REVIEW
Epigenetics and epitranscriptomics in temporal
patterning of cortical neural progenitor competence
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During embryonic brain development, neural progenitor/stem cells (NPCs) sequentially give rise to different subtypes of
neurons and glia via a highly orchestrated process. To accomplish the ordered generation of distinct progenies, NPCs go
through multistep transitions of their developmental competence. The molecular mechanisms driving precise temporal
coordination of these transitions remains enigmatic. Epigenetic regulation, including changes in chromatin structures,
DNA methylation, and histone modifications, has been extensively investigated in the context of cortical neurogenesis.

Recent studies of chemical modifications on RNA, termed epitranscriptomics, have also revealed their critical roles

in neural development. In this review, we discuss advances in understanding molecular regulation of the sequential
lineage specification of NPCs in the embryonic mammalian brain with a focus on epigenetic and epitranscriptomic
mechanisms. In particular, the discovery of lineage-specific gene transcripts undergoing rapid turnover in NPCs suggests
that NPC developmental fate competence is determined much earlier, before the final cell division, and is more tightly
controlled than previously appreciated. We discuss how multiple regulatory systems work in harmony to coordinate
NPC behavior and summarize recent findings in the context of a model of epigenetic and transcriptional prepatterning to

explain NPC developmental competence.

Introduction

The central nervous system (CNS) displays an enormous diver-
sity of cell types, which are assembled into neural circuits to
serve complex functions such as sensory perception and con-
sciousness. To build the highly ordered cytoarchitecture of the
CNS, neurons and glial cells are generated through coordinated
production and placement of distinct cellular subtypes. Neural
progenitor/stem cells (NPCs) are defined as multipotent cells
capable of self-renewal and differentiation into neurons and
glial cells such as astrocytes and oligodendrocytes (Gage, 2000).
The embryonic cerebral cortex starts from simple pseudostrati-
fied neuroepithelial cells, which mostly divide symmetrically to
increase NPC pools. Neuroepithelial cells transform into radial
glial cells (RGCs), which serve both as primary NPCs and as
scaffolds for neuronal migration during corticogenesis (Gdtz
and Huttner, 2005). The developmental competence of RGCs
to produce different progeny types changes over time (Fig. 1).
RGCs initially directly generate Cajal-Retzius neurons and deep-
layer neurons, a process named direct neurogenesis (Guillemot,
2005). This is followed by generation of superficial layer neu-
rons predominantly via intermediate progenitor cells (IPCs) ina

process called indirect neurogenesis (Sessa et al., 2008). During
later stages, RGCs gradually terminate neuronal production in
favor of gliogenesis. This timed program is also maintained in
culture for NPCs purified from the embryonic mouse cortex
(Qianetal., 1998,2000; Shen et al., 2006), or differentiated from
mouse/human embryonic stem cells (ESCs; Eiraku et al., 2008;
Gaspard et al., 2008). The first attempt to understand the nature
of this timed transition in NPC competence in vivo used a heter-
ochronic transplantation approach. Young NPCs of donor ferret
cortex transplanted into the ventricular zone of older recipients
generated later-born superficial layer neurons, but old NPCs
transplanted into a younger host failed to generate early-born
deep-layer neurons (McConnell and Kaznowski, 1991; Frantz
and McConnell, 1996). These pioneering studies led to the con-
cept that both intrinsic programs and extrinsic cues cooperate
to regulate the transition of NPC competence, which is gradually
restricted over time. Significant progress has been made over the
pastdecade to reveal molecular mechanisms underlying the tran-
sition of NPC developmental competence.

A fundamental question in developmental biology is how
the same genome in each cell can produce vastly different cell
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Figure 1. Temporal transition of NPC developmental
competence during mouse cortical development. (A) Six
cortical layers are formed in an inside-out manner during
mouse cortical development. Glial cells are omitted for sim-
plification. SVZ, subventricular zone; VZ, ventricular zone.
(B) During cortical development, multipotent NPCs gener-
ate neurons populating the six cortical layers and glial cells
such as astrocytes and oligodendrocytes sequentially in a
time-dependent manner. During early cortical development,
neuroepithelial cells divide symmetrically to increase NPC
pools. Neuroepithelial cells transform into RGCs and then
typically divide asymmetrically to self-renew and produce
either neurons or IPCs. RGCs first produce Cajal-Retzius
(CR) neurons (layer 1) and deep-layer (DL) neurons (layers
VI/V) and subsequently superficial-layer (SL) neurons (layers

B st T |

Neuron

o |\

Neuron D IPC

#

V4 /

IV/I1I/11) mostly though IPCs. In later stages, RGCs transition
from neurogenesis to gliogenesis and give rise to astrocytes
and oligodendrocytes. Eventually, RGCs are depleted by
transforming into astrocyte progenitors in postnatal stages.

Astrocyte

¥

3

7
D

Oligodendrocyte

Proliferative Neurogenic Neurogenic Gliogenic
NPC expansion  Deep layer (DL) Superficial layer (SL) Astrocyte
neuron neuron

types. The identity of each cell type is associated with unique
transcriptional profiles, which are shaped by highly ordered
gene expression programs. In this review, we define epigene-
tic changes as chemical and structural modifications on chro-
matin, DNA, and histones, without the alteration of the DNA
sequence (see Epigenetic and epitranscriptomic regulation).
These epigenetic mechanisms, in the form of DNA methylation,
histone modifications, or chromatin remodeling and looping
(Shin et al., 2014), establish a specific chromatin state to spec-
ify gene expression patterns associated with cellular memory
to maintain a specific cellular identity and responsiveness to
stimulation (Ma et al., 2010). Recent evidence suggests that
chemical modifications on RNAs can also affect mRNA metab-
olism, including decay, transport, splicing, and translation
(Meyer and Jaffrey, 2017; Zhao et al., 2017a). Similar to the
term “epigenome,” “epitranscriptome” can be defined as the
ensemble of functionally relevant changes to the transcriptome
without alteration of the RNA sequence. During development,
epitranscriptomic regulation confers additional flexibility to
fine-tune spatiotemporal gene expression on top of epigenetic
regulation. Thus, epigenetic and epitranscriptomic regulation
can form a harmonious system to interpret genetic information
in response to intrinsic and extrinsic factors in neurodevelop-
ment. In this review, we discuss recent progress in our under-
standing of epigenetic and epitranscriptomic mechanisms that
guide sequential lineage specification of NPCs with a focus on
the developing mouse cortex.

