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Introduction
Physiological aging is generally defined as a decline in func-
tion over time from the cellular to organismal level (López-
Otín et al., 2013). As a consequence, with increasing age we 
are faced with an elevated risk for a spectrum of complex dis-
eases (see text box Premature aging disorders and the nucleus; 
Chung et al., 2009; Campisi, 2013; Kubben and Misteli, 2017). 
Deterioration of cellular functions occurs in response to both 
cell-intrinsic alterations, such as mitochondrial dysfunction and 
differentiation capacity, and environmental influences, includ-
ing nutrient availability and endocrine signaling (López-Otín 
et al., 2013). Although the molecular details that regulate the 
aging process have remained largely elusive, several character-
istics of aging are pervasive. These include changes in nutrient 
sensing, intercellular communication, proteostasis, mitochon-
drial dysfunction, cellular senescence, and adult stem cell ex-
haustion as well as nucleus-specific changes, including altered 
epigenetic marks, increased genome instability, and telomere 
attrition (López-Otín et al., 2013). The relative contributions 
and interdependence of these pathways to the aging process 
remain largely unclear.

Epidemiological studies have provided key details re-
garding the risk factors for human longevity (Sebastiani et 

al., 2012; López-Otín et al., 2013). Nevertheless, given eth-
ical and practical issues in the study of human aging, model 
systems with shorter lifespans, such as yeast, worms, flies, 
fish, and mice, have been used extensively to gain molecular 
insight into evolutionarily conserved mechanisms of longev-
ity and aging (Mitchell et al., 2015). These models have sub-
stantiated that aging involves defined cellular pathways that 
can be experimentally manipulated. A limitation of using an-
imal models, especially non-mammalian systems, to deduce 
mechanisms of human aging is that the extent they recapit-
ulate the human pathology is highly variable and largely un-
known. For example, many short-lived animals used for aging 
studies such as Caenorhabditis elegans, zebrafish, killifish, 
mice, and rats, typically die of old age with intact and rela-
tively long telomeres, whereas in aged humans, telomeres are 
shortened (Blackburn et al., 2015). In addition to their more 
complex physiology, humans, in contrast to laboratory ani-
mals, are exposed to complex environmental influences which 
in all likelihood contribute to aging. To circumvent some of 
these limitations, the existence of a wide set of genetic dis-
orders that cause accelerated aging in humans has been 
exploited (see text box).

Premature aging disorders, or progerias, allow a unique 
glimpse into the potential mechanisms underlying physiolog-
ical aging. However, given that no premature aging disorder 
fully recapitulates all features of human aging, these disorders 
are designated as segmental progerias (Dreesen and Stewart, 
2011; Kubben and Misteli, 2017). Nevertheless, premature 
and physiological aging share similar features, and the in-
sights gained from premature aging models appear often ap-
plicable to physiological aging (Dreesen and Stewart, 2011; 
López-Otín et al., 2013; Kubben and Misteli, 2017). Con-
versely, understanding the discrepancies between premature 
and physiological aging has also proven to be illuminating, 
such as in highlighting the molecular relationships between 
oncogenesis and aging (Fernandez et al., 2014; Zane et al., 
2014). Intriguingly, a disproportionate number of premature 
aging disorders have been mapped to defects in nuclear pro-
teins. In this Perspective, we discuss the contribution of nu-
clear dysfunction to pathological aging, and we specifically 
posit that the inner nuclear membrane (INM) and the lamina 
are regulators of the aging phenotype.

Despite the extensive description of numerous molecular 
changes associated with aging, insights into the driver 
mechanisms of this fundamental biological process are 
limited. Based on observations in the premature aging 
syndrome Hutchinson–Gilford progeria, we explore the 
possibility that protein regulation at the inner nuclear 
membrane and the nuclear lamina contributes to the 
aging process. In support, sequestration of nucleoplas-
mic proteins to the periphery impacts cell stemness, the 
response to cytotoxicity, proliferation, changes in chro-
matin state, and telomere stability. These observations 
point to the nuclear periphery as a central regulator of 
the aging phenotype.
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The INM
The distinguishing feature of eukaryotes is the nucleus: a seg-
regated organelle that houses the genetic information of the 
cell. The nucleus is composed of a membrane bilayer: the outer 
nuclear membrane is contiguous with the ER and links the cy-
toskeleton to the nucleus, and the INM maintains nuclear archi-
tecture and aids in proper function (Hetzer, 2010; Fig. 1). The 
two nuclear membranes are connected at the numerous nuclear 
pore complexes that selectively traffic proteins between the cy-
toplasm and the nucleus (Katta et al., 2014).

The INM contains a number of integral scaffolding pro-
teins (e.g., emerin, LBR, Lap2β, SUN, and MAN1; Schirmer 
and Gerace, 2005) and is supported by an associated 3.5-nm 
protein meshwork composed of tetrameric lamin filaments, re-
ferred to as the nuclear lamina (Turgay et al., 2017; Fig. 1 A). In 
mammals, there are three differentially expressed lamin genes: 
LMNA, LMNB1, and LMNB2 (Dittmer and Misteli, 2011). 

LMNA is alternatively spliced into two major isoforms, lamin A 
and C. B-type lamins are incorporated into the INM, whereas an 
associated lamin A network is thought to remain proximal but 
largely segregated (Delbarre et al., 2006; Goldberg et al., 2008; 
Shimi et al., 2008, 2015; Xie et al., 2016). In addition to the 
lamina, the INM is physically connected to the cytoskeleton via 
the linker of nucleoskeleton and cytoskeleton complex (LINC; 
Lombardi and Lammerding, 2011; Chang et al., 2015). In this 
way, the nuclear periphery integrates both signaling and me-
chanical cues to regulate gene expression and gene positioning, 
as well as DNA replication, DNA repair, proliferation, proin-
flammatory signaling, and differentiation (Dittmer and Misteli, 
2011; Burke and Stewart, 2013; Enyedi et al., 2016).

Proteomic analyses have highlighted the complexity 
of the INM. Earlier studies found that the INM is composed  
of ∼70 proteins involved in protein scaffolding, maintenance of 
structural stability, and genomic regulation (Dreger et al., 2001; 

Figure 1.  The INM and lamina in normal and HGPS nuclei. (A) The INM is composed of an array of proteins responsible for maintaining nuclear function 
and an associated protein meshwork composed of tetrameric lamin filaments (Turgay et al., 2017). The nuclear lamina is composed of B-type lamins 
that are integrated into the INM and proximal but segregated lamin A/C filaments (Delbarre et al., 2006; Shimi et al., 2008, 2015; Xie et al., 2016). 
The structural integrity of the nucleus is also influenced by the SUN/Nesprin LINC complex that links the nucleus to the cytoskeleton (Zhang et al., 2005; 
Chang et al., 2015). Furthermore, integral INM proteins such as lamin B receptor, emerin, and Lap2 isoforms maintain heterochromatin at the periphery 
by interacting with chromatin remodeling complexes WRN, HP1/SUV39H1, PRC/NURD, and HDAC3/BAF (Makatsori et al., 2004; Somech et al., 
2005; Shumaker et al., 2006; Holaska and Wilson, 2007; Montes de Oca et al., 2009; Pegoraro et al., 2009; Demmerle et al., 2012; Laugesen and 
Helin, 2014; Cesarini et al., 2015; Zhang et al., 2015b). Additionally, peripheral and nucleoplasmic lamin A/C may have different roles in transcription 
and replication via regulation of Lap2α, nuclear actin, and polymerases (Pol II; Dechat et al., 2000; Nili et al., 2001; Pekovic et al., 2007; Simon et al., 
2010; de Lanerolle and Serebryannyy, 2011; Vidak et al., 2015). Through these interactions, the INM maintains proper DNA replication, DNA repair, 
proliferation, proinflammatory signaling via cytosolic phospholipase A2 (cPLA2), and differentiation (Dittmer and Misteli, 2011; Burke and Stewart, 2013; 
Enyedi et al., 2016). (B) Progerin expression and incorporation into the INM disrupts nuclear organization, causing misshapen nuclei (Goldman et al., 
2004; Dahl et al., 2006; Verstraeten et al., 2008). HGPS models exhibit reduced expression of integral INM proteins such as lamin B1 and isoforms of 
Lap2 (Scaffidi and Misteli, 2005) and a corresponding loss of peripheral heterochromatin (Goldman et al., 2004; Scaffidi and Misteli, 2005; Shumaker et 
al., 2006; McCord et al., 2013). Not only is the composition of the periphery altered, but nucleoplasmic protein populations are also lost (i.e., lamin A/C 
and Lap2α; Dechat et al., 2000; Chojnowski et al., 2015; Vidak et al., 2015). These defects correlate with increased DNA damage, abnormal DNA dam-
age repair, and impaired proliferation (Decker et al., 2009; Benson et al., 2010; Cao et al., 2011a; Musich and Zou, 2011; Chojnowski et al., 2015).

