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Cell migration is dependent on the dynamic formation
and disassembly of actin filament-based structures, in-
cluding lamellipodia, filopodia, invadopodia, and mem-
brane blebs, as well as on cell-cell and cell-extracellular
matrix adhesions. These processes all involve Rho family
small guanosine triphosphatases (GTPases), which are
regulated by the opposing actions of guanine nucleotide
exchange factors (GEFs) and GTPase-activating proteins
(GAPs). Rho GTPase activity needs to be precisely tuned
at distinct cellular locations to enable cells to move in re-
sponse fo different environments and stimuli. In this re-
view, we focus on the ability of RhoGEFs and RhoGAPs to
form complexes with diverse binding partners, and de-
scribe how this influences their ability to control localized
GTPase activity in the context of migration and invasion.

Cell migration is essential for animal development and physiol-
ogy, and is also associated with pathophysiological processes,
such as chronic inflammation and cancer metastasis. Cells
migrate in vitro and in vivo either as single cells or as groups
or sheets, known as collective migration (De Pascalis and Eti-
enne-Manneville, 2017; Friedl and Mayor, 2017). At the lead-
ing edge of single cells, such as immune cells, and cell groups,
such as sprouting blood vessels, cells often extend lamellipodia
and filopodia, in which the plasma membrane is driven forward
by actin polymerization (Fig. 1 A; Ridley, 2015). Localized ac-
tomyosin contractility is also required at both the front and rear
of the cell. The dynamic formation and disassembly of all of
these actin-based structures allow the cell to fine-tune its direc-
tion of migration in response to extracellular cues. In addition,
cell-cell and cell-extracellular matrix adhesions rapidly turn
over to permit cell movement across and through tissues.

Alternatively, both single cells and cells at the edge of tis-
sues in vivo can migrate using bleb-based forward protrusion, in
which the plasma membrane transiently detaches from the cor-
tical actin network, and the protrusion is then stabilized by actin
polymerization (Fig. 1 B; Paluch and Raz, 2013). Blebbing is
usually associated with a high level of actomyosin contractility
in cells, which again needs to be dynamically regulated to allow
changes in cell directionality. Bleb-based migration is observed
in some cell types during development and in several cancer cell
lines in 3D matrices and/or in vivo.
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To migrate through tissues in vivo, cells often have to de-
grade the ECM, and this involves specialized structures known
as invadopodia and podosomes (Paterson and Courtneidge,
2017). These are actin-rich protrusions that are dependent on
actin-regulatory proteins such as WASL (N-WASP), cortactin,
and cofilin for their assembly. Transmembrane and secreted
metalloproteases are specifically delivered to invadopodia,
which degrade ECM proteins locally and thereby contribute to
cell invasion (Fig. 1 A).

Efficient migration and/or invasion requires the coordi-
nated dynamics of the cellular components described (lamel-
lipodia, filopodia, cell-cell adhesions, cell-extracellular matrix
adhesions, membrane blebs, and/or invadopodia), and these
structures are therefore tightly regulated by multiple signaling
mechanisms. In particular, members of the Rho family of small
GTPases have been shown to play essential roles in cell migra-
tion and invasion through the regulation of these processes, act-
ing at specific locations and times in cells (Fig. 1 and Fig. 2 A;
Fritz and Pertz, 2016).

The 20 members of the Rho family can be divided into
classic and atypical members (Fig. 2 A). Classic Rho GTPases,
such as RHOA, RAC1, and CDC42, are regulated by the oppos-
ing actions of Rho-specific guanine nucleotide exchange fac-
tors (GEFs) and GTPase-activating proteins (GAPs; Fig. 2 B).
RhoGEFs activate Rho GTPases by stimulating the exchange
of a bound GDP nucleotide for GTP, whereas RhoGAPs cata-
lyze GTP hydrolysis, thus returning these proteins to an inactive
state (Bos et al., 2007). Atypical Rho family members include
the Rnd subfamily and RHOH, which are unable to hydrolyze
GTP and are therefore constitutively GTP-bound, and RHOU,
which has a high intrinsic nucleotide exchange rate and hence
is predicted to be predominantly GTP-bound in cells (Haga and
Ridley, 2016). Most Rho GTPases are modified at their C-ter-
mini by isoprenyl lipids, which facilitate their localization to
membranes (Mitin et al., 2012). Rho guanine nucleotide dissoci-
ation inhibitors (GDIs) regulate RHOA, RAC1, and CDC42 by
binding to isoprenyl groups and thereby extracting them from
membranes. In addition to GTP/GDP cycling, Rho GTPases are
regulated by posttranslational modifications, including phos-
phorylation and ubiquitylation (Hodge and Ridley, 2016).

