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ER stress causes widespread protein aggregation
and prion formation

Norfadilah Hamdan, Paraskevi Kritsiligkou, and Chris M. Grant

Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, England, UK

Disturbances in endoplasmic reticulum (ER) homeostasis create a condition termed ER stress. This activates the unfolded
protein response (UPR), which alters the expression of many genes involved in ER quality control. We show here that ER
stress causes the aggregation of proteins, most of which are not ER or secretory pathway proteins. Proteomic analysis of
the aggregated proteins revealed enrichment for intrinsically aggregation-prone proteins rather than proteins which are
affected in a stress-specific manner. Aggregation does not arise because of overwhelming proteasome-mediated degra-
dation but because of a general disruption of cellular protein homeostasis. We further show that overexpression of
certain chaperones abrogates protein aggregation and protects a UPR mutant against ER stress conditions. The onset of
ER stress is known to correlate with various disease processes, and our data indicate that widespread amorphous and

amyloid protein aggregation is an unanticipated outcome of such stress.

Introduction

The ability to maintain the balance between protein biogene-
sis, folding, trafficking, and degradation in the face of changing
conditions is essential for viability in all eukaryotic cells. This
is illustrated by the plethora of human diseases influenced by
alterations in protein homeostasis (Labbadia and Morimoto,
2015). The ER is the first organelle required for folding and traf-
ficking of nascent membrane proteins and proteins that enter the
secretory pathway. Proteins enter in an unfolded state, and ER-
resident enzymes facilitate their oxidative folding, modification,
and trafficking reactions (Walter and Ron, 2011). An ER stress
occurs when there is a breakdown in ER protein homeostasis.
ER-associated degradation (ERAD) acts to remove pro-
teins that do not fold properly from the ER. Proteins are retro-
translocated into the cytosol, where they are ubiquitinated and
degraded by the proteasome (Nakatsukasa and Brodsky, 2008;
Christianson and Ye, 2014; Zattas and Hochstrasser, 2015).
Loss of ERAD results in an accumulation of misfolded ER pro-
teins and promotes ER stress (Walter and Ron, 2011). Substrate
recognition and membrane extraction is coordinated by ER-
embedded ubiquitin ligase complexes; three distinct membrane
protein complexes define different ERAD pathways (L-lumen,
M-membrane, and C-cytosol), depending on the localization of
the degradation signal (Carvalho et al., 2006; Nakatsukasa and
Brodsky, 2008; Ruggiano et al., 2014). In yeast, ERAD-L and
ERAD-M substrates are targeted for degradation by the Hrdl
complex, whereas, ERAD-C substrates are recognized by the
DoalO complex (Brodsky and Skach, 2011; Thibault and Ng,
2012; Christianson and Ye, 2014; Ruggiano et al., 2014; Zat-
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tas and Hochstrasser, 2015). The unfolded protein response
(UPR) is a signaling pathway that is activated in response to
ER stress by an ER-localized kinase, Irel (Travers et al., 2000).
Irel senses the accumulation of unfolded proteins in the ER and
acts as a specific endoribonuclease, splicing the HAC/ mRNA
(Sidrauski and Walter, 1997). The translation product of spliced
HACI mRNA is the transcriptional activator for genes affecting
protein folding, degradation, and trafficking to restore ER ho-
meostasis (Travers et al., 2000; Walter and Ron, 2011).

Although much is now known regarding the role of ER
stress defense systems in maintaining ER protein homeostasis,
little is known regarding the consequences of ER dysfunction
on protein homeostasis in other cellular compartments. In the
current study, we show that ER stress results in widespread cy-
toplasmic protein aggregation, including both amorphous and
amyloidogenic aggregation.