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/217/1/21/1612172/jcb_201706061.pdf by guest on 08 February 2026



Protein sequestration in aging • Serebryannyy and Misteli 23

Schirmer et al., 2003; Schirmer and Gerace, 2005). More recent 
research describes several hundred to several thousand proteins 
enriched at the nuclear envelope in a tissue-specific manner 
(Korfali et al., 2010, 2012; Wilkie et al., 2011; Smoyer et al., 
2016; Thul et al., 2017). These discrepancies may be explained 
by a model wherein ER proteins that pass through the nuclear 
pore complex can diffuse along the INM, but only a subpopula-
tion is retained (Ungricht et al., 2015; Smoyer et al., 2016). Ev-
idence relating INM composition with function has come from 
INM-associated protein mutations that map to numerous pa-
thologies including Charcot-Marie-Tooth disease, limb-girdle 
and Emery–Dreifuss muscular dystrophies, several myopathies, 
and most strikingly, premature aging disorders (Schirmer et al., 
2003; Somech et al., 2005; Dittmer and Misteli, 2011).

Premature aging and the nuclear periphery
Strong evidence for a role for regulatory events at the nuclear 
periphery in aging comes from the premature aging disorder 
Hutchinson–Gilford progeria syndrome (HGPS; Fig.  1  B). 
This rare childhood disease, which occurs at a rate of ∼1 in 4 
million births, is caused by a silent single-base mutation (clas-
sically 1824C > T) in the LMNA gene, and its symptoms in-
clude abnormal dentition, hair loss, joint contractures, growth 
retardation, lipodystrophy, osteoporosis and bone hypoplasia, 
sclerodermatous skin, skeletal muscle atrophy, and premature 
atherosclerosis with resultant cardiac failure in the early teens 
(De Sandre-Giovannoli et al., 2003; Eriksson et al., 2003; Me-
rideth et al., 2008). The disease-causing mutation introduces a 
cryptic splice site in LMNA exon 11, resulting in heterozygous 
expression of a truncated form of lamin A, termed progerin (De 
Sandre-Giovannoli et al., 2003; Eriksson et al., 2003). Lamin 
A undergoes several processing steps including C-terminal 
farnesylation and subsequent cleavage by the endoprotease 
Zmpste24 (FACE-1), as well as tail methylation by isoprenyl-
cysteine carboxylmethyltransferase (Barrowman and Michae-
lis, 2009; Davies et al., 2009; Ibrahim et al., 2013). Progerin, 
however, fails to undergo complete processing because it lacks 
the Zmpste24 cleavage site as a consequence of aberrant splic-
ing in LMNA exon 11 caused by the disease mutation. Progerin 
incorporation into the nuclear lamina is thought to disrupt the 
lamin A and B networks, contributing to both structural and 
signaling dysfunction (Delbarre et al., 2006; Lee et al., 2016). 
In addition to classical HGPS, other mutations in lamin A can 
lead to atypical progerias that have symptoms similar to those 
of HGPS with varying severity (Chen et al., 2003; Csoka et 
al., 2004; Plasilova et al., 2004; Verstraeten et al., 2006; Liang 
et al., 2009; Doubaj et al., 2012). Mutations in ZMP​STE24 
have also been documented, resulting in the accumulation of 
a farnesylated lamin A (prelamin A) and leading to restrictive 
dermopathy (RD), a usually more severe form of HGPS (Moul-
son et al., 2005; Navarro et al., 2005, 2014; Wang et al., 2016).

At the cellular level, progerin-expressing cells exhibit mis-
shapen and lobulated nuclei both in vitro and in vivo, with some 
cell types affected more than others (De Sandre-Giovannoli et 
al., 2003; Goldman et al., 2004; Navarro et al., 2004; Dahl et 
al., 2006; Verstraeten et al., 2008). HGPS-induced changes in 
the nuclear lamina correlate with reduced expression of lamin 
B1 and some isoforms of the chromatin-binding Lap2 proteins 
(Scaffidi and Misteli, 2005). Lamin B1 loss has been observed 
in multiple models of cellular senescence and has been linked to 
changes in chromatin organization (Dreesen et al., 2013; Shah 
et al., 2013; Zhang et al., 2016). Furthermore, HGPS cells show 

a loss of peripheral heterochromatin (Goldman et al., 2004); 
repressive histone marks (H3K9me3 and H3K27me3; Scaffidi 
and Misteli, 2005; Shumaker et al., 2006; McCord et al., 2013; 
Zane et al., 2014); and association with heterochromatin protein 
1 (HP1), enhancer of zeste homologue 2 (EZH2; Shumaker et 
al., 2006), and barrier to autointegration factor (BAF; Capanni 
et al., 2010; Loi et al., 2016). Intriguingly, BAF gene mutations 
result in Nestor–Guillermo progeria syndrome, a disease similar 
to, but less severe than, HGPS (Cabanillas et al., 2011; Puente 
et al., 2011). Along with changes in organization at the periph-
ery, HGPS animal models also exhibit loss of the nucleoplas-
mic populations of lamin A/C and Lap2α (Naetar et al., 2017). 
These nucleoplasmic pools have been implicated in maintaining 
chromatin organization and gene expression and depletion of 
these nucleoplasmic pools may exacerbate the aging phenotype.

HGPS models exhibit defects in DNA replication, the cell 
cycle, and proliferation (Goldman et al., 2004; Dechat et al., 
2007; Musich and Zou, 2011; Tang et al., 2012). These defi-
ciencies correlate with increased DNA damage, abnormal DNA 
damage repair, and telomere dysfunction (Decker et al., 2009; 
Benson et al., 2010; Cao et al., 2011a; Musich and Zou, 2011; 
Chojnowski et al., 2015; Fig.  1  B). Progerin expression also 
leads to extranuclear defects such as inflammation (Di Micco et 
al., 2016; Tran et al., 2016), increased mitochondrial dysfunc-
tion (Peinado et al., 2011; Richards et al., 2011; Rivera-Torres 
et al., 2013; Kubben et al., 2016; Xiong et al., 2016), altered 
autophagy activation (Mariño et al., 2008), and changes to the 
ECM (Csoka et al., 2004; Hernandez et al., 2010; de la Rosa et 
al., 2013; Vidak and Foisner, 2016). Globally, proteomic and 
yeast two-hybrid screens have identified 35 and 225 proteins, 
respectively, that differentially interact with progerin versus 
wild-type lamin A (Kubben et al., 2010; Dittmer et al., 2014). 
Furthermore, RNA profiling has found drastic changes in the 
transcription program of HGPS models (Ly et al., 2000; Csoka 
et al., 2004; Scaffidi and Misteli, 2008; Marji et al., 2010; Kub-
ben et al., 2012; Wang et al., 2015; Chen et al., 2017), which 
may be a consequence of the role of the lamina in gene posi-
tioning (Meaburn, 2016; Shachar and Misteli, 2017) and tran-
scription regulation (Kumaran et al., 2002; Spann et al., 2002).