Many GEFs and GAPs have been reported to contribute
to Rho GTPase-mediated migration (Tables S1 and S2; Goicoe-
chea et al., 2014; Lawson and Burridge, 2014; Hodge and Rid-
ley, 2016). However, the dynamic regulation of Rho GTPases
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needed for cells to migrate in response to changes in their en-
vironment requires the coordinated and localized activation/
inactivation of multiple components, rather than a simple linear
interaction first between a GEF and a Rho GTPase, then between
the Rho GTPase and its effector target, and finally between a
GAP and the Rho GTPase (Fig. 2 B). Here we will focus on
the ability of RhoGEFs and RhoGAPs to form complexes with
a variety of other proteins, and how these complexes regulate
cell migration and invasion by determining when and where
Rho GTPases are activated in cells, through a process known as
spatiotemporal activation.

GEF complexes

There are two subtypes of RhoGEEF, the Dbl family and the
DOCK family, and members of both can contribute to cell mi-
gration (Table S1; Cook et al., 2014; Gadea and Blangy, 2014).
There are around 70 human Dbl family GEFs, all of which con-
tain a Dbl-homology domain that stimulates guanine nucleotide
exchange and is usually flanked by a pleckstrin-homology (PH)
domain. The role of the PH domain varies considerably between
different Dbl family GEFs. PH domains can bind to phospho-
inositides or other phospholipids, thereby contributing to mem-
brane localization in the vicinity of membrane-associated Rho
GTPases. These domains can also act more directly to promote
GEF-Rho GTPase interaction and/or nucleotide exchange
(Rossman et al., 2005).

The domain structure of the 11 human DOCK family
GEFs differs from that of the Dbl family in that, instead of a Dbl
homology—PH tandem domain, they have a DOCK-homology
region 2 (DHR2) domain, which stimulates guanine nucleotide
exchange, and a DHR1 domain, which interacts with phospho-
lipids and helps to target DOCK GEFs to the plasma membrane
(Laurin and Coté, 2014).
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Both Dbl and DOCK family RhoGEFs also contain a vari-
ety of other domains that are specific for each subfamily within
each group (Cook et al., 2014; Laurin and Coté, 2014). For
example, several GEFs have SH2 and/or SH3 domains. These
additional domains enable different GEFs to form specific pro-
tein complexes, which contribute to migration and invasion in
distinct ways, often dependent on the cell type and the combi-
nation of internal and external stimuli. Spatiotemporal Rho GT-
Pase activation is mediated by RhoGEFs complexed to diverse
proteins such as cytoskeletal or focal adhesion components,
adaptors, Rho GTPase effectors, or even to RhoGAPs.

Here, we describe GEFs for the Rac, CDC42, and Rho
subfamilies of GTPases (Fig. 2 A) that contribute to cell migra-
tion through these different signaling complexes.

Rac/CDC42-specific Dbl family GEF
plexes. Rac and CDC42 have multiple functions in cell migra-
tion and invasion that range from stimulating actin
polymerization at the leading edge of cells to regulating invado-
podial turnover and stability, as well as cell-cell and cell-
extracellular matrix contacts (Fig. 1 A). Several GEFs are able
to activate Rac and/or CDC42 (Cook et al., 2014), yet they in-
fluence migration in different ways, reflecting the requirement
for Rac and CDC42 to be activated at different cellular locations
together with a distinct subset of their downstream targets
(Table S1 and Fig. 3).

p-PIX. The Dbl family GEF ARHGEF7 ($-PIX) is one of
the most extensively studied for its roles in cell migration and
invasion, and can form several different types of protein com-
plexes (Fig. 3 A), some of which activate Rac and others CDC42.
B-PIX can influence migration in different ways depending on
the interactions it forms and its spatial distribution (Fig. 3 A).

Perhaps the best known signaling unit involving p-PIX is
the trimolecular GIT-f-PIX-PAK complex, which promotes

com-
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RACI activity and cell migration upon interaction of GIT
with paxillin in integrin-containing focal adhesions (Frank
and Hansen, 2008). GIT itself is a GAP for the Arf family of
GTP-binding proteins, and thus the complex combines Rac ac-
tivation with Arf inactivation, which may be important for its
function in cell migration (Zhou et al., 2016). PAKSs are protein
kinases that are effectors for RAC1 and CDC42, and thus B-PIX
is an example of a GEF that can directly couple its associated
GTPases to a specific effector (Manser et al., 1998; Radu et
al., 2014). The GIT/B-PIX complex localizes to small integ-
rin-based adhesions near the leading edge of migrating cells in
response to phosphorylation of paxillin by PAK, as part of a
positive feedback loop involved in regulating adhesion assem-
bly and disassembly (Nayal et al., 2006). The GIT-3-PIX-PAK
complex also interacts with another Rho family member, RHOJ
(Fig. 2), which acts similarly to RAC1 in stimulating focal ad-
hesion turnover (Wilson et al., 2014).

In addition to its recruitment with GIT to paxillin in focal
adhesions, B-PIX has been shown to localize to the leading edge
of migrating cells through an interaction with the scaffolding
protein SCRIB. In astrocytes, p-PIX binds to SCRIB during
scratch wound—induced migration and activates CDC42 upon its
recruitment to the leading edge. This, in turn, affects cell polar-
ization (Osmani et al., 2006). B-PIX interaction with SCRIB has
also been observed at the leading edge of heregulin-stimulated
breast cancer cells, where it influences protrusion formation via
PAK (Nola et al., 2008). SCRIB is not found in focal adhe-
sions (Osmani et al., 2006; Nola et al., 2008), indicating that the
B-PIX—containing complexes that form at the leading edge of
migrating cells are distinct from those found at focal adhesions.