Results and discussion

ER stress causes widespread

protein aggregation

Protein aggregation was analyzed in mutants deficient in the
UPR (HACI and IREI) or ERAD (HRDI and DOAI0) and in
cells exposed to tunicamycin (Tm) or DTT to promote ER stress
(Cox et al., 1993; Kohno et al., 1993). Foci of protein aggre-
gates can be detected using the fluorescently tagged Hspl104
disaggregase or Sisl Hsp40 chaperone (Lum et al., 2004; Erja-
vec et al., 2007; Lee et al., 2010; Malinovska et al., 2012; Park
et al., 2013). The number of cells containing Hsp104-RFP or
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Sis-GFP puncta was significantly increased in hacl, irel, and
hrdl mutants (Fig. 1 A) and in wild-type cells exposed to DTT
or Tm (Fig. 1 B). To confirm that protein aggregation occurs
during ER stress, aggregates were purified using an established
biochemical approach (Tomoyasu et al., 2001; Jang et al., 2004;
Rand and Grant, 2006; Koplin et al., 2010). Elevated protein
aggregation was observed in hacl, irel, and hrdl mutant
strains (Fig. 1 C) and in wild-type cells exposed to DTT or Tm
(Fig. 1 D). Ubiquitinated proteins were increased in the aggre-
gate fractions isolated from the hacl, irel, and hrdl mutants,
suggesting that aggregated proteins are targeted to the protea-
some for degradation (Fig. 1 E). To further confirm that protein
aggregates form during ER stress, a mutant version of the se-
cretory protein carboxypeptidase Y lacking its signal sequence
(AssCPY*) was used, which is rapidly degraded by the ubiqui-
tin proteasome system (UPS; Eisele and Wolf, 2008; Park et al.,
2013). AssCPY*-GFP aggregate formation was elevated in re-
sponse to ER stress imposed by DTT or Tm treatment (Fig. 1 F).

Aggregated proteins were identified using mass spectrometry.
A large overlap in the proteins that aggregate in wild-type,
hacl, and hrd] mutants strains was observed, indicating that
the majority of proteins do not aggregate in a mutant-specific
manner (Fig. 2 A). Similar functional categories were enriched
within aggregate fractions prepared from wild-type and ER
stress mutants (Fig. S1), including common enrichment in
major cellular processes such as metabolism, energy, protein
synthesis, and protein fate. Strikingly, no enrichment for ER-
related processes was observed in hacl or hrdl mutant strains.
The majority of aggregated proteins were predicted to localize
to the cytoplasm, and no enrichment for ER or secreted proteins
was observed in hacl or hrdl mutant strains compared with the
wild-type strain (Fig. 2 B).

We assessed the physicochemical properties of aggre-
gated proteins to determine whether they possess particular
properties that make them aggregation prone. The 606 proteins
that commonly aggregated in the wild-type, hacl, and hrdl mu-
tant strains (common set) were compared with the 189 and 190
proteins that aggregated in the hacl and hrd mutants, but not in
the wild-type strain. No functional classes were enriched in the
hacl or hrdl mutants that were not also enriched in the common
set (Fig. S2). The aggregated proteins were compared with a list
of yeast proteins detectable by mass spectrometry (MS; MS set)
to represent the properties of unaggregated proteins (Washburn
et al., 2001). The common set was enriched for proteins with
higher abundance (molecules per cell), higher expression levels
(codon adaption index), and higher translation rate compared
with the MS set (Fig. 2, C-E). In contrast, the proteins that spe-
cifically aggregated in hacl or hrdl mutants tended to be have
lower abundances and translation rates compared with the MS
set (Fig. 2, C-E). Hydrophobicity indicates a propensity to ag-
gregate (Vabulas et al., 2010; Tamads et al., 2014), and we found
that proteins in the common set showed a significant increase
in hydrophobicity (GRAVY score) compared with the MS set,
whereas the proteins which aggregate in hacl or hrdl mutants
were similar to the MS set (Fig. 2 F). We found no differences in
isoelectric points (pI) between the aggregated proteins and the
MS set (Fig. 2 G). Using a global proteome turnover database
(Christiano et al., 2014), we found that proteins in the common

set and hrdI-only sets show, on average, a longer half-life than
proteins in the MS proteome, suggesting that these proteins are
normally stable in their native folded states (Fig. 2 H). Collec-
tively, these data indicate that the proteins that commonly ag-
gregate in the wild-type, hacl, and hrdl mutants have common
properties indicative of aggregation-prone proteins.