In normal human fibroblasts, progerin expression can be 
induced as a consequence of telomere shortening or uncap-
ping (Cao et al., 2011a), as well as UV damage (Takeuchi and 
Rünger, 2013), strongly suggesting that aging may directly 
influence nuclear integrity. In support, several studies have re-
ported increased sensitivity to or accumulation of progerin or 
prelamin A in physiological aging models (Cao et al., 2007; 
McClintock et al., 2007; Scaffidi and Misteli, 2008; Rodriguez 
et al., 2009; Marji et al., 2010; Olive et al., 2010; Ragnauth 
et al., 2010; Luo et al., 2013; Lattanzi et al., 2014; Petrini et 
al., 2017). Furthermore, single nucleotide polymorphisms in 
LMNA have been correlated with long-lived individuals (Con-
neely et al., 2012), and treatments that increase human lon-
gevity (i.e., rapamycin, metformin, statins) appear to alleviate 
symptoms of HGPS, at least in vitro (Varela et al., 2008; Cao 
et al., 2011b; Egesipe et al., 2016). Conversely, some HIV 
protease inhibitor treatments impair Zmpste24 function and 
lead to HGPS-like defects (Barrowman and Michaelis, 2009; 
Mehmood et al., 2016). Whereas the accumulation of progerin 
has a dose-dependent effect on cellular dysfunction (Moulson 
et al., 2007; Hisama et al., 2011; Chojnowski et al., 2015), 
the depletion of progerin by reversion of HGPS-derived fi-
broblasts into induced pluripotent stem cells reverses nuclear 
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defects until progerin is reexpressed upon differentiation into 
mesenchymal stem cells (MSCs; Liu et al., 2011; Zhang et al., 
2011b; Miller et al., 2013; Chen et al., 2017). Together, these 
studies implicate lamin A variants in HGPS and, most likely, 
in physiological aging.

Sequestration at the nuclear periphery in 
the aging process
The observation that HGPS and RD are caused by mutations 
that directly affect nuclear lamina proteins points to the nuclear 
periphery as a potential contributor to premature, and possibly 
normal, aging. Notably, expression of lamin A variants has been 
detected in physiological models of aging such as extensively 
passaged normal human fibroblasts and vascular smooth muscle 
cells, fibroblasts from centenarians, aged-patient skin biopsies, 
and sections from coronary arteries (Cao et al., 2007; McClin-
tock et al., 2007; Rodriguez et al., 2009; Olive et al., 2010; Rag-
nauth et al., 2010; Lattanzi et al., 2014). In addition, many of 
the cellular defects observed in HGPS, such as elevated levels of 
DNA damage and telomere dysfunction, are the primary causes 
of other premature aging disorders (see text box), potentially 
placing the nuclear periphery upstream of these processes. Sev-
eral observations in multiple premature aging disorders suggest 
that sequestration of proteins at the nuclear periphery, or loss 
thereof, may be responsible for prominent defects associated 
with premature and physiological aging. In particular, periph-
eral regulation appears to affect several key features of aging in-
cluding impaired cell stemness, dysregulated cytotoxicity, and 

increased senescence, as well as aberrant chromatin structure 
and telomere stability.

Cell stemness
The regenerative potential of many tissues declines with age, 
contributing to dysfunction and degeneration (López-Otín et al., 
2013). Although the progressive loss of stem cell function by 
a number of different stimuli has been associated with aging, 
HGPS models have highlighted that dysregulation of the path-
ways governing stem cell fate can likewise contribute to stem 
cell exhaustion and the aging phenotype (Scaffidi and Misteli, 
2008; Rosengardten et al., 2011).

Notch.� Notch activation regulates proliferation, migra-
tion, and differentiation and is critical in stem cell homeostasis 
(Conboy et al., 2003, 2005; Bjornson et al., 2012; Balistreri et 
al., 2016; Bray, 2016). Activation of the Notch receptor induces 
cleavage of the intracellular domain of the transmembrane re-
ceptor and translocation into the nucleus, where it interacts with 
transcriptional activators and repressors (Balistreri et al., 2016; 
Bray, 2016). In physiological aging, loss of Notch signaling 
prevents stem cell renewal in muscle and contributes to cardio-
vascular anomalies, whereas elevated Notch signaling can lead 
to cancer and promotes inflammation via nuclear factor-κB, 
MAPK, and TGFβ (Balistreri et al., 2016).

Progerin expression in human MSCs causes activation of 
Notch target genes and results in the loss of stem cell identity 
and differentiation defects (Scaffidi and Misteli, 2008). Interest-
ingly, gene activation occurs in the absence of induction of the 

Premature aging disorders and the nucleus

Most human premature aging disorders are caused by mutations in the cellular machinery involved in DNA metabolism (i.e., DNA replication, epigenetic 
regulation, telomere maintenance, and DNA damage signaling and repair). For example, mutations in LMNA cause HGPS and atypical Werner syndrome, 
mutation of ZMP​STE24 causes restrictive dermopathy, and mutations in BANF1 cause Nestor–Guillermo progeria syndrome (see Premature aging and the 
nuclear periphery). In addition, mutations in the RecQ helicases WRN, BLM, and RecQL4 cause the premature aging disorders Werner syndrome, Bloom 
syndrome, and Rothmund-Thomson syndrome, respectively. These helicases have conserved as well as nonredundant functions. WRN is primarily involved 
in DNA repair via nonhomologous end joining (NHEJ) and in DNA replication, H3K9 methylation, and telomere regulation (Croteau et al., 2014; Zhang 
et al., 2015b; de Renty and Ellis, 2017). BLM and RecQL4 are necessary for proper homologous recombination (HR) and DNA replication (Smeets et al., 
2014; de Renty and Ellis, 2017). Together the RecQ diseases highlight how variations in DNA maintenance create distinct pathologies. Whereas ablation 
of RecQ function irrespective of isoform increases susceptibility to cancer, the differences in aging phenotypes are more nuanced (i.e., premature onset vs. 
developmental abnormalities).

Similar to NHEJ and HR, mutations in the nucleotide excision DNA damage repair pathway (NER) result in the premature aging disorders xeroder-
ma pigmentosum (mutations in global NER), Cockayne syndrome (mutations in transcription-coupled NER; Mitchell et al., 2015), and trichothiodystrophy 
(mutations in the transcription factor IIH complex; Stefanini et al., 2010). How defects in NER cause progeroid and neurological pathologies as well as a 
reduced lifespan are poorly understood (Stefanini et al., 2010; Wilson et al., 2016). Nevertheless, the decreased life expectancy resulting from mutations in 
the NER pathway and the RecQ helicases strongly implicate DNA damage repair as a contributor to the aging phenotype. However, a caveat is revealed by 
defects in components of the DNA damage signaling and repair cascade such as ATM protein kinase (McKinnon, 2012) and the Fanconi anemia complex 
(Taniguchi et al., 2002) which lead to cancer, neurodegeneration, or microcephaly, but not premature aging. Together this set of disorders highlight that 
defective DNA damage signaling is insufficient to cause progeria, but the type and extent of damage are important determinants of disease pathology.