Through association with the cell-cell adhesion molecule
P-cadherin, B-PIX can also localize to cell-cell adhesions, and
this interaction promotes collective cell migration via CDC42
(Plutoni et al., 2016). Indeed, f-PIX was identified in a screen

Figure 2.  The Rho GTPase family. (A) Unrooted phylogenetic
tree representing the relationship between the 20 human
Rho GTPase family members based on their sequence iden-
tity. Primary amino acid sequences were aligned using BLA
ST software (National Institutes of Health) and the tree con-
structed using TreeView (University of Glasgow). (B) Diagram
of classic Rho GTPase regulation by GEFs, GAPs, and GDls.
GEFs activate Rho GTPases by stimulating the exchange of a
bound GDP nucleotide for GTP, whereas RhoGAPs inactivate
Rho GTPases by catalyzing GTP hydrolysis. GDIs bind to the
isoprenyl groups on RHOA, RAC1, and CDC42 and thereby
extract them from membranes. See text for further details.

RhoBTB

for RhoGEFs that are specifically required for collective cell
migration (Zaritsky et al., 2017).

In the context of invasion, lysophosphatidic acid stim-
ulation of its G protein—coupled receptor (GPCR) on ovarian
cancer cells induces B-PIX to localize to invadopodia, where
it forms a complex with the tyrosine kinase SRC and the het-
erotrimeric G protein subunit Gai2 (Ward et al., 2015). This
interaction activates RACI1, but whether this complex alters in-
vadopodial dynamics has not been addressed.

Finally, $-PIX can be part of a complex with the RhoGAP
SRGAPI, and together these proteins control the 3D migration
of cells in a matrix-dependent manner (Kutys and Yamada,
2014). On fibrillar collagen, B-PIX directly activates the Rho
GTPase CDC42, whereas RHOA activity is decreased by SRG
AP1. This coordinated regulation of Rho GTPases is induced
by the collagen-binding o,f; integrin, which stimulates B-PIX
activity and B-PIX/SRGAPI interaction as a result of dephos-
phorylation of p-PIX by the phosphatase PP2A. Knockdown
of B-PIX or SRGAPI1 causes cell rounding and motility de-
fects on collagen matrices, highlighting the importance of
this GEF-GAP association. Interestingly, the p-PIX/SRGAP1/
CDC42/RHOA signaling pathway is not observed in cells mi-
grating on fibronectin (Kutys and Yamada, 2014). Hence, this
study not only demonstrates that different Rho GTPases are
regulated differentially by the same protein complex but also
shows that this f-PIX/SRGAPI interaction is initiated by spe-
cific extracellular cues.

Overall, studies on B-PIX show that it is capable of
interacting with multiple proteins, which mediate the di-
verse localizations and functions of this GEF in the context
of migration (Fig. 3 A).

PREX]I. The Rac-like subfamily—specific GEF PREX1
(which has also been shown to have activity toward CDC42
and RHOQ in vitro, but not in cells; Table S1) contributes to

Rho GTPase signaling complexes in migration * Lawson and Ridley
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the downstream signaling targets are shown as well as the
functional outcome. See text for further details.
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the migration of a variety of cell types, and can be directly and
synergistically activated by phosphatidylinositol (3,4,5)-tris-
phosphate and Gy heterotrimeric G protein subunits (Fig. 3 B;
Welch, 2015). Phosphatidylinositol (3,4,5)-trisphosphate— and
Gpy-mediated PREX1 activation is inhibited by protein kinase
A (PKA; Mayeenuddin and Garrison, 2006). PKA phosphory-
lates PREX1, and a nonphosphorylatable PREX 1 mutant is able
to overcome PKA-mediated inhibition of endothelial cell che-
motaxis (Chavez-Vargas et al., 2016).

In addition to Gy, several other PREX1-binding proteins
influence its ability to promote migration (Fig. 3 B). For ex-
ample, PREX1 can bind to the mammalian target of rapamy-
cin (mTOR)—containing complexes mTORC1 and mTORC2,
which are best known for their roles in cell growth and me-
tabolism (Saxton and Sabatini, 2017). PREX1 interaction with
mTORC?2 is involved in leucine-induced RACI1 activation and
cell migration (Herndndez-Negrete et al., 2007). Furthermore,
this PREX1-mTORC2 complex promotes IGF-1-stimulated
ovarian carcinoma cell invasion by activating the kinase AKT1.
Because constitutively active AKT1 could not stimulate mi-
gration in PREX1-depleted cells, it appears that PREX1 also
acts downstream of AKT1, indicative of a positive feedback
loop (Kim et al., 2011).
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A recent study demonstrated that PREX1 can promote
migration via FLII, a RACI effector that regulates the actin cy-
toskeleton (Marei et al., 2016). FLII can bind to both PREX1
and RACI via different domains, and promotes fibroblast mi-
gration in part by increasing myosin II activity and cell con-
tractility. The mechanism through which it induces contractility
is unclear, but does not appear to involve Rho-ROCK activity.
Nevertheless, these findings emphasize that GEFs can directly
couple their GTPase targets to specific effectors.