We considered two mechanisms that might account for the high
levels of protein aggregation in ER stress mutants. First, pro-
tein aggregation might arise because of a defect in proteasomal
degradation that could result in the accumulation of misfolded
proteins and subsequent aggregation rather than turnover. For
example, an inhibition of UPS-mediated protein degradation
might occur if ER stress generates more substrates than the
UPS can cope with, effectively overwhelming the degradation
machinery. We tested this possibility by examining the degrada-
tion kinetics of the AssCPY*-GFP reporter as a model substrate
for UPS-mediated degradation (Park et al., 2007, 2013). Rapid
turnover of AssCPY*-GFP was observed in the wild-type strain
as well as in the hacl or hrdl mutants, suggesting that there
is no defect in UPS degradation (Fig. 3 A). For comparison,
we examined the turnover of Hmg2 (HMG-CoA reductase), a
well-characterized ERAD substrate (Hampton et al., 1996), and
we found that its turnover is slower in a hacl mutant than in a
wild-type strain (Fig. 3 B).

The second possibility that we considered was that proteins
that are protected from misfolding by the cellular protein qual-
ity control systems might accumulate and aggregate if these
are disrupted or become overwhelmed. To counteract protein
aggregation, cells contain many molecular chaperones (Flynn
et al., 1991; Hartl et al., 2011; Verghese et al., 2012), but in-
creased aggregation can arise because of insufficient avail-
ability of chaperones when ERAD substrates and aggregates
accumulate. Increased cytosolic aggregation might therefore
arise in ER stress mutants if protein aggregates or ERAD sub-
strates sequester key chaperones, limiting their availability to
maintain protein homeostasis. Of the 63 known chaperones in
Saccharomyces cerevisiae (Gong et al., 2009), we identified 27
distributed between all the datasets (Fig. 3 C). These chaper-
ones presumably localize to aggregates to mitigate any toxic
consequences, so we examined whether the aggregates are en-
riched in proteins that have increased chaperone interactions.
We found no enrichment for proteins with extensive chaperone
interactions in the aggregated proteins compared with unaggre-
gated proteins (Fig. S3 A).

We next tested whether overexpression of candidate chap-
erones identified in our aggregate fractions could prevent aggre-
gate formation. Overexpression of Hsp104, Ssal, or Ydjl did
not affect protein aggregation, whereas Sisl, Ssel, and Ssbl
dramatically reduced the levels of aggregation in a hacl mutant
(Fig. 3 D). Western blot analyses confirmed that chaperones
were overexpressed (Fig. S3 B). The AssCPY*-GFP reporter
undergoes rapid UPS-mediated degradation dependent on cy-
tosolic Hsp70 (Ssal) and Hsp40’s (Ydjl and Sisl1; Park et al.,
2007, 2013); thus, we tested whether chaperone overexpression
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Figure 1. ER siress causes protein aggrega-
tion. (A) Hsp104-RFP and Sis1-GFP were visual-
ized in wildtype, hacl, irel, hrd1, and doal0
mutant cells and in wildtype cells exposed to
DTT or Tm. Bars, 4 pm. (B) The percentage of
cells containing puncta is quantified for each
strain from three independent biological repeat
experiments = SD. (C and D) Silver staining
of protein aggregates isolated from the same
strains as in A and B. (E) Protein ubiquitina-
tion was analyzed in the isolated protein ag-
gregates by Western blot using an a-ubiquitin
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antibody. (F) Examples of cells containing Ass-
CPY*GFP puncta in a wildtype strain after DTT
or Tm freatment. *, P < 0.05; **, P < 0.01;
**% P < 0.005 (n = 3).
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affects UPS-mediated degradation (Fig. 3 E). Overexpression
of Sisl increased the rate of degradation of AssCPY*-GFP in
both the wild-type and hacl mutant strains, in agreement with
the idea that Sis1 is required for targeting misfolded proteins for
degradation by the UPS system (Park et al., 2013; Shiber et al.,
2013; Summers et al., 2013). In contrast, overexpression of Ssel
or Ssb1 did not affect the rate of AssCPY*-GFP degradation. The
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finding that Ssel and Ssb1 do not affect UPS-mediated degra-
dation of AssCPY*-GFP, while preventing protein aggregation,
further confirms that a defect in UPS-mediated degradation
does not account for the high levels of protein aggregation in a
hacl mutant. Together, these findings are in agreement with the
idea that limitations in chaperone availability account for the
increased protein aggregation in ER stress mutants.
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Figure 2. Aggregated proteins in wild-type and ER stress mutants have similar localization and physicochemical properties. (A) Venn diagram showing
the overlaps between proteins aggregating in wild-ype (green), hac (pink), and hrd1 (yellow) mutant strains. (B) Diagrams showing the localization of the
proteins aggregating in wild4type, hac1, and hrd1 strains. (C-H) Box plots showing comparisons of physicochemical properties for the aggregated proteins
common to the wildtype, hacl, and hrd1 mutant strains (common), present in the hacl mutant, but not the wildtype, strain (hacl only), and present in
the hrdT mutant, but not the wildtype, strain (hrd1 only). Aggregated proteins were compared with unaggregated proteins (MS). (C) Protein abundance.
(D) Codon adaptation index (CAl). (E) Translation rates. (F) Grand mean of hydrophobicity (GRAVY). (G) Isoelectric points (pl). (H) Proteln stability. Mann—
Whitney U tests were used to assess the statistical significance of observed differences; *, P < 0.05; **, P < 0.01; ***, P < 0.0

