oligonucleotide primers used in this study
as well as their pertinent information.
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