TIAMI. TIAML1 is an example of a Rac-specific GEF that
has distinct functions in cell migration depending on the con-
text and cell type. On the one hand, by enhancing cadherin-me-
diated cell-cell adhesion, TIAM1 can promote epithelial-like
cell morphology and thereby inhibit cell migration and invasion
(Hordijk et al., 1997; Marei et al., 2016). On the other hand, it
can contribute to lamellipodium extension and stimulate migra-
tion (Connolly et al., 2005; Pegtel et al., 2007).

TIAM1 directs specific upstream signals to different
RACI1-dependent signaling pathways through its interactions
with scaffolding proteins (Rajagopal et al., 2010). For example,
TIAM1 influences cell polarity as a result of interactions with
the PAR polarity complex protein PAR3 (Fig. 3 C; Nishimura
et al., 2005). This interaction is associated with the generation
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of apicobasal epithelial polarity, and hence promotes epithe-
lial cell-cell adhesion. However, it can also contribute to the
front-rear polarity of migrating cells, as shown in persistently
migrating keratinocytes (Pegtel et al., 2007; Mack and Geor-
giou, 2014). Furthermore, the PAR complex influences the re-
cruitment of TIAM1 to talin, a focal adhesion protein that links
integrins to the actin cytoskeleton. The binding of TIAMI1 to
talin controls adhesion turnover and migration of glioma cells
on fibronectin (Wang et al., 2012).

TIAMI1 links activated RAC1 to its effector WASF2
(WAVE2) in lamellipodia through mutual interactions with
the adaptor protein BAIAP2 (IRSp53; Fig. 3 C; Connolly et
al., 2005). Surprisingly, knockdown of TIAM1 or IRSp53 en-
hances fibroblast migration, suggesting that the cell ruffling
induced by this complex leads to increased cell—cell adhesion
rather than sustained migration (Rajagopal et al., 2010). It
would be interesting to know if this effect involves TIAM1
interaction with PAR3. TIAMI1 also inhibits migration by
interacting with the TAZ/YAP transcriptional coactivators
as well as with a ubiquitin ligase, pTrCP, which promotes
TAZ/YAP degradation (Fig. 3 C; Diamantopoulou et al.,
2017). TIAM1 thereby inhibits transcription of TAZ/YAP-
dependent genes, which include those involved in cancer cell
migration and invasion.

VAVI and VAV2. CDC42 is well-known to induce filopo-
dial protrusions, and also plays an essential role in invadopo-
dium formation (Fig. 1 A; Yamaguchi et al., 2005). In pancreatic
cancer cells, the GEF VAV activates CDC42 to induce assem-
bly of invadopodia (Razidlo et al., 2014). VAV1 activation in
this context is dependent on phosphorylation by SRC, a tyrosine
kinase that is strongly linked to invadopodial induction (Razidlo
et al., 2014; Foxall et al., 2016).

The Rac subfamily member RAC3 has also recently been
identified to play a role in invadopodial dynamics in breast can-
cer. Using biosensors, RAC3 activity has been shown to local-
ize to the invadopodial core, as well as in a ringlike structure
around mature invadopodia (Donnelly et al., 2017; Rosenberg
etal., 2017). Core-localized RAC3 can be activated by the GEF
VAV?2, which localizes to invadopodia by binding to phosphor-
ylated cortactin, whereas p-PIX activates RAC3 in the ringlike
region (Donnelly et al., 2017; Rosenberg et al., 2017). These in-
teractions are proposed to promote integrin signaling and actin
polymerization and thereby stimulate invadopodial maturation,
matrix degradation, and cell invasion (Donnelly et al., 2017;
Rosenberg et al., 2017).

Dif-
ferent DOCK family GEFs activate RAC(1,2,3) and/or CDC42,
but not other Rho family GTPases (Gadea and Blangy, 2014).
Here we describe three DOCK GEFs that act as part of com-
plexes to activate Rac at specific locations in cells (Fig. 3 D).

DOCK]I1.DOCKI (also known as DOCK180) is a Rac-spe-
cific GEF that forms multiple different protein complexes
(Fig. 3 D). The best known DOCK1-binding protein is ELMO,
and this complex localizes to lamellipodia, where it promotes
migration by activating RAC1 (Grimsley et al., 2004). The
ELMO-DOCKI1 complex causes cytoskeletal rearrangements
upon its recruitment to diverse ELMO-interacting proteins at
the plasma membrane, such as the Rho GTPase RHOG or the
heterotrimeric G protein subunits Gai2 or Gfy (Katoh and Neg-
ishi, 2003; Li et al., 2013; Herndndez-Vasquez et al., 2017).
ELMO interacts with Gai2 at the membrane of breast cancer
cells upon stimulation of the GPCR CXCR4, and results in

DOCK1-dependent RAC1 and RAC?2 activation, migration, and
invasion (Li et al., 2013). In endothelial cells, ELMO-DOCK1
associates with both the GPCR GPR124 and Gfy in a complex
including the CDC42-selective RhoGEF Intersectin (Herndn-
dez-Visquez et al., 2017). This complex promotes RAC1 and
CDC42 activation and lamellipodial and filopodial extensions.