ER stress increases the spontaneous
frequency of prion formation

A genome-wide screen for factors that increase [PSI*] prion
induction identified mutants in the UPR and ERAD pathways
(Tyedmers et al., 2008), suggesting that prion formation may

JCB » VOLUME 216 « NUMBER 8 « 2017

also be a consequence of ER stress. We examined prion forma-
tion in our mutants and found that the frequency of [PSI*] prion
formation was elevated in hacl, irel, and hrd ] mutants compared
with wild-type and doal0 mutant strains (Fig. 4 A). This increase
in [PSI*] prion formation did not arise because of differences
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Figure 3. Selected chaperones reduce protein aggregation in a hacl mutant. (A) Turnover rate of AssCPY*GFP in wild-type, hacl, and hrd1 strains

(n'=3) = SD. (B) Turnover rate of Hmg2-myc in wild4ype and hac strains

(n=3) = SD. (C) The overlap between chaperones identified within the protein

aggregate datasets of the wild-type, hacl, and hrd1 strains. The 21 chaperones listed were present in the aggregates of all strains. (D) Silver staining of

protein aggregates isolated from the hacT mutant containing galactose-reg

ulatable expression plasmids for Ssal, Ydj1, Sis1, Hsp104, Ssel, or Ssb1. Vec-

tor denotes an empty vector control. (E) Turnover rate of AssCPY*GFP in wildtype and hac! strains containing galactose-regulatable expression plasmids

for Sis1, Ssel, or Ssb1 or empty vector controls (n = 3) + SD. *, P < 0.05

in Sup35 protein levels (Fig. 4 B). We examined whether the
chaperones that abrogate protein aggregation in a hacl mutant
could also prevent spontaneous prion formation and found that
overexpression of Sis1, Ssel, and Ssb1 significantly reduced the
frequency of [PSI*] prion formation in a hacl mutant (Fig. 4 C).

; **,P<0.01; ***, P <0.005 (n=3).