In support of an involvement of telomere maintenance in aging, mutations in several telomere regulatory proteins (i.e., TERT, TERC, DKC1, and 
TINF2, among others) lead to dyskeratosis congenita (Opresko and Shay, 2017). This monogenic telomere disease is hallmarked by genetic anticipation, 
where the lifespans of mutation carriers decrease with succeeding generations. Furthermore, telomere length has repeatedly been correlated with human 
morbidity in large cohort studies examining physiological aging (Blackburn et al., 2015). In addition, persistent DNA damage can disproportionally affect 
telomeres and telomere-associated repair foci increase with age (Hewitt et al., 2012). This telomere-specific damage has been reported to be irreparable, 
driving cellular senescence, and presumably contributing to organismal aging (Fumagalli et al., 2012). Intriguingly, fibroblasts derived from patients with 
dyskeratosis congenita have been shown to express progerin, further establishing the link between telomere attrition, senescence, and regulation of the 
nuclear lamina (Cao et al., 2011a).

An exception to the nuclear-based progeroid diseases is a mouse model with spontaneous mutations in mitochondrial DNA induced by homozygous 
expression of a proofreading-deficient catalytic subunit of mtDNA polymerase (POLG; Trifunovic et al., 2004; Kujoth et al., 2005; Bratic and Larsson, 
2013). These mice have respiratory chain dysfunction and mitochondrial damage, coinciding with a shortened lifespan along with premature occurrence 
of alopecia, anemia, cardiomyopathy, kyphosis, reduced fertility, as well as hearing, hair, and weight loss. Although no corresponding naturally occurring 
human mutations are known, increased mitochondrial mutations are thought to occur during human aging (Bratic and Larsson, 2013). Current evidence 
indicates that stem cells are particularly sensitive to mitochondrial dysfunction (Hämäläinen et al., 2015), implying that rapid embryonic stem cell depletion 
may contribute to the premature aging phenotype (Ahlqvist et al., 2012, 2015). Curiously, mice with mutations in the mitochondrial DNA helicase Twinkle 
also display an accumulation of mtDNA mutations but do not exhibit premature aging symptoms (Tyynismaa et al., 2005). Hence, despite the dramatic 
phenotype, how mtDNA polymerase dysfunction causes premature aging remains poorly understood. One avenue may be through a number of mechanisms 
for mitochondrion-nucleus cross talk (Sahin et al., 2011; Cagin and Enriquez, 2015; Li et al., 2016; Lionaki et al., 2016; Quirós et al., 2016). However, if 
nuclear (dys)function contributes to the pathology in these models has not been examined.
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upstream portions of the pathway, consistent with the nuclear 
progerin protein being the driver of these effects. Mechanis-
tically, progerin expression reduces levels of nuclear receptor 
corepressor (NCOR) and increases levels of the Notch pathway 
coactivator, SKI-interacting protein (SKIP; Zhou et al., 2000; 
Scaffidi and Misteli, 2008). NCOR and SKIP are anchored to 
the nuclear periphery in normal cells (Zhang et al., 2003; Dem-
merle et al., 2012; Fig. 2 A). NCOR is activated when seques-
tered to the nuclear periphery (Demmerle et al., 2012), whereas 
SKIP may be restricted from binding to Notch-dependent pro-
moters. The increase in Notch signaling upon progerin expres-
sion coincides with SKIP relocalization from the periphery 
and into the nucleoplasm (Scaffidi and Misteli, 2008). Release 
of SKIP is thought to allow promoter binding, leading to the 

observed increases in Notch pathway activation and stem cell 
depletion (Scaffidi and Misteli, 2008). However, it is uncertain 
to what extent changes in the INM localization of other Notch 
cofactors, e.g., sirtuin 1 (SIRT1) or polycomb repressive com-
plex (PRC), alter signaling (Bray, 2016). In support of a role for 
Notch dysregulation in HGPS, mice expressing progerin have 
altered wound healing and reduced stem cell function (Rosen-
gardten et al., 2011), indicative of premature stem cell differ-
entiation. Hence, nuclear defects that accrue with aging may 
hasten stem cell depletion and enrich for a Notch-insensitive 
population by altering peripheral regulation of NCOR/SKIP.

Wnt.� In conjunction with Notch, the Wnt pathway regu-
lates the balance between stem cell proliferation and differenti-
ation (Brack et al., 2007, 2008; Clevers and Nusse, 2012; 

Figure 2.  Mechanisms of protein sequestration at the nuclear periphery. (A) The INM regulates cell stemness via sequestration of Notch, Wnt, and TGFβ 
pathway effectors. The Notch signaling corepressor NCOR and coactivator SKIP are anchored to the nuclear periphery in normal cells (Zhang et al., 2003; 
Demmerle et al., 2012). Although NCOR is activated at the nuclear periphery, SKIP may be restricted from binding to Notch-dependent promoters. SKIP 
has also been shown to interact with SMAD2/3 to regulate TGFβ-dependent transcription (Leong et al., 2001). Similarly, SMAD2/3 is bound to MAN1. 
The interaction with MAN1 sequesters SMAD2/3, attenuating heterodimerization with Smad4 and suppressing TGFβ-induced transcription (Lin et al., 
2005; Pan et al., 2005). Wnt pathway regulation involves emerin-mediated nuclear export of β-catenin as well as the possible stabilization of β-catenin 
by α-catenin and nuclear actin (Markiewicz et al., 2006; Holaska and Wilson, 2007; Tilgner et al., 2009; Stubenvoll et al., 2015; Serebryannyy et al., 
2017). (B) Proliferation is regulated by the interaction of the nuclear lamina with AP-1, Rb, and ERK1/2. Hypophosphorylated cFos and Rb are sequestered 
by the nuclear lamina, priming a readily available population of transcription factors for rapid cell cycle regulation (González et al., 2008; Rodríguez 
et al., 2010). Activation and nuclear translocation of ERK1/2 contribute to the phosphorylation of Rb and cFos. Phosphorylated Rb is degraded, freeing 
E2F to activate transcription. Similarly, phosphorylation of cFos facilitates dimerization with cJun and promoter binding. E2F is also sequestered to the 
nuclear periphery via its interaction with Germ cell-less (GCL) and Lap2β (Nili et al., 2001). Nuclear ERK1/2 can bind to lamin A/C as well (Rodríguez 
et al., 2010), potentially regulating its activity and turnover. (C) Lamin A is required for the proper localization and enzymatic activity of SIRT1 and SIRT6, 
regulating chromatin condensation and poly(ADP-ribose) polymerase 1 (PARP1) activity (Liu and Zhou, 2013; Ghosh et al., 2015). hMOF localization is 
also dependent on lamin A/C (Füllgrabe et al., 2013), implicating the nuclear lamina in both histone acetylation and deacetylation. In addition, lamin A 
binds the chromatin remodeling complexes PRC and NuRD, establishing a repressive heterochromatin state at the INM (Pegoraro et al., 2009; Cesarini et 
al., 2015). (D) The shelterin complex components TRF1/2 and AKT​IP regulate telomere replication, length, and stability (Ludérus et al., 1996; Dechat et 
al., 2004; Wood et al., 2014; Chojnowski et al., 2015). Whereas TRF1 may bind lamin B (Crabbe et al., 2012), TRF2 stabilization of telomeres at the 
nuclear periphery is dependent on binding to lamin A/C and Lap2α (Chojnowski et al., 2015). Similarly, AKT​IP interacts with lamin A/C, lamin B, and 
PCNA to regulate telomere replication and stability (Burla et al., 2016). The INM-incorporated lipid moiety S1P is also able to promote telomere stability 
by preventing the degradation of hTERT (Panneer Selvam et al., 2015).
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Borggrefe et al., 2016). Wnt hyperactivation triggers acceler-
ated cellular senescence (Liu et al., 2007), and aberrant Wnt 
signaling leads to cancer (Clevers and Nusse, 2012). In the cy-
toplasm, β-catenin is continuously degraded or maintained at 
adherens junctions. Upon Wnt receptor activation, β-catenin 
translocates into the nucleus, where it regulates transcription 
via lymphoid enhancer binding factor (LEF), T cell factor, and 
chromatin remodeling (Lien and Fuchs, 2014; McCrea and Got-
tardi, 2016). The nuclear β-catenin complex also mediates the 
DNA damage response (Zhang et al., 2011a; Serebryannyy et 
al., 2017) and oxidative stress sensitivity (Essers et al., 2005) 
and maintains telomerase levels (Hoffmeyer et al., 2012). Ex-
pression of progerin or a truncated form of lamin A reduces 
nuclear β-catenin/LEF1 levels, contributing to defective ECM 
synthesis and proliferation arrest (Hernandez et al., 2010). Sim-
ilarly, mice knocked out for Zmpste24 have a defect in prolifer-
ation caused by decreased β-catenin levels (Espada et al., 2008), 
and mice deficient for LEF1 have defects in regulating bone 
formation (Noh et al., 2009), supporting a role for the Wnt 
pathway in HGPS and aging.