ELMO-DOCKI also mediates cross talk between Rac
and the Arf family of small GTPases, which are involved in
membrane trafficking and thereby contribute to cell migration
(Casalou et al., 2016). For example, the Arf family GTPase
ARLA4A targets ELMO-DOCKI1 to membranes to activate
RACI-mediated membrane ruffling (Patel et al., 2011). In
addition, DOCKI1 forms a complex with the ARF6 GEF cy-
tohesin 2 and the adaptor protein GRASP, which facilitates re-
cruitment of DOCKI1 to the plasma membrane and promotes
RACI1-dependent cell migration (White et al., 2010; Koubek
and Santy, 2016). These results show how important Arf-me-
diated membrane trafficking is for spatial activation of RAC1
at the plasma membrane.

Similarly to p-PIX, DOCKI1 can localize to focal adhe-
sions. However, unlike (-PIX, whose focal adhesion recruit-
ment is mediated via GIT1 or GIT2 (Zhou et al., 2016), DOCK1
is targeted to focal adhesions through a different adaptor pro-
tein, CRK, which consists of one SH2 and two SH3 domains
(Fig. 3 D). After integrin stimulation, DOCK1 binds to the
N-terminal SH3 domain of CRK, and the CRK SH2 domain
binds to tyrosine-phosphorylated p130Cas (BCART1), which lo-
calizes to focal adhesions (Kiyokawa et al., 1998b). DOCK1
can then stimulate RAC1 activity, leading to cell spreading and
migration (Kiyokawa et al., 1998a; Li et al., 2003).

ANKRD?28 is a large scaffolding protein with 26 ankyrin
repeats that binds to DOCK1 as well as several other proteins in-
cluding protein phosphatases (Vincent et al., 2016). ANKRD28
appears to act via DOCKI to alter focal adhesion distribution
and cell migration (Tachibana et al., 2009). Interestingly, ANK
RD28 and ELMO have been shown to compete for DOCK1
binding, and it has therefore been proposed that DOCKI1 can
promote migration via distinct mechanisms depending on its
binding partner (Tachibana et al., 2009).

The diverse complexes formed by DOCK1 highlight the key
role that its binding partners play in influencing its localization and
activation in the context of Rac-mediated migration (Fig. 3 D).

DOCKS. Similarly to DOCK1, DOCKS is a Rac-specific
DOCK (Laurin and Coété, 2014). Like DOCK1, DOCKS can lo-
calize via the p130Cas-CRK complex to focal adhesions. How-
ever, as recently demonstrated, recruitment of DOCKS to this
complex differs from DOCKI1 in that it is negatively regulated
by GIT2 (Frank et al., 2017). DOCKS localizes to focal adhe-
sions upon depletion of GIT2 or treatment with inhibitors of
myosin II or ROCK, indicating that Rho-mediated actomyosin
contractility is required for this effect. Notably, suppression of
DOCKS expression reduced breast cancer cell line metastasis in
vivo (Frank et al., 2017).

DOCK3. Melanoma migration has been shown to
be promoted by the Rac-specific GEF DOCK3 upon for-
mation of a complex with the adaptor protein NEDD9
(Sanz-Moreno et al., 2008).

In summary, despite their shared ability to activate RAC1
and/or CDC42, the Dbl and DOCK family GEFs described
influence migration in different ways (Fig. 3). In some cases,
these differences are related to cell type—specific functions—
for example, in epithelial cells that need to maintain cell—cell

Rho GTPase signaling complexes in migration
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Figure 4. Rho-specific GEF complexes involved in migration and invasion. The Rho-specific GEFs LARG, PDZRhoGEF, p115RhoGEF, GEFH1, and
p190RhoGEF regulate migration in different ways depending on the complexes they form. GEFs and GEF-binding proteins are shown in arbitrarily colored
boxes. For each complex, the downstream signaling targets are shown as well as the functional outcome. See text for further details.

junctions. Nevertheless, in response to different stimuli, the
ability of different GEFs to form distinct protein complexes
is essential in defining the functional outcome. Indeed, GEF-
containing complexes appear to fine-tune RAC1/CDC42 activ-
ity by dictating their spatial and temporal localization. In addi-
tion, GEF complexes can allow Rac/CDC42 to be either directly
or indirectly coupled to specific effectors. Hence, the ability of
Rac/CDC42-specific GEFs to form complexes is crucial to their
ability to regulate the diverse Rac/CDC42-dependent subcellu-
lar functions associated with migration.