Yoon et al.
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Epigenetic mechanisms regulating the transition of NPC
developmental competence

Abody of evidence supports critical roles of multiple epigenetic
mechanisms in neurogenesis (Hirabayashi and Gotoh, 2010; Sun
et al., 2011; Yao et al., 2016). In this review, we focus on roles of
DNA methylation, histone modifications, chromatin remodeling,
and 3D genome architecture in regulating the transition of NPC
competence (Fig. 2). DNA and histone modifications are revers-
ible: they are established by “writers,” interpreted by “readers,”
and removed by “erasers” (see Epigenetic and epitranscriptomic
regulation). ncRNAs including IncRNA and microRNA also play
important roles in regulating NPC maintenance and differenti-
ation during cortical neurogenesis, which have been reviewed
elsewhere (Volvert et al., 2012; Andersen and Lim, 2018).

Progressive alteration of DNA methylome of NPCs during

brain development

DNA methylation, especially in gene promoters, is associated
with transcriptional repression in the mammalian nervous sys-
tem (Guo et al., 2011a). Genetic ablation studies using knockout
animals have shown that after genomewide eradication of DNA
methylation in preimplantation embryos, a de novo DNA meth-
ylation pattern is established by DNMT3A and DNMT3B, which
is then maintained by DNMT1 (Fig. 2; Li et al., 1992; Okano et al.,
1999). DNA methylation is cell type-specific and dynamic during
development. Whole-genome profiling of the DNA methylome
from isolated NPCs provides initial clues of the sequential changes
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in the differentiation competence of NPCs at different stages of
neurodevelopment. For example, in vivo-purified NPCs at dif-
ferent developmental stages from mouse forebrain showed three
steps of global changes in the DNA methylome, including two suc-
cessive waves of demethylation in early and late neurogenic NPCs
and de novo methylation of neuron-specific genes in gliogenic
NPCs (Sanosaka et al., 2017). At the neurogenic stage, the pro-
moter regions of many glial-specific genes such as glial fibrillary

ool (erasers), and reader proteins. Though hundreds
of modifications can occur in mRNA, m°A is the
most prevalent.

acidic protein (GFAP) and S100 are hypermethylated, thus lim-
iting responsiveness of NPCs to gliogenic signaling (Takizawa
et al., 2001; Fan et al., 2005). Later, at the gliogenic stage, these
promoter regions become demethylated to allow glial differenti-
ation in response to gliogenic stimuli such as JAK-STAT signaling
(Nakashima etal., 1999; He et al., 2005; Namihira and Nakashima,
2013). Consistently, DnmtI knockout mice showed acceler-
ated demethylation in glial-specific promoters and precocious

Epigenetic and epitranscriptomic regulation

To fully understand epigenetic and epitranscriptomic regulations, it is important to contextualize them in terms of chromatin and RNA structures (Fig. 2). In
brief, chromatin is made of units of nucleosomes, which contain double-stranded DNA wrapped around octamers of histone proteins. Nucleosomes are regularly
spaced throughout the genome like beads on a string. The chromatin is then further compacted through asymmetric folding of the nucleofilament, which allows
for interactions with distant parts of the genome as well as other elements of the nucleus (Woodcock and Horowitz, 1995). Similarly, single-stranded RNA can
form complex secondary structures like loops and double-stranded stretches, which mediate which parts of the RNA are available for modification or protein
binding (Lewis et al., 2017).

The term “epigenetics” was originally coined by Conrad Waddington to describe dynamic interactions between the environment and the genome that
bring the characteristic traits of an organism, defined as the phenotype (Waddington, 1942). Epigenetic alterations are defined as nonpermanent and potentially
heritable changes that regulate gene expression without alterations to the DNA sequence. Epigenetic modifications are considered to be dynamic and reversible,
established by modification enzymes (named writers), interpreted by modification specific binding proteins (readers), and removed by enzymes (erasers). Tradi-
tionally, epigenetic mechanisms that control changes in gene expression levels can be divided into three major groups:

(1) DNA methylation: DNA methylation plays key roles in the regulation of transcription by changing the accessibility of DNA to the transcription machin-
ery. In eukaryotes, DNA methylation mostly occurs at cytosine residues (5-methylcytosine; 5mC) in CpG dinucleotides, but it also occurs at non-CpG sites (CpA,
CpT, and CpC), especially in pluripotent stem cells (Lister et al., 2009) and the mature neurons (Guo et al., 2014). In some cases, DNA methylation is found at
adenosine as [N¢]methyladenine (6mA; Heyn and Esteller, 2015). During DNA replication, 5mC DNA methylation pattern is established by DNA methyltransfer-
ases including DNMT1, DNMT3A, and DNMT3B (writers). Methyl-CpG binding proteins such as MeCP2 recognize 5mC to exert specific functions (readers; Du et
al., 2015). There are additional readers that can bind 5mC in a sequence-specific fashion without the methyl-CpG binding domain such as transcription factors
(Hu et al., 2013). 5mC DNA methylation can be removed by the action of DNA demethylase such as ten-eleven translocation (TET) proteins (erasers; Guo et al.,
2011b; Wu and Zhang, 2014).