Although lamin A expression and nuclear β-catenin lev-
els are correlated (Bermeo et al., 2015), how lamin A regulates 
β-catenin remains unclear. One mechanism may be through the 
INM protein emerin (Fig. 2 A), which facilitates β-catenin ex-
port from the nucleus (Markiewicz et al., 2006; Tilgner et al., 
2009; Stubenvoll et al., 2015). Both lamin A and progerin inter-
act with emerin (Kubben et al., 2010; Chojnowski et al., 2015). 
Although lamin A, nesprin-2, and protein 4.1R retain emerin at 
the INM (Zhang et al., 2005; Kubben et al., 2010; Meyer et al., 
2011; Wu et al., 2014), its enrichment at the nuclear periphery 
appears decreased in progerin-expressing cells (Kubben et al., 
2010; Eisch et al., 2016). It is tempting to speculate that mislo-
calization of emerin may impede proper β-catenin signaling. Al-
ternatively, emerin binding to β-catenin at the INM may prevent 
β-catenin degradation. Both emerin and β-catenin also interact 
with nuclear actin (Holaska and Wilson, 2007; de Lanerolle and 
Serebryannyy, 2011; Daugherty et al., 2014; Serebryannyy et 
al., 2017; Fig. 2 A), and the interaction with nuclear actin may 
tether and stabilize the complex selectively to lamin A but not 
progerin (Simon et al., 2010). It is also possible that β-catenin/
LEF1 may be regulated indirectly via other INM-associated 
proteins such as Yin Yang 1 (YY1), which binds lamin A/C and 
positions chromatin at the nuclear periphery (Harr et al., 2015). 
YY1 also directly binds the LEF1 promoter and represses its 
transcription (Yokoyama et al., 2010). Therefore, changes to 
the nuclear periphery may alter YY1 activity and consequently 
LEF1 levels. Regardless of the mechanism, these observations 
suggest that the nuclear periphery regulates the effectiveness 
of Wnt pathway signaling.

TGFβ.� TGFβ signaling promotes stem cell proliferation 
and renewal in a context-dependent manner (Watabe and Miya-
zono, 2009). Canonical TGFβ activation causes the phosphory-
lation and nuclear translocation of Smad2/3 transcriptional 
modulators, heterodimerization with Smad4, and chromatin 
binding (Watabe and Miyazono, 2009; Zhang, 2009). However, 
Smad proteins also signal via other pathways. In bone marrow–
derived adult human MSCs, Smad3 activation induces nuclear 
translocation of β-catenin to promote proliferation and prevent 
differentiation (Jian et al., 2006). In differentiated mouse em-
bryonic fibroblasts, TGFβ inhibits proliferation by dephosphor-
ylating retinoblastoma protein (Rb) in a lamin A/C-protein 
phosphatase 2A (PP2A)–dependent manner (Van Berlo et al., 

2005). Lamin A/C also facilitates dephosphorylation of Smad2 
by PP2A, suggesting that the nuclear periphery mediates TGFβ- 
induced proliferation (Van Berlo et al., 2005).

Although it is not known how these interactions are al-
tered in HGPS, patients with mutations in another INM protein, 
MAN1, are symptomatic for patches of abnormally increased 
bone density and disseminated patches of connective tissue 
including osteopoikilosis, Buschke–Ollendorff syndrome, and 
melorheostosis, which are associated with increased TGFβ sig-
naling (Hellemans et al., 2004). Similar to lamin A/C, MAN1 
binds phosphorylated Smad2/3 (Lin et al., 2005; Pan et al., 
2005; Fig.  2  A). Binding to MAN1 reduces Smad2/3 phos-
phorylation, prevents heterodimerization with Smad4, alters 
the nuclear localization of activated Smad2/3, and ultimately 
suppresses TGFβ-induced transcription. Intriguingly, microar-
ray analysis suggests that TGFβ signaling in fibroblasts derived 
from old individuals closely resembles that of cells derived 
from HGPS patients (Aliper et al., 2015).

The reactive oxygen species (ROS) response
With age, mitochondria lose their respiratory activity because of 
a buildup of oxidative damage, propagating a cycle of increas-
ing oxidative stress and mitochondrial dysfunction (Bratic and 
Larsson, 2013; López-Otín et al., 2013; Ahlqvist et al., 2015). 
Accumulation of ROS can trigger loss of protein function, aber-
rant activation of signaling pathways, and the accumulation of 
DNA damage (Bratic and Larsson, 2013). As in physiological 
aging models, HGPS cells exhibit signs of mitochondrial dys-
function and increased ROS levels (Kubben et al., 2016; Xiong 
et al., 2016), implicating signaling from the nuclear periphery 
in mitochondria homeostasis.

Nuclear factor erythroid 2–related factor 2 
(Nrf2).� Nrf2 is a transcriptional activator of a global cytopro-
tective response to reduce chemical and oxidative stress (Ma, 
2013). Nrf2 is continuously degraded by the actin-bound 
Keap1/Cul3 ubiquitin ligase complex. When redox-sensitive 
cysteine residues in Keap1 are modified, Nrf2 is released and 
translocates into the nucleus to transcriptionally regulate auto-
phagy, inflammasome activation, ER stress, and the unfolded 
protein response, as well as mitochondrial redox signaling (Ma, 
2013). Nrf2 levels change with age in a tissue- and model-de-
pendent manner (Zhang et al., 2015a). Yet it is poorly under-
stood whether Nrf2 levels are increased in response to higher 
ROS damage with age or decreased as the capacity to respond 
to stress is impaired with age. This is further complicated by 
regulation of Nrf2 by multiple signaling factors including Notch 
(Wakabayashi et al., 2014), c-Myc, and DNA damage proteins 
(Zhang et al., 2015a). Nevertheless, given the long-standing hy-
pothesis that unregulated ROS production contributes to physi-
ological aging (Harman, 1956), Nrf2 may be a major contributor 
to the aging phenotype.

In HGPS fibroblasts, Nrf2 is improperly sequestered to 
the nuclear periphery by progerin, reducing its nucleoplasmic 
concentration and impairing Nrf2-dependent transcription 
(Kubben et al., 2016). In contrast, mutations in lamin A that 
cause various muscular dystrophies induce Nrf2 nuclear trans-
location and transcriptional activation (Dialynas et al., 2015). 
Hence, although some lamin A mutants are able to induce 
Nrf2 signaling, progerin impairs the Nrf2-mediated response 
to oxidative stress by sequestration. This finding explains why 
HGPS models have increased ROS levels and mitochondrial 
dysfunction (Viteri et al., 2010; Peinado et al., 2011; Richards 
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et al., 2011; Rivera-Torres et al., 2013; Kubben et al., 2016; 
Xiong et al., 2016). Because this effect may be stressor de-
pendent (Hashimoto et al., 2017), it will be important to de-
termine whether Nrf2 is sequestered at the nuclear lamina 
in physiological aging.