Similarly to Rac/
CDC42, a number of Rho-selective GEFs (all of which belong
to the Dbl family) have been shown to be involved in forming
complexes that regulate migration (Fig. 4). Most of these GEFs
have the potential to activate the closely related RHOA, RHOB,
and RHOC proteins (Fig. 2), although in the majority of cases
they have been tested only on RHOA (Schaefer et al., 2014).
RHOA is often active at both the front and rear of migrating
cells, and promotes actomyosin contractility through its effector
ROCK, as well as actin polymerization via formin family actin
nucleators (Ridley, 2015). Rho/ROCK-driven actomyosin con-
tractility is particularly important in bleb-based cell migration
(Paluch and Raz, 2013), and induces actin stress fibers and inte-
grin-based focal adhesions in some adherent cell types
(Fig. 1; Ridley, 2001).

The Rho-selective GEFs involved in cell migration as part
of signaling complexes include the three closely related regu-
lator of G protein—signaling homology domain—containing
GEFs, ARHGEF12 (LARG), ARHGEF11 (PDZ-RhoGEF), and
ARHGEF]1 (p115RhoGEF), as well as ARHGEF2 (GEF-H1)
and its relative ARHGEF28 (p190RhoGEF or Rgnef), which
both have a C1 domain (Table S1 and Fig. 4; Krendel et al.,
2002; Dubash et al., 2007; Iwanicki et al., 2008; Miller et al.,
2014). C1 domains often bind to the membrane lipid diacyl-
glycerol (Blumberg et al., 2008), but in the case of GEF-HI the
C1 domain appears to mediate its interaction with microtubules
(Yoshimura and Miki, 2011).

LARG, PDZ-RhoGEF, and p115RhoGEF. Through their
common regulator of G protein—signaling homology domain,
LARG, PDZ-RhoGEF, and pl115RhoGEF can bind and be ac-
tivated by Ga, /5 heterotrimeric G protein subunits (Aittaleb et
al., 2010). Depletion of all three of these GEFs prevents migra-
tion in response to thrombin, which acts via its GPCR to activate
Gayy 3 (Mikelis et al., 2013). In addition to Go,,3 subunits,
other complexes have been shown to promote LARG-, PDZ-
RhoGEF-, or pll15RhoGEF-mediated cytoskeletal changes.
For example, plexin-B transmembrane receptors bind to the
PDZ domains of LARG and PDZ-RhoGEF (Perrot et al., 2002).

In the case of PDZ-RhoGE-F, this interaction contributes to en-
dothelial cell chemotaxis and angiogenesis (Basile et al., 2004).

PDZ-RhoGEF has also been implicated in activating
RHOC to promote invadopodium formation, by binding to
ARRBI1 (B-Arrestinl) upon stimulation with endothelin 1 in
ovarian cancer cells (Semprucci et al., 2016). On the other
hand, PAK4-mediated maturation of invadopodia in mela-
noma cells has been linked to inhibition of PDZ-RhoGEF and
a reduction of RHOA activity, although RHOC was not tested
(Nicholas et al., 2016).

The subcellular localization of p1 15RhoGEF is influenced
by the formation of a complex with ARRB2 (p-Arrestin2), which
sequesters pl15RhoGEF to the cytosol until B2-adrenergic
GPCR stimulation induces its translocation to the plasma mem-
brane, where it can activate RHOA to promote stress fiber and
focal adhesion assembly (Ma et al., 2012).

GEF-HI. GEF-H1 activates RHOA to increase actomy-
osin contractility and contributes to migration in a variety of
cell types (Nalbant et al., 2009; Heasman et al., 2010; Fine et
al., 2016). This GEF is inactive when bound to microtubules
(Krendel et al., 2002), and is activated by heterotrimeric G pro-
tein subunits produced upon stimulation of GPCRs. This results
in the disruption of an inhibitory complex between GEF-H1
and the dynein motor light-chain TCTEX-1, and leads to the
translocation of GEF-H1 from microtubules to the cytoplasm or
adhesion complexes (Meiri et al., 2014). GEF-HI can also be
recruited to adhesion complexes as a result of external tension
on integrins via a pathway involving FAK, Ras, and the mito-
gen-activated protein kinase ERK (Guilluy et al., 2011).

p190RhoGEF. The formation of focal adhesions can be
initiated by p190RhoGEF when it binds to FAK. This increases
RHOA activity and contributes to the migration of fibroblasts
(Lim et al., 2008). A GEF-independent scaffolding role for
p190RhoGEF in mediating FAK localization to early adhesions
has also been reported (Miller et al., 2013).