(2) Histone and chromatin modifications: Histones can be altered by different processes such as methylation, acetylation, phosphorylation, ubiquityla-
tion, sumoylation, and ADP ribosylation. These posttranscriptional modifications on the 15-30-amino-acid N-terminal histone tails alter chromatin condensa-
tion, resulting activation or inactivation of gene expression. For example, diverse residues of histone tails are modified by histone acetyltransferases (HATs) or
histone methyltransferases (HMTs; writers) and interpreted by various binding proteins (readers). These modifications can be reversed by histone deacetylases
(HDACs) or histone demethylases (erasers).

(3) Noncoding RNAs (ncRNAs): ncRNAs play a crucial role in many regulatory pathways of gene expression. For example, microRNA is a small ncRNA mol-
ecule that functions in RNA silencing and posttranscriptional regulation of gene expression.

Over 150 different posttranscriptional modifications are known, including pseudouridine (W), 2-0-methylation, 5-methylcytidine, and [N®]methyladenos-
ine (m®A; Gilbert et al., 2016). Many of these modifications can occur on tRNA, ribosomal RNA, long ncRNA (IncRNA), and mRNA (Meyer and Jaffrey, 2017; Zhao
et al,, 2017a). Studies of these RNA modifications lead to an emerging new field of epitranscriptomics.

Yoon et al.
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astrocyte differentiation of NPCs during the neurogenic stage,
suggesting the importance of maintaining DNA methylation pat-
terns from early to midgestational stages (Fan et al., 2005).
DNA methylation can be removed either passively by blocking
DNMT! action on newly synthesized DNA during DNA replication
in proliferating cells or actively through the enzymatic actions of
the DNA demethylation pathway (Wu and Zhang, 2014). At the
neurogenic stage, newborn neurons present the Notch ligands to
NPCs to induce expression of nuclear factor IA, which then binds
to the promoters of glial-specific genes to prevent DNMTI action.
Thisleads to passive DNA demethylation, which in turn promotes
the neurogenic-to-gliogenic transition of NPC developmental
competency (Namihira et al., 2009). Active DNA demethyla-
tion involves conversion of 5mC into 5'-hydroxymethylcytosine
(5hmC) and then to 5-formylcytosine and 5-carboxylcytosine by
the Tet family members, followed by thymine DNA glycosylase-
dependent base-excision repair (Fig. 2; Guo et al., 2011b; Wu and
Zhang, 2014). During embryonic development, neuronal differ-
entiation is associated with increasing levels of 5hmC, and func-
tional perturbation of Tet2 and Tet3 leads to defects in neuronal
differentiation (Hahn et al., 2013). In addition, TetI knockout
mouse models show deficits in NPC proliferation in both embry-
onicand adult neurogenesis (Zhang et al., 2013). 5ShmC is elevated
during the differentiation of adult neural stem cells in the hippo-
campus, and Tet2 is primarily responsible for modulating 5hmC
dynamics (Li et al., 2017c). Depletion of Tet2 leads to increased
adult neural stem cell proliferation and reduced differentiation
in vitro and in vivo. Finally, depletion of Tet3 in Xenopus laevis
embryos represses expression of many key developmental genes
such as Pax6, Ngn2, and Sox9 (Xu et al., 2012). These results sug-
gest that both passive and active demethylation processes regulate
crucial NPC properties during neurodevelopment and adulthood.
Our understanding of the role of DNA methylation dynam-
ics in cortical neurogenesis is fragmented. For example, it is
unknown how the global changes of methylation patterns are
achieved with a certain degree of specificity to restrict the devel-
opmental competency of NPCs. Considering that DNA-binding
factors can mediate turnover of DNA methylation (Feldmann et
al., 2013; Marchal and Miotto, 2015), the roles of lineage-specific
transcription factors in shaping stage-specific DNA methylation
landscapes of NPCs also need to be explored. In addition, DNA
6mA has been shown to participate in transcriptional regulation
(Wallecha et al., 2002; Robbins-Manke et al., 2005), DNA repair
pathways (Pukkilaetal., 1983), and protection against restriction
enzymesin bacteria (Arber and Dussoix, 1962). Recently, 6mA has
been added to the growing list of potential epigenetic marks in
DNA of various eukaryotic species including green algae (Fu et
al., 2015), Caenorhabditis elegans (Greer et al., 2015), Drosophila
melanogaster (Zhangetal., 2015), and mouse (Wu etal., 2016; Yao
etal., 2017). It is still unclear whether the biological functions of
6mA in eukaryotes are conserved from bacteria or evolved to have
unique roles in various tissues. The functional significance of 6mA
during mammalian neurodevelopment remains to be investigated.

Histone dynamics in NPCs of the developing brain
The nucleosome is the fundamental subunit of chromatin con-
sisting of an octamer of histone proteins (Fig. 2). The N-terminal

Yoon et al.
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tails of histones are highly susceptible to diverse posttransla-
tional modifications such as methylation, acetylation, phos-
phorylation, ubiquitylation, sumoylation, and ADP ribosylation
(Kouzarides, 2007). These reversible modifications define the
transcriptional environment by serving as docking stations to
attract various epigenetic modifiers and transcription factors
for transcriptional activity. For example, promoters of both neu-
rogenic and gliogenic genes undergo various histone modifica-
tions to ensure the sequential production of different cell types
at proper stages of development (Hirabayashi and Gotoh, 2010).