Octamer-binding transcription factor 1 (Oct-1).�  
Oct-1 regulates several transcriptional pathways, including the 
cellular stress response, and represses aging-related collagenase 
genes (Imai et al., 1997; Malhas et al., 2009; Zhao, 2013). Simi-
lar to Nrf2, cellular stress stabilizes Oct-1 and promotes cell sur-
vival (Zhao, 2013). A fraction of nuclear Oct-1 associates with 
lamin B1 at the nuclear periphery (Kim et al., 1996; Malhas et 
al., 2009; Columbaro et al., 2013). Intriguingly, increasing the 
passage number of a preimmortalized cell line results in the loss 
of lamina-retained Oct-1 and increased collagenase gene expres-
sion (Imai et al., 1997). The JNK-dependent association of Oct-1 
with lamin B1 has been estimated to differentially regulate 57 
genes, many of which are involved in the oxidative stress re-
sponse (Malhas et al., 2009; Boubriak et al., 2017). Knockdown 
of either Oct-1 or lamin B1 increases ROS accumulation and 
sensitivity to oxidative stress, whereas co-knockdown increases 
cell survival (Malhas et al., 2009; Shimi et al., 2011). Conversely, 
duplication of the LMNB1 gene in adult-onset autosomal domi-
nant leukodystrophy, a disease characterized by the progressive 
degradation of myelin, increases sequestration of Oct-1 at the 
nuclear periphery (Columbaro et al., 2013). Therefore, retention 
of Oct-1 by lamin B1 may be a means to restrict Oct-1 binding 
to chromatin. Alternatively, peripheral Oct-1 may aid in recruit-
ing genomic regions to the nuclear lamina; however, Oct-1 
knockout does not appear to affect the interaction between lamin 
B1 and chromatin (Meuleman et al., 2013). Further studies 
should determine whether loss of lamin B during senescence or 
in HGPS affects the localization and activity of Oct-1, and what 
downstream impact this interaction has on ROS accumulation 
and the aging phenotype.

Proliferation
The inhibition of proliferation and accumulation of senescent 
cells has been strongly suggested to cause an age-associated 
decline in function via triggering of secretion of a set of inflam-
matory cytokines, growth factors, and interleukins, referred to 
as senescence-associated inflammatory/secretory phenotype, as 
well as the depletion of stem and progenitor cells (van Deursen, 
2014; Childs et al., 2015; Baker et al., 2016). The nuclear pe-
riphery, in concert with a series of intricate checkpoints and 
signaling pathways, regulates the proliferative potential of the 
cell, as evidenced by the induction of senescence in HGPS 
models (Varela et al., 2005).

Rb.� Cellular stressors such as DNA damage, hypoxia, 
and ROS activate the tumor suppressor protein p53 (Lasry and 
Ben-Neriah, 2015). p53 subsequently activates p21, and unre-
solved stress leads to downstream activation of p16INK4A and 
inhibition of the kinases CDK2, CDK4, and CDK6 (Childs et 
al., 2015; Lasry and Ben-Neriah, 2015). Inhibition of these cy-
clin-dependent kinases prevents Rb phosphorylation, facilitat-
ing the interaction of unphosphorylated Rb with and inhibition 
of the E2F transcription factors. This regulatory mechanism 
prevents damaged cells from proliferating by inhibiting cell 
cycle progression, alters transcription of a large number of gene 
targets including the RecQ helicases (Yamabe et al., 1998; Di-
mova and Dyson, 2005; Liu et al., 2008), and induces cellular 
senescence (Lasry and Ben-Neriah, 2015).

Hypophosphorylated Rb is sequestered via lamin A/C 
and Lap2α (Mittnacht and Weinberg, 1991; Templeton et al., 
1991; Mancini et al., 1994; Kennedy et al., 2000; Markiewicz 
et al., 2002; Johnson et al., 2004; Pekovic et al., 2007; Fig. 2 B). 
The lamin–Rb interaction prevents complex degradation in a 
SUMO-dependent manner (Johnson et al., 2004; Sharma and 
Kuehn, 2016) and promotes further TGFβ-mediated Rb dephos-
phorylation (Van Berlo et al., 2005). It remains uncertain whether 
sequestration of unphosphorylated Rb also withdraws E2F to 
prevent transcription or whether Rb sequestration increases E2F 
signaling by impeding the E2F–Rb interaction (Nitta et al., 2006; 
Pekovic et al., 2007); however, current evidence suggests that 
lamin A/C acts to restrict proliferation (Johnson et al., 2004; Nitta 
et al., 2006; Naetar et al., 2008; Rodríguez et al., 2010). Further-
more, the lamin–Rb complex may exist in the nucleoplasm bound 
to Lap2α as well as at the periphery (Naetar et al., 2008; Rodrí-
guez et al., 2010), and the function of these two pools remains 
a point of interest. Regardless, the nuclear retention of lamin 
A/C and stabilization of hypophosphorylated Rb likely prime a 
readily available population of Rb for rapid cell cycle regulation 
(Nitta et al., 2006). Similar to Rb, another E2F repressor termed 
Germ cell-less is tethered to INM-localized Lap2β. Germ cell-
less is proposed to bind and recruit E2F to the periphery, prevent-
ing E2F-dependent transcription (Nili et al., 2001; Fig. 2 B).

In fibroblasts derived from HGPS patients, cell cycle 
dysfunction correlates with altered Rb signaling (Dechat et al., 
2007; Marji et al., 2010), despite hyperactivation of p53 (Va-
rela et al., 2005; Liu et al., 2006; Kudlow et al., 2008; Wheaton 
et al., 2017). Similar to HGPS, fibroblasts derived from nor-
mally aged elderly individuals exhibit signs of increased pro-
gerin expression and a respective decrease in Rb levels (Han 
et al., 2008; Marji et al., 2010). Therefore, progerin, unlike 
lamin A/C, may not protect Rb from degradation, causing the 
Rb pools to be exhausted too quickly. Furthermore, whereas Rb 
binding to the nuclear lamina regulates proliferation, release of 
Rb from the lamina may facilitate inhibitory binding of Rb with 
E2F on promoters, causing global changes in chromatin con-
formation and inducing senescence-associated heterochromatin 
foci (Narita et al., 2003). This process may be mediated via loss 
of lamin B1 (Shimi et al., 2011; Sadaie et al., 2013) and par-
tially parallels the changes in chromatin organization that occur 
in HGPS (Chandra et al., 2015). Although multiple studies have 
confirmed the lamin–Rb interaction, and it is clear that Rb plays 
a critical role in proliferation, how the lamin–Rb complex con-
tributes to aging warrants further study.