As well as acting on RHOA, p190RhoGEF can stimu-
late RHOC. For example, in EGF-stimulated migrating breast
cancer cells, pl90RhoGEF couples RHOC activation to de-
creased cofilin activity at regions 1-3 pm behind the leading
edge (Bravo-Cordero et al., 2013). In contrast, the RhoGAP
protein ARHGAP35 (p190ARhoGAP) localizes directly to the
leading edge and has the opposite effects on RHOC and co-
filin activity. Hence, p190RhoGEF and p190ARhoGAP affect
the spatial dynamics of actin protrusions during migration by
regulating where RHOC is active (Bravo-Cordero et al., 2013).
It is likely that FAK interaction with pl90RhoGEF mediates
its effects on RHOC, although the protein complex involved
in localizing pI90ARhoGAP in this context is not known.
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Interestingly, p190RhoGEF and p190ARhoGAP have also been
implicated in regulating RHOC activity in invadopodia (Bravo-
Cordero et al., 2011).

GAP complexes

RhoGAPs (Table S2), which inactivate Rho GTPases, are less
studied overall compared with RhoGEFs. Nevertheless, given
the interconnected nature of Rho GTPase signaling networks,
several RhoGAPs have been shown to contribute to cell mi-
gration in more ways than by merely terminating Rho GTPase
signals, as already described above (in the -PIX section) for
SRGAPI1 (Fig. 5 A; Kutys and Yamada, 2014). In this section,
we will describe RhoGAP-containing complexes that have been
identified to regulate migration (Fig. 5).

Rac-specific GAP complexes. SRGAP3. Like SRG
AP1, SRGAP3 is a member of the Slit-Robo family of RhoGAP
proteins, which have been linked to the migration of neuronal
cells (Coutinho-Budd et al., 2012). SRGAP3 has been proposed
to locally deactivate RAC1 activity at the leading edge of mi-
grating cells through its interactions with lamellipodium-asso-
ciated components (Fig. 5 B). For example, SRGAP3 attenuates
RACI1-mediated neurite outgrowth by binding to the WASF1
(WAVEI1/Scar) complex, which is itself a RACI effector
(Soderling et al., 2002). Similarly, the VASP-binding protein
RAPHI (lamellipodin) has been identified to recruit SRGAP3
to protrusions where it can inhibit lamellipodium formation
(Endris et al., 2011), presumably acting as a negative feedback
loop to restrict the action of lamellipodin in stimulating lamelli-
podia extension (Carmona et al., 2016). SRGAP3 can also lo-
calize to focal complexes and appears to destabilize these
structures (Yang et al., 2006; Endris et al., 2011), perhaps
through its interactions with SH3 domains of proteins involved
in endocytosis (Wuertenberger and Groemping, 2015). SRG
AP3 has been suggested to act as a tumor suppressor in mam-
mary epithelial cells, possibly because of its negative effect on
migration and invasion (Lahoz and Hall, 2013).

RACGAPI. Although best known for having an essential
role in cytokinesis (Zuo et al., 2014), the RAC1-specific GAP
RACGAPI1 has also been linked to migration and invasion.
Under conditions that induce asf, integrin recycling in an ovar-
ian cell line migrating in 3D, AKT1-mediated phosphorylation
of RACGAPI results in its recruitment to IQGAP1 at the tips
of invasive pseudopods. Here, it can inhibit RACI activity, and
this was found to drive invasion by enhancing RHOA activity
through an undefined mechanism (Jacquemet et al., 2013a).
Upon integrin stimulation, RAC1-mediated protrusions could
also be inhibited by RACGAPI after its recruitment to a com-
plex of IQGAP1 and the actin filament cross-linker and scaffold
protein Filamin-A (Fig. 5 C; Jacquemet et al., 2013b).

FilGAP. Another RAC1-specific GAP that interacts with
Filamin-A is ARHGAP24 (FilGAP). FilGAP is activated by the
RHOA effector ROCK and deactivates RAC1 to reduce lamelli-
podium formation (Fig. 5 D; Ohta et al., 2006). Hence, FilGAP
is involved in regulating cross talk between RHOA and RACI.
An example of a functional outcome of this cross talk is mes-
enchymal-amoeboid transition. Mesenchymal tumor cells mi-
grate with an elongated, RAC1-dependent morphology but can
switch to a rounded Rho/ROCK-driven amoeboid morphology
(Fig. 1). By inhibiting RAC1 downstream of RHOA, FilGAP
has been implicated in regulating mesenchymal to amoeboid
transition in carcinoma cells (Saito et al., 2012). Despite not
binding to Filamin-A (Mori et al., 2014), a FilGAP-related
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Figure 5. GAP complexes involved in migration and invasion. The
RhoGAPs SRGAP1 (A), SRGAP3 (B), RACGAP] (C), FilGAP (D), DLCT (E),
and p190ARhoGAP (F) regulate migration in different ways depending on
the complexes they form. GAPs and GAP-binding proteins are shown in
arbitrarily colored boxes. For each complex, the downstream signaling tar-
gets are shown as well as the functional outcome. See text for further details.