Histone methylation mainly occurs at lysine residues on the
N-terminal tails of histones H3 and H4 (Strahl and Allis, 2000).
Histone methylation is reversible and regulates transcriptional
activity depending on the number and location of methyl groups.
Histone H3 methylations at lysine 4 (H3K4), lysine 36 (H3K36),
and lysine 79 (H3K79) are associated with transcriptional activa-
tion, whereas methylations at H3K9, H3K27, and H4K20 are asso-
ciated with transcriptional silencing (Vakoc et al., 2006). During
neurodevelopment, NPCs acquire different responsiveness to
various extracellular signals that regulate the accessibility of
transcription factors to promoters of neurogenic or gliogenic
genes. For example, H3K9 methylation of the GFAP promoter
is replaced by H3K4 methylation in response to ciliary neuro-
trophic factor during the differentiation of cortical NPCs into
astrocytes. In this process, fibroblast growth factor 2 facilitates
access of the STAT-CBP complex to the GFAP promoter by induc-
ing H3K4 methylation and suppressing H3K9 methylation at the
STAT binding site, resulting in the activation of the gliogenic pro-
gram (Song and Ghosh, 2004; Irmady et al., 2011).

The polycomb group (PcG) complex has been shown to regu-
late the timing of the transition in generating different neuronal
subtypes and glia. The PcG complex catalyzes trimethylation of
histone H3 at lysine 27 (H3K27me3), leading to transient tran-
scriptional repression through alteration of local chromatin
configuration (Sauvageau and Sauvageau, 2008). The PcG con-
sists of two complexes: polycomb repressive complex 1 (PRCI)
and polycomb repressive complex 2 (PRC2). Deletion of RinglB,
a PRC1 component, leads to prolonged expression of Fez tran-
scription factor family member zinc-finger 2 (Fezf2), which
drives the expression of downstream target genes for deep-layer
neuron identity such as Ctip2, resulting in an increased pro-
duction of deep-layer neurons (Morimoto-Suzki et al., 2014).
Enhancer of Zeste homologue 2 (Ezh2), a PRC2 component, is
highly expressed in NPCs at the gliogenic stage and inhibits the
expression of neurogenic genes such as Neurogenin I (Neurogl)
by catalyzing H3K27me3 at the promoter region (Hirabayashi et
al.,2009). Deletion of RinglB, or Ezh2, leads to an extended dura-
tion of the neurogenic period and a delayed onset of astrogenesis
(Hirabayashi et al., 2009; Pereira et al., 2010). Collectively, the
PcG complex represses a unique set of genes in a temporally reg-
ulated manner, thereby enabling the dynamic transition of RGC
competence. The mechanisms of how the PcG complex regulates
different target genes in response to intrinsic and extrinsic cues
over the course of development need to be further investigated.

Histone acetylation is catalyzed by HATs on the lysine resi-
dues of the N terminus of histone tails, which results in removal
of positive charge, thereby relaxing chromatin condensation
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and enhancing active gene transcription (Kouzarides, 2007).
Histone acetylation is broadly involved in both embryonic and
adult neurogenesis. For example, the HAT activity of CREB-bind-
ing protein (CBP) is important for neural lineage differentiation.
NPCs from a heterozygote mutant mouse model of CBP showed
impaired differentiation into all three neural lineages—neurons,
astrocytes, and oligodendrocytes—coincident with decreased
CBP binding and histone acetylation at promoters of neuronal
and glial genes (Wang et al., 2010). The other well-character-
ized HAT is KAT6B/querkopf. KAT6B exhibits a dynamic pattern
of expression in the embryonic telencephalon, and mutations
in Katéb result in reduced numbers of pyramidal neurons and
interneurons (Thomas and Voss, 2004).

Histone acetylation is removed by HDACs, causing chromatin
condensation and transcriptional repression by preventing bind-
ing of transcription factors (Hsieh and Gage, 2004). There are >18
HDACs in the mammalian genome, and they are expressed at dif-
ferent developmental stages and in diverse cell types (de Ruijter
et al., 2003). For example, HDACI is highly expressed in NPCs
and glia, whereas HDAC2 is expressed in neurons but not in most
glial cells, suggesting specific gene-silencing programs by various
histone deacetylation complexes in a cell type-specific manner
(MacDonald and Roskams, 2008). Conditional deletion of Hdacl/
Hdac2in NPCs impairs neuronal differentiation (Montgomery et
al.,,2009), and inhibition of HDAC activity at the neurogenic stage
decreases the production of deep-layer neurons and increases
superficial-layer neurons from RGCs by modulating the expres-
sion of layer-specific genes (Yuniarti et al., 2013). In addition,
conditional deletion of Hdacl/Hdac2 in oligodendrocytes shows
severe defects in oligodendrocyte production and maturation (Ye
et al., 2009). These studies suggest that histone deacetylation
plays important roles at different stages of neurodevelopment.

Frequently, HDACs are recruited by transcription factors and
cofactors to exert epigenetic regulatory roles. For example, TLX,
a transcription factor that has a crucial role in NSC proliferation
and self-renewal, recruits HDACs to suppress downstream target
genes including the cyclin-dependent kinase inhibitor P21 and
the tumor suppressor PTEN (Sun et al., 2007; Niu et al., 2011).
The transcriptional repressor RE1-silencing transcription fac-
tor (REST) represses neuronal programs in nonneuronal cells
by recruiting histone modifiers such as HDACs, HMTs, and
lysine-specific demethylase 1 (LSD1), thereby keeping neuronal
genes in a poised state (Shi et al., 2004; Ballas et al., 2005). In
another example, HDAC3 is a component of the nuclear receptor
corepressor (N-CoR)-silencing mediator of retinoid and thyroid
hormone receptor (SMRT) complex, which regulates neuronal
differentiation of NPCs in forebrain development (Jepsen et al.,
2007; Castelo-Branco et al., 2014).

Collectively, diverse histone marks are dynamically regulated
to activate, repress, or poise gene expression throughout neuro-
development. Stage-specific actions of histone modifiers are crit-
ical for the precise control of spatial and temporal gene expres-
sion, governing the competence of NPCs to produce proper cell
types at specific times of development. How target specificity of
histone modifications is achieved in response to intrinsic pro-
grams and extrinsic cues in modulating the competence of NPCs
remains a major gap in knowledge.