Overexpression of Sisl, Ssel, and Ssbl reduced both
amorphous and amyloid aggregation. Sis1 is an Hsp40 chap-
erone that regulates the ATPase activity of Hsp70 chaperones. It
has been implicated in targeting misfolded proteins for degrada-
tion, facilitating the transfer of misfolded proteins to the nu-
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Figure 4. The frequency of [PSF] formation is increased in UPR and ERAD
mutants. (A) The frequency of [PSF] prion formation was quantified in
wildtype, hacl, irel, hrd1, and doalO mutant strains. Data shown are
the means of at least three independent biological repeat experiments +
SD. (B) Western blots probed with aSup35 or aPgk1. (C) The frequency
of [PSF] prion formation was quantified after the induction of the indi-
cated chaperones (n = 3) = SD. Significance is shown comparing strains
grown on glucose media with strains grown on SGal media; *, P < 0.05;
**% P < 0.005 (n = 3).

cleus, where they are degraded by the UPS system (Park et al.,
2013; Shiber et al., 2013; Summers et al., 2013). Sis1 therefore
appears to be an essential but limiting factor for degrading mis-
folded and aggregated proteins. Ssb1 is a ribosome-associated
chaperone required to prevent the aggregation of nascent poly-
peptides (Koplin et al., 2010; Preissler and Deuerling, 2012).
Ssbl reduced aggregation in a hacl mutant, suggesting that
proteins may misfold during translation, which would be par-
ticularly acute for highly abundant/translated proteins. Ssel
functions as a nucleotide exchange factor for Hsp70 chaperones
(Easton et al., 2000; Shaner et al., 2005). Ssel can bind unfolded
peptides and suppress thermal aggregation by maintaining pro-
teins in a folding-competent state (Oh et al., 1999). Ssel is not
thought to functionally refold proteins and hence may suppress
protein aggregation in a hacl mutant via its holdase function.

Because UPR mutants are sensitive to chemicals that promote
ER stress, we tested whether the chaperones that abrogate pro-
tein aggregation influence the sensitivity of a hacl mutant to
chemically induced ER stress (Fig. 5 A). Overexpression of Ssal
or Hsp104 did not affect the sensitivity of the hac/ mutant to
DTT or Tm. Ydjl minimally restored DTT tolerance but did
not improve resistance to Tm stress. Ssel was found to increase
the sensitivity of the wild-type strain to DTT and Tm stress,
whereas it increased the resistance of a hacl mutant to DTT
stress and did not alter its sensitivity to Tm. The strongest effects
were seen with Sisl and Ssbl overexpression, which rescued
the sensitivity of a hacl mutant to both DTT and Tm; for Sisl,
this resistance was comparable to wild-type levels (Fig. 5 A).
We questioned whether chaperones rescue the hacl mutant by
enabling it to cope with the same amount of ER stress or by di-
minishing the level of ER stress. We tested this using a splicing
reporter (SR) where the HACI open reading frame has been
replaced with GFP (Pincus et al., 2010). This allows Irel activity
to be monitored, because it splices the Hacl intron to derepress
GFP expression. We observed higher levels of SR activation in
a hacl mutant than in the wild-type upon Tm stress (Fig. 5 B).
Overexpression of Sisl dampened the increased SR induction
in the hacl mutant, indicating that Sisl diminishes ER stress
presumably by removing cytoplasmic protein aggregates.

In summary, our results demonstrate that ER stress causes
defects in cytosolic protein homeostasis and the formation of
protein aggregates. Protein aggregation occurs when proteins
adopt aberrant conformations or misfold resulting in their ab-
normal association into larger, often insoluble structures (Hartl
et al., 2011; Hipp et al., 2014). ER stress appears to lead to
the aggregation of aggregation-prone proteins rather than the
aggregation of ER or secretory pathway proteins. Most of the
commonly aggregated proteins tended to be abundant, highly
translated, stable proteins, in agreement with the idea that pro-
tein abundance is a good indicator of protein aggregation in
vivo (Weids et al., 2016). It is generally thought that highly ex-
pressed and abundant proteins have evolved to be highly soluble
and resistant to aggregation (Tartaglia et al., 2007; Castillo et
al., 2011; Gsponer and Babu, 2012; Bednarska et al., 2013).
However, there is relatively little flexibility in this equilibrium,
and any conditions that alter protein solubility or concentration
can promote aggregation (Tartaglia et al., 2007).