protein, ARHGAP22, also controls the mesenchymal/amoeboid
switch in melanoma cells (Sanz-Moreno et al., 2008).
Rho-specific GAP complexes. DLCI. DLCI1 (de-
leted in liver cancer 1) is a tumor suppressor that has been im-
plicated in regulating RHOA activity in the context of migration
(Braun and Olayioye, 2015). DLC1 can localize to focal adhe-
sions, where it interacts with tensin proteins. Tensins 1-3 are
actin-binding proteins that link actin filaments to integrins
(Haynie, 2014). The binding of tensin-3 overcomes autoinhibi-
tion of DLC1 GAP activity and allows it to decrease RHOA
activity and reduce migration (Fig. 5 E; Cao et al., 2012). Upon
stimulation of epithelial cells with EGF, this interaction is dis-
rupted and DLC1 instead binds to phosphatase and tensin ho-
mologue (PTEN), which does not activate DLCI1, therefore
increasing RHOA activity at the cell rear (Cao et al., 2015).
Concomitantly, tensin-3 switches places with PTEN and inter-
acts with phosphatidylinositide 3-kinase at the leading edge.
This removal of PTEN-mediated phosphatidylinositide 3-kinase
inhibition results in RACT1 activity, presumably through activa-
tion of an unidentified GEF (Cao et al., 2015). Hence, this in-
triguing pathway demonstrates that binding partner-dependent
DLCI activity is capable of regulating polarized migration by
defining the spatiotemporal activation of RHOA.
pI190ARhoGAP. RHOA activity in migrating cells can
also be controlled by pl90ARhoGAP. As described in the
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p190RhoGEF section, this GAP inhibits RHOC activity at the
leading edge of breast cancer cells in response to EGF stimu-
lation (Bravo-Cordero et al., 2013). A variety of extracellular
stimuli induce SRC family tyrosine kinases to phosphorylate
and activate p190ARhoGAP, thereby reducing RHOA activity.
Depending on the cell type, stimulus, and conditions, this can
either increase or decrease cell migration (Arthur et al., 2000;
Arthur and Burridge, 2001; Bartolomé et al., 2014). For exam-
ple, although GPCR activation of Gu,,,; normally activates
RHOA (see the GEF-HI1 section above), in melanoma cells
Gu 5 associates with the SRC family kinase BLK, which tyro-
sine-phosphorylates p190ARhoGAP upon CXCR4 stimulation
and thereby inhibits RHOA (Bartolomé et al., 2014).

FAK can also phosphorylate p190ARhoGAP, and together
these proteins form a complex with the Ras family GAP RASA1
(p120RasGAP) that localizes to leading edge focal adhesions.
The formation of this complex is proposed to promote cell po-
larity by locally inhibiting RHOA activity (Fig. 5 F; Tomar et al.,
2009). Recently, pl90ARhoGAP has been shown to be recruited
to membrane protrusions through an interaction with cortactin.
This binding is mediated by a region of pl90ARhoGAP termed
the polarization localization sequence, which appears to have an
autoinhibitory effect on pl90ARhoGAP function. The mecha-
nism through which this autoinhibition is overcome is unclear
but, intriguingly, cancer-associated mutations in this region
were shown to affect pl90ARhoGAP activity and localization,
and to impair the directionality of migrating cells (Binamé et
al., 2016). Binding of the Rho GTPases RND3 and RAC1 to a
similar region has also been implicated in the regulation of the
related RhoGAP ARHGAPS (p190BRhoGAP; Wennerberg et
al., 2003; Bustos et al., 2008).

Although the roles of Rho GTPases in regulating cell migra-
tion and invasion were established over 20 years ago, recent
findings illustrate some of the complexities that underlie their
regulation in response to different stimuli and environments.
The ability of RhoGEFs and RhoGAPs to form complexes with
diverse proteins, including signaling molecules, cytoskeletal
or focal adhesion components, scaffolds, or even Rho GTPase
effectors themselves, is emerging as a key factor in the regula-
tion of spatiotemporal Rho GTPase activation in migration and
invasion. Individual GEFs and GAPs can localize differently
depending on which proteins they form complexes with, high-
lighting the importance of these distinct signaling units in defin-
ing functional outcomes.

An area that requires more investigation is the poten-
tial for other Rho GTPase signaling components, especially
RhoGDIs and the lesser-studied ‘“atypical” Rho GTPases
(Fig. 2), to form complexes that contribute to migration. More-
over, given the evidence of cross talk between Rho GTPases
in migration, future studies should aim to further characterize
the potential for interacting GEF and GAP pairs to regulate
combinations of Rho GTPases in response to specific stimuli.
These interactions should also be probed more extensively in
the context of invasion, especially with respect to invadopo-
dium dynamics. Untangling the interconnected roles of Rho
GTPases, GEFs, GAPs, and effectors in cancer cell invasion is
necessary so that effective therapeutic strategies can be devel-
oped against these targets.

Finally, so far most studies on the roles of GEF and GAP
complexes in cell migration have been performed in vitro. To

understand whether these complexes also contribute to cell
migration and invasion in vivo, future work should focus on
studying these protein—protein interactions in a variety of com-
plementary in vivo models, as well as comparing their levels in
normal and diseased human tissues.

Table S1 shows Dbl and DOCK family RhoGEFs. Table S2
shows RhoGAPs.
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