Yoon et al.
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Chromatin remodelers and 3D genome organization

Chromatin remodeling complexes via ATP-dependent changes
to histone-DNA interactions provide noncovalent mechanisms
to modify chromatin accessibility for transcription factors
and chromatin-modifying enzymes (de la Serna et al., 2006;
Hargreaves and Crabtree, 2011). The family of ATP-dependent
chromatin remodelers is categorized based on similarities of
their ATPase domains, including switch/sucrose nonfermenting
(SWI-SNF), imitation switch, chromo helicase DNA binding, and
inositol auxotroph 80 (Lopez-Ramirez and Nicoli, 2014). These
chromatin remodelers play critical roles during multiple steps
of development, which have been comprehensively reviewed
elsewhere (Ho and Crabtree, 2010; Hota and Bruneau, 2016).
Among these, mammalian SWI-SNF complexes, also known
as Brg/Brahma-associated factor (BAF) chromatin remodeling
complexes, are the most extensively studied remodelers during
neurodevelopment.

BAF chromatin remodeling complexes are comprised of mul-
tiple proteins, including one of the two catalytic ATPase subunits,
Brahma and Brgl, and other core subunits named BAFs. ATPase
subunits generate energy by hydrolyzing ATP to relax condensed
chromatin and increase accessibility of transcription factor bind-
ing for activation of gene expression. BAF subunits also contain
scaffolding proteins with DNA and histone-binding domains,
which enable specific recruitment of transcription factors and
histone-modifying proteins (Sokpor et al., 2017). During neural
development, cell type-specific BAF complexes, which are formed
by combinatorial subunit switching, exert functions important
forlineage-specific properties (Ho and Crabtree, 2010). For exam-
ple, the specialized subunit composition of the ESC-BAF (esBAF)
complex is required for ESC maintenance and pluripotency (Ho
etal., 2009, 2011; Takebayashi et al., 2013). As ESCs differentiate
into neurons, esBAF begins to switch subunits to those unique to
neural progenitors (npBAFs), eventually leading to a specific sub-
unit composition in neurons (nBAFs; Staahl and Crabtree, 2013;
Bachmann etal., 2016). NPC proliferation requires a BAF complex
containing BAF54a and BAF53a subunits (npBAF), and those are
replaced by the alternative BAF45b, BAF45c, and BAF53b subunits
(nBAFs), when NPCs exit the cell cycle to become post-mitotic
neurons (Lessard et al., 2007). Mechanistically, BAF complexes
transcriptionally regulate expression of components involved in
critical signaling pathways for NPC proliferation and neuronal
differentiation, such as Wnt (Vasileiou et al., 2015), Sonic hedge-
hog (Lessard et al., 2007; Zhan et al., 2011), and Notch pathways
(Lessard et al., 2007). BAF complexes have also been shown to
regulate various steps of neurodevelopment, including balancing
of direct neurogenesis from RGCs and indirect neurogenesis from
IPCs (Tuoc et al., 2013a,b), gliogenesis (Matsumoto et al., 2006;
Ninkovic et al., 2013; Tuoc et al., 2017), and neuronal dendritic
morphogenesis (Wu et al., 2007) with a differential combination
of BAF subunits. These studies on BAF chromatin remodeling
complexes support the notion that combinatorial assembly of
subunits of chromatin regulatory complexes can instruct cell
lineage specification by creating specific patterns of chromatin
states at different developmental stages.

3D genome architecture is increasingly considered an
important epigenetic regulator of gene expression. Mammalian
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chromosomes are topologically heterogeneous. Euchromatin
comprises open chromatin fibers, whereas heterochromatin is
condensed and transcriptionally dormant (Gilbert et al., 2004).
The spatial organization of the chromatin in the interpha-
sic nucleus is changing dynamically as the cell differentiates.
Although the nuclei of ESCs are relatively homogeneous, heter-
ochromatin foci become more evident in NPCs. Mature neurons
show fewer but much larger heterochromatin foci suggesting that
heterochromatin regions are actively reorganized during differ-
entiation (Aoto et al., 2006; Williams et al., 2006). In general,
the genome is organized into the euchromatic A compartments
containing most actively transcribed regions, and the peripheral
B compartments corresponding with megabase-sized gene-poor
lamina-associated domains (Fig. 2; Guelen etal., 2008). Atamore
local scale, chromosomes are partitioned into submegabase seg-
ments forming topologically associating domains (TADs) that
are relatively insulated from neighboring domains (Dixon et al.,
2012; Nora et al., 2012). High-resolution analysis of chromatin
interactions within TADs reveals the presence of sites of consti-
tutively bound CCCTC-binding factor (CTCF) that facilitate chro-
matin looping interactions (Dixon et al., 2012; Phillips-Cremins
et al,, 2013). CTCF-mediated long-range interactions contribute
tomultiple aspects of 3D genome architecture, including domain
insulation and enhancer blocking (Phillips and Corces, 2009).
Loss-of-function studies of CTCF reveal its role in cell fate speci-
fication and neural differentiation (Hirayama et al., 2012; Watson
etal., 2014). Recent advances in chromosome conformation cap-
ture technologies such as Hi-C have revealed the dynamic nature
of 3D genome architecture during neural differentiation and
neuropsychiatric disorders (Dixon et al., 2015; Won et al., 2016;
Bonev et al., 2017). How spatial genome architecture is related
to gene expression and cell fate specification during neurode-
velopment is not well understood. Development of innovative
imaging tools to investigate 3D chromatin ultrastructure such as
EM-based ChromEMT (Ou et al., 2017), superresolution micros-
copy (Boettiger et al., 2016), and CRISPR/dCas9-based imaging
(Liu et al., 2017; Qin et al., 2017) will synergistically propel our
comprehensive understanding of 3D genome remodeling during
neurodevelopment.