Mutants deleted for HACI are sensitive to conditions that
cause unfolded proteins to accumulate in the ER (Cox et al.,
1993; Mori et al., 1993). Induction of gene expression by Hacl
promotes tolerance to ER stress by increasing ER chaperone
concentrations. It is therefore surprising that overexpression of
cytoplasmic chaperones rescued the sensitivity of a hac/ mutant
to conditions which cause unfolded protein accumulation in the
ER. This suggests that in the absence of active UPR, ER stress
causes cellular toxicity via cytoplasmic protein aggregation.
There are established links between cytosolic chaperones and
prevention of ERAD substrates from aggregation before degra-
dation (Nishikawa et al., 2005). Hence, clearance or prevention
of cytosolic aggregates may explain this stress rescue. In agree-
ment, the Hacl SR indicated that overexpression of Sisl re-
duces ER stress caused by Tm exposure, and restored wild-type
levels of ER stress tolerance to a UPR mutant. This new finding
links the toxicity of ER stress with cytosolic protein aggrega-
tion and emphasizes the importance of interorganelle cross talk.
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Materials and methods

Yeast strains and plasmids

The wild-type yeast strain 74D-694 (MATa adel-14 ura3-52 leu2-
3,112 trp1-289 his3-200 [PIN*][psi~]) was used for all experiments.
Strains were deleted for HRD1 (hrdl::HIS3, hrdl::TRPI1), DOAIO
(doal0::HIS3), IREl (irel::LEU2), and HACI (hacl::HIS3,
hacl::TRPI) using standard yeast methodology. Plasmids express-
ing fluorescently tagged proteins, including Hspl04-RFP, SisI-GFP,
and AssCPY*-GFP (Lee et al., 2010; Malinovska et al., 2012; Park et
al., 2013) and Hmg2-Myc (Hampton and Rine, 1994), have been de-
scribed previously. Chaperones were overexpressed under the control
of the GALI promoter, including pESC-Leu-SSA1 (Park et al., 2013),

Tm Figure 5. Overexpression of selected chaperones rescues the
sensitivity of a hac1 mutant to ER stress. (A) Strains as shown
@ " in Fig. 4 D were spotting onto $Gal media containing DTT
& or Tm. (B) Wildtype and hacl mutant cells expressing GFP
" splicing reporter (SR) and containing a galactose-regulatable
@ expression plasmid for Sis1 or empty vector (pRS413) were
® treated with 0.2 pg/ml Tm for 8 h. Fluorescence was mea-
sured by flow cytometry and is expressed relative to 100%
maximum = SD. Significance is shown comparing hac vector
with hacl SIST (n = 3). **, P < 0.01; ***, P < 0.005.
E
e
@ &

pESC-Leu-YDJ1 (Park et al., 2013), pRS415GAL-HA-SIS1 (Park et
al., 2013), p425GAL1-HSP104 (O’Driscoll et al., 2015), p425GAL1-
SSE1 (O’Driscoll et al., 2015), and pAG416GAL-SSB1 (Malinovska
et al., 2012). The GFP SR used to monitor Irel activity has been de-
scribed previously (Pincus et al., 2010).

Growth and stress conditions

Yeast strains were grown at 30°C with shaking at 180 rpm in rich YEPD
medium (2% wt/vol glucose, 2% wt/vol bactopeptone, and 1% wt/vol
yeast extract) or minimal SD (0.67% wt/vol yeast nitrogen base without
amino acids and 2% wt/vol glucose) supplemented with appropriate
amino acids and bases. SRaf media contained 2% wt/vol raffinose, and
SGal media contained 1% wt/vol galactose/1% wt/vol raffinose in place
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of glucose. Media were solidified by the addition of 2% (wt/vol) agar.
For chaperone expression, cultures were initially grown in SRaf media
to exponential phase before switching to SGal media for a further 24 h
to induce GALI expression. For ER stress conditions, cells were treated
with 2 mM DTT or 0.2 pg/ml Tm for 2 h. Stress sensitivity was deter-
mined by growing cells to stationery phase in SRaf media and spotting
diluted cultures (Agy, = 1.0, 0.1, 0.01) onto SGal agar plates containing
various concentrations of DTT or Tm.