Activating protein 1 (AP-1).� The transcription fac-
tors Fos and Jun heterodimerize to form the AP-1 complex 
(Eferl and Wagner, 2003). c-Fos and c-Jun respond to mitogenic 
signals to translocate into the nucleus and promote cell cycle 
progression by activating transcription of cyclins and repressing 
p53 and p16INK4A (Eferl and Wagner, 2003). AP-1 is regu-
lated by many of the pathways discussed here, including Notch 
(Chu et al., 2002), Wnt (Lien and Fuchs, 2014), TGFβ (Verrec-
chia et al., 2001), and NRF2 (Zhang et al., 2015a). As with Rb, 
lamin A/C is able to bind dephosphorylated c-Fos at the nuclear 
periphery, preventing heterodimerization with c-Jun and chro-
matin binding (Ivorra et al., 2006; González et al., 2008; 
Fig. 2 B). In response to mitogenic signals, ERK1/2 is phos-
phorylated and, in turn, increases expression of c-Fos and c-Jun 
(Eferl and Wagner, 2003). ERK1/2 also phosphorylates c-Fos to 
release it from the nuclear periphery, activating AP-1 transcrip-
tion (González et al., 2008).
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Notably, ERK1/2 interacts with lamin A/C as well, 
which may facilitate efficient activation of cotethered c-Fos, 
or lamin A/C may sequester ERK1/2 in a dormant state at the 
periphery. In support of the latter hypothesis, decreased lamin 
A/C expression correlates with increased ERK1/2 activation 
(Muchir et al., 2009b), and a mutation in the N terminus of 
lamin A/C that leads to Emery–Dreifuss muscular dystrophy 
exhibits increased ERK1/2 signaling (Muchir et al., 2007, 
2009a). Interestingly, lamin A/C binds ERK1/2 and Rb in a 
mutually exclusive manner: activation of ERK1/2 dislodges 
lamin A/C–bound Rb at the nuclear periphery, promoting Rb 
phosphorylation, degradation, and cell cycle activation (Ro-
dríguez et al., 2010; Fig. 2 B). In this way, as increasing ERK 
enters the nucleus, more Rb is dislodged from lamin A/C and 
degraded (Rodríguez et al., 2010). Similarly, more c-Fos is 
phosphorylated and released from lamin A/C (González et al., 
2008). Both processes work together to induce proliferation. 
As lamin A/C becomes unbound from Rb and c-Fos, increas-
ing amounts of ERK could be tethered to the lamina as a feed-
back mechanism to attenuate ERK signaling.

Proliferating cell nuclear antigen (PCNA).� 
PCNA is a necessary component of the DNA replication ma-
chinery and has roles in DNA damage repair and telomere sta-
bility (Vannier et al., 2013; Choe and Moldovan, 2017). PCNA 
expression decreases with age (Goukassian et al., 2000), and 
delayed induction of PCNA in aged rats may contribute to the 
accumulation of DNA damage (Kaneko et al., 2002). Indeed, 
a homozygous missense mutation in PCNA causes premature 
aging, likely induced by increased DNA damage sensitivity 
(Baple et al., 2014). Furthermore, PCNA interacts with lamins 
(Shumaker et al., 2008), BAF (Montes de Oca et al., 2009), 
and the helicase WRN (Lebel et al., 1999). A- and B-type 
lamins are thought to aid in the localization of PCNA (Shu-
maker et al., 2008), and disruption of the nuclear lamina using 
lamin mutants or progerin causes sequestration and aggrega-
tion of PCNA, interfering with replication (Spann et al., 1997; 
Moir et al., 2000; Hilton et al., 2017; Wheaton et al., 2017). 
Likewise, expression of prelamin A or progerin causes PCNA 
dysfunction, leading to stalled replication forks that become 
double-stranded breaks upon collapse (Cobb et al., 2016; Hil-
ton et al., 2017; Wheaton et al., 2017). The impaired prolifer-
ation, increased DNA damage, and destabilized telomeres 
found in HGPS, physiological aging, and PCNA dysfunction 
implicate PCNA as a potential mediator of both physiological 
and pathological aging.

Chromatin remodeling
Changes in histone-modifying enzymes have been observed to 
correlate with lifespan in a wide range of organisms (López-
Otín et al., 2013; Zane et al., 2014). Yet little is known regard-
ing the relationships between the array of different chromatin 
remodeling enzymes and their effects on longevity. Neverthe-
less, given the importance of the nuclear lamina in genome 
organization, it is unsurprising that HGPS and senescing cells 
undergo a drastic remodeling of the chromatin landscape that 
correlates with changes in the nuclear lamina (Shah et al., 
2013; Chandra et al., 2015).

SIRTs.� SIRTs are a family of NAD-dependent deacetyl-
ases, which have diverse roles in metabolism, cancer, and aging 
(López-Otín et al., 2013). SIRT1 and SIRT6 regulate longevity 
via their roles in genomic stability, metabolic regulation, and 
chromatin modification (Liu and Zhou, 2013). SIRT1 binding to 

lamin A, but not progerin or prelamin A, properly activates 
SIRT1 (Liu and Zhou, 2013; Fig. 2 C). SIRT1 is also responsible 
for autophagy-mediated deacetylation of histone H4K16 (Füll-
grabe et al., 2013), linking a full autophagy response to lamin A 
expression. Whereas SIRT1 decreases H4K16ac levels, hMOF, 
an acetyl transferase that increases H4K16ac, is down-regulated 
upon autophagy induction (Krishnan et al., 2011; Füllgrabe et 
al., 2013). hMOF has also been shown to bind to lamin A but 
not prelamin A, and this interaction facilitates localization to the 
nuclear periphery (Krishnan et al., 2011). Although the role of 
the hMOF–lamin A interaction in autophagy is unknown, lamin 
A may coordinate proper H4K16 acetylation. Similar to aged 
cycling fibroblasts (Zane et al., 2014), prelamin A–expressing 
cells are hypoacetylated at H4K16 (Krishnan et al., 2011), 
which correlates with defects in DNA damage repair and pre-
mature senescence. Determining how the balance between 
SIRT1 and hMOF activity is regulated by the nuclear lamina 
may give valuable insights into the peripheral regulation of het-
erochromatin and euchromatin.

SIRT6 deacetylates several histone lysines on histone H3, 
including on aa position K9, K27, K18, and K56, to aid in DNA 
damage repair (Zane et al., 2014) as well as prime telomeres 
for WRN binding (Tasselli et al., 2017). SIRT6 also represses 
expression of embryonic stem cell transcription factors, in ad-
dition to targets of the AP-1 complex, and coactivates NRF2 
(Sundaresan et al., 2012; Pan et al., 2016; Tasselli et al., 2017). 
Like SIRT1, SIRT6 binding to lamin A, but not progerin, in-
creases enzymatic activity (Ghosh et al., 2015). Lamin A is 
necessary for SIRT6 recruitment to DNA damage and proper 
chromatin interaction (Fig.  2 C). However, in HGPS models, 
SIRT6 activity and expression are reduced, which may contrib-
ute to the defects in DNA damage repair, chromatin organiza-
tion, and telomere maintenance (Endisha et al., 2015; Ghosh 
et al., 2015). Although the role of peripheral versus nucleop-
lasmic lamin A is still in question, these studies demonstrate 
that controlled expression of lamin A is critical for proper func-
tion of SIRT1 and SIRT6.

Histone methylation complexes.� Retinoblastoma 
binding protein (Rbbp)4/7 are members of the nucleosome re-
modeling and deacetylase (NuRD) complex and the polycomb 
repressive complex 2 (PRC2; Laugesen and Helin, 2014). These 
complexes are generally responsible for heterochromatin main-
tenance and both Rbbp4 and 7 bind lamin A and BAF, but not 
progerin (Montes de Oca et al., 2009; Pegoraro et al., 2009; 
Fig. 2 C). Indeed, cells derived from HGPS patients or fibro-
blasts from elderly individuals show reductions in Rbbp4/7, 
HP1γ, and HDAC1 levels. In HGPS cells, these reductions cor-
relate with loss of heterochromatin (H3K9me3) and increased 
susceptibility to DNA damage (Pegoraro et al., 2009). Rbbp4 
also regulates nuclear import, and loss of Rbbp4 induces senes-
cence (Tsujii et al., 2015). Therefore, lamin A may maintain 
heterochromatin at the nuclear periphery by stabilizing the 
Rbbp4/7 complex, facilitating proper chromatin organization 
and nuclear function. (Figs. 1 A and 2 C).