Itis becoming increasingly evident that interactions between
different epigenetic modifications play key roles in cell differen-
tiation. In general, chromatin alterations are operated by poly-
enzymatic complexes that integrate multiple aspects of epigen-
etic regulation. For example, the transcriptional repressor REST
functions as a central hub that recruits an array of epigenetic
modifiers including HMT, HDAC, methyl-DNA binding protein,
and components of the BAF chromatin remodeling complex
(Ballas etal., 2005; Yoo and Crabtree, 2009). Future research into
crosstalk among different epigenetic regulators will increase our
understanding of molecular mechanisms underlying transition
of NPC developmental competence.

Epitranscriptomic regulation of NPCs during
neurodevelopment

Although changes in gene expression at the transcriptional
level broadly regulate cell fate and behavior, the nascent tran-
scripts are subject to extensive processing that alters the final
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outcome of protein expression. Just like epigenetic modifications
on DNA and histones, RNA is also subject to chemical modifica-
tions (Fig. 2). The most abundant internal mRNA modification
in eukaryotes is m°A (Desrosiers et al., 1975), which has recently
garnered significantinterest as a major regulator of stem cell fate.
Early biochemical studies in the 1970s showed the prevalent
existence of mfA in mammalian mRNA (Desrosiers et al., 1975),
and the importance of m°A as an mRNA modifier was originally
shown in 1997 through the knockdown of MettI3 (MT-A70), a key
component of the methyltransferase complex, in HeLa and plant
cells (Bokar et al., 1997). The field of epitranscriptomics grew
rapidly upon the subsequent discovery of mRNA demethylases,
fat-mass and obesity-associated protein (Frayling et al., 2007;
Jia et al., 2011), and ALKBHS5 (Fig. 2; Zheng et al., 2013), which
indicate that m®A is also a dynamic modification with regulatory
potential. More recently, the methyltransferase complex hasbeen
investigated in depth, leading to discoveries that METTL14 and
Wilm’s tumor-associated protein (WTAP) work in concert with
METTLS3 to add m°A methylation onto mRNA (Ping et al., 2014;
Wang et al., 2014). WTAP helps recruit the complex to mRNA.
METTLI14 then binds at the consensus site, and METTL3 uses
an S-adenosyl methionine molecule to enzymatically transfer a
methyl group onto an adenosine nucleoside (Ping et al., 2014).
Recent research in cell lines has suggested that m®A mRNA
modifications can affect various aspects of mRNA metabolism,
including decay, transport, splicing, and translation, and rep-
resent a critical regulatory mechanism in the transition of cell
identities during development (Zhao et al., 2017a). Mettl3knock-
down in naive mouse ESCs impairs differentiation and promotes
self-renewal by altering the decay rates of mRNA transcripts that
are m°A tagged (Batista et al., 2014; Geula et al., 2015). m°A also
regulates maternal-to-zygotic transition in zebrafish, stem cell
self-renewal and differentiation in the mouse blood system, and
progression of various types of human cancer cells (Cui et al.,
2017; Lietal., 2017b; Zhao et al., 2017b). Although m°A seemingly
regulates all cell types, the abundance of m®A on mRNA is highest
in the brain (Dominissini et al., 2012). During embryonic cortical
development, m°A controls both proliferation and differentiation
of NPCs (Yoon et al., 2017; Wang et al., 2018). Transcripts related
to mitosis, stem cell maintenance, and neural differentiation are
broadly tagged with m°®A in mouse forebrain, human fetal cortex,
and human forebrain organoid derived from induced pluripotent
stem cells (iPSCs; Yoon et al., 2017). Loss of m®A in Mettl14 condi-
tional knockout (cKO) specifically in the developing brain causes
a prolonged persistence of RGCs into postnatal stages (Yoon et
al., 2017). Moreover, cKO RGCs displayed delayed transitions in
developmental competency, including the deep layer/superficial
layer neuron transition and the neurogenic/gliogenic transition
(Fig. 3 A). In RGCs, mRNA transcripts tagged with m°A are fated
for rapid degradation. When m°A is lost in a cKO or knockdown
of Mettl14 in mouse and human NPCs, m°A-tagged transcripts
exhibit an extended half-life (Yoon et al., 2017). For example, loss
of m®A on stem cell genes such as SoxI and Emx2 causes up-reg-
ulation of these genes and persistence of the stem cell pheno-
type. However, loss of m°A on neuronal genes such as Thr2 and
Neurod]l causes their up-regulation in NPCs, which seemingly
conflicts with the expression of stem cell genes. Indeed, Mettl14
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cKO NPCs show coexpression of neuronal and stem cell-pro-
moting genes. Further analysis of nascent mRNAs showed that
neuronal lineage genes are already expressed in normal RGCs.
These results lead to the model that NPCs are prepatterned for
differentiation by actively transcribing neuronal genes, which
are rapidly degraded through m®A-mediated mRNA degradation
(Fig. 3 B; Yoon et al., 2017). Recent studies have also shown that
m®A promotes translation efficiency of tagged mRNAs (Li et al.,
2017a; Shi et al., 2017; Weng et al., 2018). These results raise the
possibility that the m°A-depedent enhancement of mRNA decay
and translation allows a transient and high-level expression
of tagged transcripts for timed fate transition during develop-
ment (Fig. 3 C).

mPA is a highly conserved regulatory mechanism in many spe-
cies (Roundtree et al., 2017). In a recent study comparing mouse
and human neural development, both unique and conserved
aspects of m°A regulation have been found (Yoon et al., 2017).
When comparing E13.5 mouse forebrain and post-conception
week 11 human brain, m°®A was found to tag transcripts crucial
for neural development in both species. However, m°A was much
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Differentiation

more prevalent in humans than in mice, tagging 31.4% of detected
transcripts compared with only 19.3% in mice. Interestingly, the
transcripts uniquely tagged in humans are strongly enriched
with a disease ontology of mental disorders including autism
spectrum disorder and schizophrenia. Another study found that
the stress-mediated regulation of m°A is impaired in human
patients of major depressive disorder, implying dysregulation of
mOA epitranscriptome might be associated with development of
human mental disorders (Engel et al., 2017).