Analysis of insoluble protein aggregates

Insoluble protein aggregates were isolated by separating insoluble pro-
teins from soluble proteins by differential centrifugation and removing
any contaminating membrane proteins using detergent washes (Weids
and Grant, 2014). In brief, 20 ODs of cells were harvested by centrif-
ugation at 4,000 rpm, 4°C, for 10 min. Cells were washed in 1 ml ag-
gregate lysis buffer (ALB; 50 mM potassium phosphate, 1 mM EDTA,
5% (vol/vol) glycerol, 1 mM PMSEF, and 1x complete mini-protease
cocktail; Roche). Cells were resuspended in 300 ul ALB and sphero-
plasts were generated after treatment with 1 mg/ml lyticase for 30 min
at 30°C. Cell breakage was achieved by sonication (Sonifier 150; Bran-
son; 8 x 5 s, level 4), and samples were adjusted to equal protein con-
centrations before isolation of protein aggregates by centrifugation at
13,000 rpm, 4°C for 20 min. Insoluble fractions were resuspended in a
buffer containing ALB buffer containing 2% (vol/vol) Igepal CA-630
(Sigma-Aldrich) through sonication (4 x 5 s, level 4). Samples were
centrifuged at 13,000 rpm for 20 min at 4°C and the detergent wash
repeated. Residual detergent was removed by two washes with ALB
and the pellet resuspended by sonication. The final insoluble fraction
was resuspended in 80 ul ALB and 20 pl reducing 4x protein loading
buffer, separated by reducing SDS/PAGE (10% gels), and visualized by
silver staining using the silver stain plus kit (Bio-Rad).

MS and statistical analysis

Aggregated proteins were identified by MS (performed by the
Biomolecular Analysis Core Facility, The University of Manchester) in
triplicate for each condition. For protein identification, protein samples
were run a short distance into SDS-PAGE gels and stained using colloidal
Coomassie blue (Sigma-Aldrich). Total proteins were excised; trypsin
was digested and identified using liquid chromatography MS. Proteins
were identified using the Mascot mass fingerprinting program (http://
www.matrixscience.com) to search the NCBInr and Swissprot databases.
Final datasets for each condition were determined by selecting proteins
that were identified in at least two of the three replicates. We identified
688, 820, and 818 proteins that aggregate in the wild-type, hacl, and
hrdl mutants strains, respectively. Venn diagrams and analysis of the
distribution of protein hits between different strains was performed
using Venny (http://bioinfogp.cnb.csic.es/tools/venny/). Significantly
enriched (5% false discovery rate) functional categories were identified
using the MIPS Functional Catalogue (Ruepp et al., 2004). Datasets
for each condition were assessed for functional enrichment (P < 0.01)
of functional categories (MIPS database) using FunCat (available at
http://www.helmholtz-muenchen.de/en/ibis). Mann—Whiney U tests
were used to assess the statistical significance of observed differences
in protein abundance (molecules per cell; Ghaemmaghami et al., 2003),
estimated translation rates per protein (Arava et al., 2003), CAI, GRA
VY score, pl, and protein stability (Christiano et al., 2014).

Western blot analysis

The turnover of AssCPY*-GFP and Hmg2-myc was assessed in cells
by inhibiting protein synthesis with cycloheximide. Cells were col-
lected at the indicated time points and AssCPY*-GFP and Hmg2-myc
levels analyzed by immunoblotting and quantified by densitometry.

Values shown are percentages relative to zero time points from three
independent biological repeats. Protein extracts were electrophoresed
under reducing conditions on NuPAGE minigels (Thermo Fisher Sci-
entific) and electroblotted onto polyvinylidene fluoride membrane
(GE Healthcare). Primary antibodies used were rabbit a-Sup35 (Ness
et al., 2002), ubiquitin (sc-8017; Santa Cruz Biotechnology, Inc.),
Ydjl (ab74442; Abcam), Sisl (COP-080051; Operon Biotechnolo-
gies), Ssal (ADI-SPA-822; Enzo Life Sciences), GFP (A6465, Invi-
trogen), Pgkl (459250; Thermo Fisher Scientific), Hsp104 (ab2924;
Abcam), rabbit a-Ssel (Chiabudini et al., 2012), and Myc 4A6
(05-724; EMD Millipore).

