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Spotlight

A stitch in time: Replicate early and escape dosage
compensation to express more
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The biological significance of conserved replication timing
patterns in eukaryotic genomes remains a mystery. In this
issue, Miller and Nieduszynski (2017. J. Cell Biol.
https://doi.org/10.1083/jcb.201701061) find that
early replication is a requirement for the highest
expression levels of certain genes.

Every time a cell divides, its genome needs to be fully dupli-
cated. Eukaryotic cells contain large genomes that are replicated
through the activity of hundreds to thousands of replication ori-
gins. It has been known for several decades that some genomic
regions replicate reproducibly earlier than others, a property
that applies both to yeast and to metazoan cells, although on
different scales (Fig. 1 A; Rhind and Gilbert, 2013). In yeast
such as Saccharomyces cerevisiae, early replication regions
may range from 20 to 40 kb in length and depend on the activity
of individual replication origins which display enhanced capac-
ity of recruiting replication factors (Das et al., 2015). In mam-
malian cells, replication timing domains extend for hundreds of
kilobases to megabases and contain several dozen replication
origins, and their time of replication seems to arise from the
distribution and stochastic activity of the origins located within
these domains (Gindin et al., 2014). Thus, replication timing
constitutes an emerging property of eukaryotic genomes, which
emanates from the density and affinity for replication factors at
origins. A striking feature of replication timing domains is that
they are conserved between related species of yeast or between
mammalian cell types (Yaffe et al., 2010; Miiller and Nied-
uszynski, 2012). In addition, a large proportion of the mamma-
lian genome is subject to developmentally regulated changes
in replication timing that, to a certain extent, correlate with
changes in transcriptional regulation (Hiratani et al., 2008).
These observations suggest that the temporal order of genomic
duplication should have physiological relevance. However, the
biological significance of this difference in replication timing
has not been elucidated. In this issue, Miiller and Nieduszynski
conduct a series of elegant experiments involving comparative
genomics in phylogenetically diverse yeast species, as well as
genetics, to investigate this long-standing question.

The authors start from the assumption that, if the tempo-
ral order of gene duplication is important for its function, its
specific replication time should be evolutionarily conserved.
To identify putative loci with replication timing constraints,
they first analyze the replication timing profile of a selection of
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budding yeast species sufficiently divergent to break the syn-
teny between genes and replication origins. From this, they as-
sign a relative replication timing value to homologous genetic
elements from each yeast species and evaluate the observed
level of evolutionary conservation in replication time by com-
parison with a random model. Careful analysis of the evolution-
ary breakdown in genetic linkage between the elements with
conserved replication times allows the authors to identify 185
ancestrally related genetic elements that have been subjected to
evolutionary selective pressure for regulated replication timing.
Among those, histone genes are the most significantly conserved
group of protein-coding genes, replicating early in all species.
To test whether the level of expression of histone genes
required during S phase was linked to their early doubling time,
Miiller and Nieduszynski (2017) beautifully exploited the ex-
quisite temporal organization of S. cerevisiae replication, in
which early replication regions depend on the activity of in-
dividual replication origins. By inactivating the origins of the
early replicating region containing the paired genes HTA/ and
HTBI (two of the genes encoding for H2A and H2B, residing
in chromosome 4), the replication time of the whole region was
substantially delayed, resulting in a significant reduction in the
expression of both genes. This suggests that early replication
is a requirement to achieve appropriate histone mRNA levels
during S phase. Importantly, they found that this reduction in
transcript levels only affects HTAI and HTBI genes, but not
any of the neighboring genes within the delayed region, exem-
plifying how discrete genetic entities can be responsible for the
conservation of the replication timing of a whole domain.
These findings prompted the authors to make another un-
expected discovery. Although gene dosage is transiently unbal-
anced during DNA replication (particularly between early and
late-replicating genes), eukaryotic cells buffer these dosage dif-
ferences by down-regulating gene transcription on newly repli-
cated DNA to maintain expression homeostasis. It was recently
found that, in S. cerevisiae, this dosage compensation mecha-
nism occurs through the acetylation of H3K56 by Rett109/Asf1,
resulting in reduced transcription efficiency on replicated DNA
(Voichek et al., 2016). Now, Miiller and Nieduszynski (2017)
have found that histone genes, as well as early replicating cell
cycle-regulated genes, were excluded from Rtt109-dependent
repression. Thus, the early doubling time of these escapee genes
will contribute to their maximum expression during S phase.
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Figure 1. DNA replication timing regulates gene expression level. (A) lllustration of replication timing profiles from a portion of the genome of yeast (left)
versus mammalian cells (right). The profiles look qualitatively similar, but the scales and the organization in terms of replication origins and activity are
different (see text). (B) The work of Miiller and Nieduszynski in yeast reveals that loci of conserved early replication timing, such as histone genes (exem-
plified by HTB1 and HTAT), require an early doubling time to achieve its maximal expression levels. They do so by escaping (green arrow shapes) the
dosage compensation mechanisms occurring immediately after replication (orange shadow) that ensure expression homeostasis during S phase (orange
arrow shapes). Whether a similar mechanism for regulating gene expression in a replication-dependent manner occurs in mammalian cells is currently

unknown (question mark).

Because Rtt109 acetylates newly synthesized histones
before their incorporation into DNA (Han et al., 2007), genes
escaping from dosage compensation might somehow be re-
fractory to the inhibitory effect of this mark on transcription.
Investigating the mechanism by which individual genes escape
dosage compensation while all their surrounding genes do not
constitutes an interesting new avenue of research. Besides the
molecular details of such an exciting process, this novel find-
ing that certain genes are excluded from dosage compensation
mechanisms implies that yeast cells can use gene dosage dif-
ferences as a way to regulate gene expression in a replication-
dependent manner. If these findings can be extrapolated to the
more complex scenario of mammalian cells (where replication
timing domains span megabase-sized regions containing doz-
ens of genes and replication origins), escaping dosage com-
pensation might constitute a potential new way of regulating
gene expression (Fig. 1 B).
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