The role of other RNA modifications in neurodevelopment
has also been explored. Loss-of-function mutations in the
5-methylcytidine RNA methyltransferase NSUNZ2 cause neuro-
developmental disorders in humans (Abbasi-Moheb et al., 2012;
Martinez et al., 2012). Ablation of Nsun2 in the mouse develop-
ing brain leads to impaired differentiation of superficial layer
neurons because of the reduced sensitivity of NPCs to growth
factors (Flores et al., 2017). In Drosophila, there is a minimal
amount of 5mC DNA methylation (Delatte et al., 2016). Demeth-
ylase Tet enzyme appears to target RNA instead, and 5hmC pref-
erentially marks mRNAs that show high translation efficiency. A
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loss-of-function mutant of Drosophila Tet leads to reduced and
disorganized NPCs and resultant brain malformation, suggesting
that the mRNA demethylation pathway through 5hmC is critical
for brain development (Delatte et al., 2016).

In the future, single-cell RNA-sequencing analysis (scRNA-
seq) will provide a more in-depth understanding of when exactly
NPCs begin to transcribe neuronal genes and how this poises
them for the switch from stem cell maintenance and renewal to
different phases of neurogenesis and gliogenesis. In addition,
the roles of other posttranscriptional regulatory functions of
mPA in brain development, including controlling protein trans-
lation, alternative splicing, and nuclear export, will require fur-
ther examination. Future studies are also needed to understand
how epitranscriptomic mechanisms including other mRNA
modifications interplay with various epigenetic mechanisms to
temporally coordinate changes of transcriptomes during neuro-
development and how dysregulation of epitranscriptomic mech-
anisms may contribute to brain disorders.

Prepatterning of neural progenitor competence

Aprecise and predictable developmental schedule requires rapid,
tightly controlled changes in gene expression. During embryonic
cortical development, RGCs sequentially produce distinct proge-
nies with remarkable precision according to the developmental
timeline. These progenies are also required to rapidly differenti-
ate as they migrate to the proper place. Emerging evidence sug-
gests that robust spatiotemporal gene expression programs could
be preestablished in precursor cells before cell fate specification.

First, research in other somatic stem cells such as liver and
pancreatic lineages has shown that in undifferentiated pre-
cursor cells, some lineage-specific genes are transcriptionally
silent but are marked with specific histone modifications and
regulatory proteins at their regulatory elements that poise them
for activation, a phenomenon referred to as epigenetic prepat-
terning (Xu and Zaret, 2012). Recent research suggests that this
epigenetic prepatterning might be a widespread mechanism in
cell fate specification of multipotent progenitor cells (Chen and
Dent, 2014). Some neuron-specific genes are also in a “poised”
state in NPCs, repressed but primed for expression upon neu-
ronal differentiation (Mohn et al., 2008). Future studies are
needed to identify regulatory elements that are prepatterned for
production of distinct cell types such as deep-layer and superfi-
cial-layer neurons as well as astrocytes from RGCs at different
developmental stages.

Second, transcriptome analyses have provided evidence that
some neuronal lineage genes are expressed atlow levels in a sub-
set of RGCs, suggesting the presence of lineage-restricted RGCs
that are transcriptionally prepatterned. For example, mRNAs of
Cux2and Satb2 are expressed specifically in superficial neurons
of the mature cortex but also in a subset of IPCs and RGCs during
embryonic development, suggesting that superficial-layer ver-
sus deep-layer neuronal fate is likely determined before neuronal
differentiation (Nieto et al., 2004; Franco et al., 2012). Likewise,
mRNAs of deeper-layer neuron markers such as Fezf2 and Otx1
are also found in a subset of RGCs (Frantz et al., 1994; Molyneaux
et al., 2005). Studies with scRNA-seq analysis further confirm
that RGCs express mRNAs of specification factors for different
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types of cortical neurons (Telley et al., 2016; Zahr et al., 2018).
This transcriptional prepatterning may be beneficial for the
rapid progress of differentiation and restriction of RGC com-
petence by allowing active transcription of specification factors
(Fig. 4). However, precocious activation of the neuronal differ-
entiation program may perturb self-renewal or multipotency
of RGCs. To maintain actively transcribed mRNAs of neuronal
specification factors at a very low level, RGCs use an m°A mod-
ification-specific RNA degradation pathway via the CCR4-NOT
complex, a major mRNA deadenylase for cytoplasmic mRNA
decay (Yoon et al., 2017). However, a recent study suggested that
protein expression of neuronal specification factors is further
translationally repressed (Zahr et al., 2018). The RNA binding
proteins Pum2 and 4E-T form a complex in RGCs and inhibit
protein translation of target mRNAs that regulate the timing and
specificity of neurogenesis (Yang et al., 2014; Zahr et al., 2018).
Thus, neuronal specification factors, which are transcriptionally
prepatterned in undifferentiated RGCs, are subjected to multiple
layers of posttranscriptional regulation, providing readiness and
flexibility for specification of diverse neuronal subtypes. Consid-
ering that many layer-specific genes including Satb2 and Otx1
are m°A methylated (Yoon et al., 2017), the role of m°A-mediated
RNA degradation in fate-restricted RGCs for specific cortical
layer formation will be an interesting topic for future research.
It will also be interesting to investigate whether transcriptional
prepatterning and posttranscriptional regulations represent a
general mechanism of fate specification of stem cells in other
somatic tissues.