PRC2 has also been found to interact with lamin A, and 
this interaction is necessary for its proper localization (Cesarini 
et al., 2015). For example, in undifferentiated myoblast cells, 
PRC2 is recruited with the Msx1 homeoprotein and MyoD to 
the nuclear periphery (Wang et al., 2011). PRC2 relocation 
increases H3K27me3 marks at the periphery and represses the 
associated muscle-specific differentiation factors. In contrast, 
HGPS fibroblasts exhibit altered H3K27me3 deposition, loss of 
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heterochromatin, and changes in gene expression comparable 
to those of senescent cells (Shumaker et al., 2006; Bracken et 
al., 2007; McCord et al., 2013; Shah et al., 2013; Chandra et 
al., 2015). The decrease in histone methylation is likely a result 
of changes to the peripheral lamin A–PRC/EZH2 interaction 
(Wang et al., 2011; McCord et al., 2013; Harr et al., 2015). 
Along the same paradigm as NCOR/SKIP regulation, these 
studies suggest that chromatin remodeling factors are recruited 
to the nuclear periphery to invoke a repressive environment, 
whereas transcription factors are synergistically sequestered 
at the periphery to limit their activity.

Telomere maintenance
The well-established correlation between telomere length and 
longevity suggests that progressive attrition of telomeres with 
iterative cycles of replication causes DNA ends to become 
exposed, triggering DNA damage and cellular senescence 
(López-Otín et al., 2013). Telomeres in lower eukaryotes 
localize to the nuclear periphery (Gonzalez-Suarez et al., 
2009), but only a subpopulation of telomeres are peripheral 
in human cells, and this localization may be sensitive to the 
proliferative state as well as lamin organization (Ludérus et 
al., 1996; Gonzalez-Suarez et al., 2009; Arnoult et al., 2010; 
Crabbe et al., 2012; Chojnowski et al., 2015; Guidi et al., 
2015). Although the factors governing telomere positioning in 
humans remain poorly understood, models of HGPS indicate 
that the nuclear lamina is important for regulating telomere 
stability, whereas loss of telomeres may trigger progerin ex-
pression (Kudlow et al., 2008; Gonzalez-Suarez et al., 2009; 
Ottaviani et al., 2009; Cao et al., 2011a; Crabbe et al., 2012; 
Chojnowski et al., 2015).

Telomere repeat–binding factor (TRF) 2.� In ver-
tebrates, TRF1 and 2 bind duplex telomeric DNA as homodi-
mers within the shelterin protein complex to ensure telomere 
integrity (Wood et al., 2014). TRF1 negatively regulates telo-
mere length and may be localized by lamin B1 to the nuclear 
periphery during postmitotic nuclear assembly (Crabbe et al., 
2012). TRF2 forms protective telomere DNA loops at chro-
mosome ends and at interstitial telomeric sequences. Stabili-
zation of telomeres by TRF2 at the nuclear periphery is 
dependent on binding to lamin A/C and Lap2α (Ludérus et al., 
1996; Dechat et al., 2004; Wood et al., 2014; Chojnowski et 
al., 2015; Fig.  2  D). However, TRF2 does not interact with 
progerin, and cells lacking lamin A/C or cells derived from 
HGPS patients lose their telomeres (Wood et al., 2014). It re-
mains unclear whether TRF2 no longer binds progerin be-
cause of its integration into the periphery or whether there is 
specific protein–protein disruption. Notably, Lap2α preferen-
tially interacts with lamin A/C over progerin (Dechat et al., 
2000; Kubben et al., 2010), and the levels of Lap2α (Scaffidi 
and Misteli, 2006; Vidak et al., 2015) as well as nucleoplasmic 
lamin A/C are reduced in models of HGPS (Pekovic et al., 
2007; Naetar et al., 2008; Chojnowski et al., 2015). The reduc-
tion in Lap2α levels upon progerin expression may inhibit 
TRF2 binding to lamin A/C. While progerin expression pro-
motes telomere attrition via dysregulated TRF2, expression of 
a dominant-negative TRF2 protein induces uncapping of telo-
meres and correlates with increased progerin production (Cao 
et al., 2011a). Additionally, TRF2 expression is reduced in 
response to DNA damage in models of adult-onset progeroid 
syndromes caused by LMNA mutations (Saha et al., 2013),  
potentially propagating DNA damage and p53-mediated 

senescence. These data suggest a model in which proper inter-
actions with the nuclear periphery are important for TRF2 
function and telomere stability, whereas TRF2 expression may 
be inhibited across aging disorders by unregulated DNA dam-
age, potentially triggering progerin expression.

AKT-interacting protein (AKT​IP).� AKT​IP, a re-
cently discovered component of the shelterin complex, binds 
TRF1, TRF2, and PCNA to facilitate telomeric DNA replica-
tion as well as regulate telomere stability (Burla et al., 2015). 
AKT​IP is strongly localized at the nuclear periphery in a lamin 
A–dependent manner, where it transiently interacts with telo-
meres (Burla et al., 2015, 2016; Fig. 2 D). In HGPS models, the 
peripheral localization of AKT​IP is lost (Burla et al., 2016). De-
pletion of AKT​IP causes cells to senesce, and senescence corre-
sponds with increased prelamin A expression and nuclear 
deformities (Burla et al., 2015, 2016). This regulatory loop 
sheds new light on how changes in the nuclear periphery lead to 
telomere dysfunction, and conversely, how shortened telomeres 
affect the nuclear periphery.

Sphingosine-1-phosphate (S1P).� Not only is the 
protein composition of the INM important for telomere mainte-
nance, but nuclear lipid moieties may also play a role (Panneer 
Selvam et al., 2015). S1P binds human telomerase reverse tran-
scription (hTERT) at the nuclear periphery, preventing hTERT 
degradation and in turn promoting telomere stability (Fig. 2 D). 
Expression of an hTERT mutant that is unable to bind S1P pre-
vents hTERT localization to the nuclear periphery, and conse-
quently this mutant is rapidly degraded. S1P stability is 
correlated with delayed senescence in primary cells and in-
creased tumor growth in a xenograft model. Whereas S1P spe-
cifically binds and prevents hTERT degradation (Panneer 
Selvam et al., 2015), TRF2 stabilizes the telomere structure 
(Wood et al., 2014) and AKT​IP facilitates proper telomere rep-
lication (Burla et al., 2015). Irrespective of these distinct mech-
anisms, the nuclear periphery appears to play a protective role 
in telomere regulation.

Concluding remarks
The disproportionate number of aging disorders caused by 
mutations in nuclear pathways is striking and illustrates the 
importance of nuclear homeostasis for the aging process. 
One general mechanism for how the cell nucleus contributes 
to aging appears to be the integrity of the nuclear periphery, 
which is negatively affected by aberrant lamin expression in 
both pathological and physiological aging. As demonstrated in 
the cited examples, a likely mechanism for how nuclear func-
tion contributes to aging is by altered sequestration of cellular 
factors at the nuclear periphery. Disrupting the nuclear periph-
ery by mutant lamina proteins has wide-ranging consequences 
at the structural, signaling, and transcriptional levels. Not only 
is peripheral regulation important in aging as noted here, but 
these principles may also apply to cancer, nuclear envelopa-
thies, and other diseases. Although the pathways highlighted 
in our discussion suggest a role for nuclear sequestration as a 
basic regulatory principle, many questions remain as to how 
this process mechanistically inhibits protein function and to 
what degree it may be generalized. It will be important to de-
termine a complete proteomic description of lamina-associated 
proteins in various diseases and, although many of the relevant 
observations are based on correlation, it will be essential to 
demonstrate that sequestration or loss thereof has functional 
consequences in aging-relevant pathways. 
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