Fluorescence microscopy

Sites of protein aggregation were detected using fluorescently tagged
chaperones. Strains transformed with Hsp104-RFP or Sis1-GFP plas-
mids were harvested at the indicated time points and resuspended in
water. The cells were immediately placed on poly-L-lysine—coated
slides (Sigma-Aldrich) and visualized at room temperature using
a IX71 (Olympus) Delta Vision (Applied Precision Ltd.) micro-
scope with a 100x/NA.140 UPlan SAPO (oil) objective and FITC
(BP490/20, BP531/28) and TRITC (BP555/28, BP617/63) band-pass
filters from the Sedat QUAD filter set (Chroma Technology Corp.).
Images were acquired using a Coolsnap HQ2 (Photometrics) camera
using a Z optical spacing of 0.2 to 0.5 ym with Softworx 5.5.1 (Ap-
plied Precision Ltd.) and were then deconvolved with measured point
spread function and maximum intensity quick projections were gen-
erated using the same software. For display, images were processed
and analyzed using ImagelJ.

Andlyses of prion formation

Yeast strain 74D-694 (MATa adel-14 trpl-289 his3-200 ura3-52
leu2-3,112) contains an assayable nonsense (UGA) mutation in the
ADE] gene. The induction of [PSI*] prion formation was quantified
using the adel-14 mutant allele, which confers adenine auxotrophy
and prions differentiated from nuclear gene mutations by their irre-
versible elimination in guanidine hydrochloride (GdnHCI). GdnHCl
blocks the propagation of yeast prions by inhibiting the key ATPase
activity of Hsp104, a molecular chaperone that is absolutely required
for yeast prion propagation (Ferreira et al., 2001; Jung and Masison,
2001). The frequency of spontaneous [PSI*] prion formation was
scored by growth in the absence of adenine. Diluted cell cultures
were plated onto SD plates lacking adenine (SD-Ade) and incubated
for 7-10 d. Colonies which grew on SD-Ade plates were counted
and then picked onto new SD-Ade plates before replica-printing
onto SD-Ade and SD-Ade containing 4 mM GdnHCI. Colonies that
grew on SD-Ade, but not on SD-Ade with GdnHCI, were scored as
[PSI¥]. [PSI¥] colonies were also scored by visual differentiation of
red/white colony formation on YEPD plates and by the conversion
of pink/white [PSI*] colonies to red [psi~] colonies on YEPD plates
containing GdnHCI. Data shown are the means of at least three in-
dependent biological repeat experiments expressed as the number of
colonies per 10° viable cells.

SR assay

Cells were grown in SGal media and treated with 0.2 pg/ml Tm for
8 h. Samples were collected hourly, and 10,000 cells were analyzed
in an LSR Fortessa Flow cytometer (BD) with excitation at 488 nm
and emission at 530/30 nm. The mean median value of the intensity
of fluorescence of three independent biological repeats was calculated.
The mean median value of the intensity of the hacl vector strain at the
8-h time point was considered the maximum and set to 100%. All other
values were expressed relative to that.
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Statistical analyses

Data are presented as mean values + SD. Statistical analysis for multi-
ple groups was performed using one-way ANOVA with pairwise com-
parisons of sample means via the Turkey HSD test, and results were
considered statistically significant with a p-value <0.05. The physico-
chemical, translation, and degradation rates of proteins in aggregates
were evaluated with pairwise Mann—Whitney—Wilcoxon U tests.

Online supplemental material

Fig. S1 presents MIPS functional categorization of aggregated proteins
identified in the wild type and hacl and hrdl mutant strains. Fig. S2
presents MIPS functional categorization of aggregated proteins iden-
tified in the common, hacl-only, and hrdi-only sets. Fig. S3 A pres-
ents the proportion of proteins in each aggregate set that interact with
specific chaperones, and Fig. S3 B presents immunoblot analysis to
confirm overexpression of selected chaperones.
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