Collectively, both epigenetic and transcriptional prepattern-
ing could contribute to the efficient competence transition of
RGCs. Although epigenetic prepatterning confers a permissive
status to respond to developmental cues, transcriptional prepat-
terning allows NPCs to rapidly and accurately change cellular
identity. Furthermore, targeted mRNA degradation and trans-
lational repression provide gate-keeping systems to prevent
premature activation of the differentiation program (Fig. 4).
These prepatterning mechanisms also suggest that the transi-
tion of NPC developmental competence is primed much earlier
than previously recognized because of the focus on actual pro-
tein expression of fate-specification factors in previous studies.
Future studies are needed to address how the initiation of epi-
genetic and transcriptional prepatterning in NPCs is triggered.

Future perspectives

Remarkable progress has been made over the last decade to
understand gene-regulatory mechanisms controlling cell-fate
specification of NPCs during embryonic brain development.
In particular, rapid advances in next-generation sequencing
technology allow us to identify genomewide transcriptomic and
epigenomic changes at each stage of CNS development (Shin et
al., 2014). Although heterogeneity and the constantly changing
nature of the developing brain have posed major challenges,
newly developed single-cell sequencing methods including
scRNA-seq (Pollen et al., 2014; Johnson et al., 2015; Shin et al.,
2015; Nowakowski et al., 2017), assay for transposase-accessible
chromatin using sequencing (ATAC-seq; Cusanovich et al.,
2015), chromatin immunoprecipitation followed by sequencing
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Figure 4. Prepatterning of NPC developmental competence. During the fate-specification process, regulatory elements of lineage specification genes in
multipotent NPCs are prepatterned with distinct chromatin marks. This epigenetic prepatterning primes the lineage competence of NPCs. Upon stimulation
by developmental cues, these lineage-primed NPCs readily initiate transcription programs that are transcriptionally prepatterned, but protein expression of
lineage specification genes is suppressed by two mechanisms. RNA degradation by m®A mRNA modification and translational repression by Pum2-4E-T com-
plex provide gate-keeping systems to prevent the precocious activation of the lineage specification program. This transcriptional prepatterning potentially
contributes a rapidly induced and fine-tuned cell fate specification process from multipotent progenitors in different tissues.

(Rotem et al., 2015), and single-cell DNA methylome sequenc-
ing (Smallwood et al., 2014; Luo et al., 2017) make it feasible
to investigate transcriptome and epigenome signatures at sin-
gle-cell resolution. Recently developed methods such as sin-
gle-cell methylome and transcriptome sequencing (scMT-seq;
Hu et al., 2016) and single-cell genome, DNA methylome and
transcriptome sequencing (scTrio-seq; Hou et al., 2016) have
further enabled us to simultaneously analyze the DNA meth-
ylome and transcriptome in a single cell. In the future, vari-
ous single-cell multiomic approaches (Macaulay et al., 2017)
will enable a new way to understand the complex interplay of
genomic, epigenomic, and transcriptomic information during
neural cell lineage specification. Considering dynamic and cell
type-specific changes of the epitranscriptome during neural
development (Meyer et al., 2012; Basanta-Sanchez et al., 2016;
Yoon et al., 2017), single-cell sequencing technology for RNA
modifications will be largely advantageous for in-depth appre-
ciation of epitranscriptomic regulation. In addition to profiling
different specific cellular states as a “snapshot,” bioinformat-
ics tools such as Monocle (Trapnell et al., 2014) and Waterfall
(Shin et al., 2015) can use population single-cell omics data to
generate a continuous video for understanding the temporal
progression of the developmental process.

Studies using the mouse as a model have revealed many basic
principles in brain development, yet we still have limited knowl-
edge of human brain development, which exhibits unique fea-
tures. Human brains expand in size with increased complexity of
the cerebral cortex, and much of this expansion can be attributed
to the increased number of NPCs during development, especially
outer RGCs (0RGCs; Dehay et al., 2015). Single-cell transcriptomic
studies reveal unique transcriptional profiles of distinct human
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NPC populations including oRGCs (Johnson et al., 2015; Pollen
etal., 2015; Nowakowski et al., 2017; Zhong et al., 2018), but epi-
genetic and epitranscriptomic regulatory mechanisms governing
NPC fate specification for diverse populations of NPCs are not
well understood. A recent study examined regulatory elements
involved in human cortical neurogenesis using ATAC-seq and
Hi-C and revealed that human-gained enhancers preferentially
regulate oRGC-specific genes (de la Torre-Ubieta et al., 2018).
Analysis of m°A epitranscriptomes in mouse and human fetal
cortex at comparable developmental stages also unveiled more
prominent mPA tagging in humans (Yoon et al., 2017). Notably,
many genes associated with genetic risk for mental disorders
are only m°A tagged in humans, not in mice (Yoon et al., 2017).
Development of iPSC technology has brought us unprecedented
opportunities to study human brain development and disorders
(Wen et al., 2016). Furthermore, rapid advances in generating
3D organoid models provide easily accessible, genetically mod-
ifiable, and well-controllable platforms to study early human
brain development in a dish (Lancaster et al., 2013; Qian et al.,
2016; Sloan et al., 2017). Finally, to better understand the role of
different RNA modifications in neural development and func-
tion, development of new chemical sequencing techniques will
be key. Current methods depend on antibody recognition of indi-
vidual modifications, which are less specific and sensitive than
chemical methods like bisulfite sequencing. Additionally, mul-
tiple RNA modifications on a single transcript may be read in a
code similar to the histone code. Development of chemical-based
sequencing techniques could enable studies on how multiple
mRNA modifications affect functionality. Understanding epi-
genetic and epitranscriptomic gene regulation specifically used
by unique human NPCs such as oRGCs could provide insights into
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molecular mechanisms underlying human cognitive capabili-
ties and their dysregulation in neurodevelopmental disorders.
Together with studies in other model systems such as worms,
flies, fish, rodents, and primates, we expect that additional basic
principles on molecular determinants of the sequential lineage
specification of NPCs in the developing brain will be revealed in
the near future.
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