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Introduction

An actomyosin-based contractile machinery containing F-actin,  
myosin II, and actin cross-linkers is instrumental in tension 
generation in diverse cellular processes (Murrell et al., 2015). 
During cytokinesis, most eukaryotic cells assemble a dynamic 
actomyosin ring that contracts to drive cleavage furrow ingres-
sion (Pollard and Wu, 2010). The cytokinetic actomyosin ring is 
dynamic, and several ring components, such as F-actin, myosin 
II, and actin-associated proteins, exchange with the cytosolic 
pool of these proteins to varying degrees during contraction 
(Yumura, 2001; Pelham and Chang, 2002; Guha et al., 2005; 
Murthy and Wadsworth, 2005; Mukhina et al., 2007; Clifford et 
al., 2008; Goldbach et al., 2010; Uehara et al., 2010; Calvert et 
al., 2011; Wloka et al., 2013; Srivastava and Robinson, 2015). In 
this article, we define this exchange and replenishment process 
as turnover. Theoretical studies of actomyosin ring contraction 
suggest a requirement of actin turnover in supporting myosin 
II–dependent contraction (Stachowiak et al., 2014; Oelz et al., 
2015; Oelz and Mogilner, 2016). In addition, turnover of actin 
filaments has been proposed to generate contractile stress inde-
pendently of myosin II (Zumdieck et al., 2007; Mendes Pinto 
et al., 2012). Although experimental results that are consistent 
with a role for turnover in actomyosin ring contraction exist 

(Pelham and Chang, 2002; Silva et al., 2016), experiments that 
test this hypothesis are scarce. Thus, the functional significance 
of turnover of actin and other ring proteins remains unknown.

Here, using the fission yeast Schizosaccharomyces japo­
nicus, we investigate this question in cells and spheroplasts, 
as well as in isolated intact and fixed actomyosin rings in cell 
ghosts. S. japonicus was used for this work because it divides 
using an actomyosin ring, is well suited for imaging because 
of its large size, is readily permeable to cytoskeletal inhibitors, 
and has aspects of cytokinesis that are related to those in animal 
cells (Gu et al., 2015).

Results and discussion

In studies of actomyosin ring contraction in S. japonicus using 
FRAP, we observed a dynamic turnover of many ring compo-
nents including Rlc1 (myosin II regulatory light chain), Cdc15 
(F-BAR protein), Myo2 and Myp2 (myosin II heavy chains), 
and Rng2 (IQG​AP; Fig. S1 A). To address the significance of 
this turnover of Rlc1-GFP, we investigated contraction of Rlc1-
GFP–expressing rings in cell ghosts devoid of cytoplasm and 
cell wall (Young et al., 2010; Mishra et al., 2013; Huang et al., 
2016a; Fig. S1, B and C).

Cytokinesis in many eukaryotes involves a tension-generating actomyosin-based contractile ring. Many components of 
actomyosin rings turn over during contraction, although the significance of this turnover has remained enigmatic. Here, 
using Schizosaccharomyces japonicus, we investigate the role of turnover of actin and myosin II in its contraction. Acto-
myosin ring components self-organize into ∼1-µm-spaced clusters instead of undergoing full-ring contraction in the 
absence of continuous actin polymerization. This effect is reversed when actin filaments are stabilized. We tested the 
idea that the function of turnover is to ensure actin filament homeostasis in a synthetic system, in which we abolished 
turnover by fixing rings in cell ghosts with formaldehyde. We found that these rings contracted fully upon exogenous 
addition of a vertebrate myosin. We conclude that actin turnover is required to maintain actin filament homeostasis 
during ring contraction and that the requirement for turnover can be bypassed if homeostasis is achieved artificially.

Actin turnover maintains actin filament homeostasis 
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