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The stepwise accumulation of genomic alterations, such as mu-
tation or genetic loss of APC, KRAS, TP53, and SMAD4, was 
first described in colorectal cancer (CRC; Fearon and Vogelstein, 
1990). The mutated oncogenes and/or tumor suppressors coop-
eratively drive cancer progression. Therefore, characterization 
of impacts of these genomic alterations on the various signal 
transduction pathways is crucial for the development of targeted 
therapy in CRC. Until recently, cancer cell lines and genetically 
engineered mouse models (GEMMs) have been the experimen-
tal workhorses. Because most cancer cell lines are derived from 
advanced cancers carrying multiple driver mutations, roles of 
isolated mutations or defined combinations of such mutations 
have been difficult to investigate in these cell lines. GEMMs 
offer this opportunity, but throughput of GEMM-based strate-
gies is low, while detailed biochemical and cell-biological mea-
surements in vivo are also complex to perform.

Organoids established from transgenic mice provide one 
possible solution to overcome these limitations. Organoid cul-
ture methods for mouse intestinal epithelial stem cells were first 
established in 2009 (Sato et al., 2009). Intestinal organoids con-
tain Lgr5-positive adult stem cells that generate all intestinal 
cell lineages and recapitulate the architecture of proliferative 
crypt and differentiated villus units. Organoids can be expanded 
for long-term periods while remaining genetically and pheno-
typically stable. Since the first report on mouse intestinal epithe-
lium, adult stem cell–based organoids have been developed for 
a variety of normal and malignant mouse and human epithelial 
tissues including colon, stomach, liver, and pancreas (Clevers, 
2016). Importantly, organoids recapitulate architecture, func-
tionality, and the genetic signature of their original tissues and 
can be used as disease models when they are directly established 
from the affected tissue. In this issue, Riemer et al. established 
organoids from transgenic mice carrying several CRC-related 
mutations and investigated the relationship between cancer phe-
notypes in organoids and signaling activities (Fig. 1).

Riemer et al. (2017) generated transgenic mice carrying 
doxycycline-inducible oncogenes, i.e., stabilized β-catenin 
(CTN​NB1stab), PIK3CAH1047R, or both from a single expression 
cassette (CTN​NB1stab–PIK3CAH1047R). In vivo, these two on-
coproteins synergistically enhance the proliferation of intestinal 
epithelial cells. For a detailed analysis in vitro, the authors con-
verted intestinal epithelial stem cells into organoids (Fig. 1 A). 
Transcriptome analysis after the induction of CTN​NB1stab, 
PIK3CAH1047R alone, or both combined suggested that apopto-
sis-related genes were suppressed by the oncoproteins, whereas 
genes related to DNA replication and cell cycle progression 
were up-regulated (Fig.  1  B). In PIK3CAH1047R-induced or-
ganoids, metabolic signatures (for glycolysis and oxidative 
phosphorylation) were strongly induced. As expected, the in-
testinal Wnt-driven stem cell signature was seen specifically 
in CTN​NB1stab-induced organoids. These transcriptome-based 
results were validated by in vitro functional assays (Fig. 1 B), 
leading to the conclusion that both oncoproteins promote prolif-
eration and repress anoikis of intestinal epithelial cells, whereas 
the role of β-catenin in the maintenance of intestinal stem cell 
function is not compensated by the induction of PIK3CAH1047R.

Riemer et al. (2017) could not confirm previous studies 
showing that oncogenic PIK3CA would contribute to inva-
siveness of CRC cells cooperatively with activated β-catenin 
(Samuels et al., 2005; Leystra et al., 2012). Although Riemer 
et al. (2017) raised the possibilities that CTN​NB1stab- and 
PIK3CAH1047R-coexpressing organoids lacked a chemotactic 
response to growth factors or migrated as a collective form, 
they concluded that CTN​NB1stab and PIK3CAH1047R oncopro-
teins are not sufficient on their own to induce invasiveness or  
epithelial–mesenchymal transition in intestinal epithelial cells. 
The authors then quantified attachment of organoids to culture 
dish surface and motility in 2D. Although organoids tended not 
to attach to the plate surface when CTN​NB1stab or PIK3CAH1047R 
were induced alone, organoids in which both oncoproteins were 
induced frequently attached and spread in 2D. Finally, the au-
thors performed a nonbiased functional pathway analysis using 
a panel of pharmaceutical inhibitors against MEK (AZD6244), 
PI3K (GDC0941), AKT (MK2206), mTOR (Rapamycin and 
Torin 1), and GSK3β (Fig. 1 C). This type of analysis would be 
difficult to perform in experiments using transgenic mice. Con-
sistent with a previous study showing that Rapamycin is effec-
tive in Apc-deficient intestinal cells in mice (Faller et al., 2015), 

Direct effects of oncogenic proteins or inhibitor treatments 
on signaling pathways are difficult to assess in transgenic 
mice. In this issue, Riemer et al. (2017. J.  Cell Biol.  
https​://doi​.org​/10​.1083​/jcb​.201610058) demonstrate 
that oncogene-inducible organoids offer the experimental 
versatility of two-dimensional cell lines, while closely 
representing the in vivo situation.
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organoids producing CTN​NB1stab alone were highly sensitive to 
Rapamycin. Of note, these mutations both result in an activated 
Wnt pathway. The sensitivity to Rapamycin of CTN​NB1stab or-
ganoids was canceled by the acquisition of PIK3CAH1047R, sug-
gesting that Rapamycin would be effective only at the initial 
stage of colon tumors, i.e., when only Apc is mutant. Riemer 
et al. (2017) found other novel relationships between the phar-
maceutical inhibitors and the oncogenic mutants. For example, 
AZD6244 and Torin 1 significantly suppressed the growth of 
organoids produced by CTN​NB1stab alone and by both oncop-
roteins together. GDC0941 was highly effective for organoids 
producing CTN​NB1stab alone.

Riemer et al. (2017) further examined the phosphoryla-
tion levels of signaling molecules (AKT, 4EBP1, S6, GSK3β, 
ERK1/2, and MEK1/2) and oncogenic phenotypes, such as 
colony formation and cell attachment, upon inhibitor treatment 
(Fig.  1  C). Although phosphorylation status was not signifi-
cantly changed by the CTN​NB1stab alone, induction of both 
CTN​NB1stab and PIK3CAH1047R mutants resulted in increased 
phosphorylation levels of AKT, GSK3β, 4EBP1, and S6. After 
the inhibitor treatment, the authors observed bidirectional neg-
ative feedback between AKT and ERK pathways. Interestingly, 
their data suggested that oncogenic activation of β-catenin might 
play a key role in AKT to ERK signaling feedback in intesti-
nal cells. Furthermore, induction of both proteins in intestinal 
organoids resulted in uncoupled signaling between AKT and 
downstream mTORC1 events, even though mTORC1 activity 
is believed to be regulated by the PI3K–AKT pathway. These 
data may be helpful to understand the molecular mechanism of 
drug resistance caused by particular oncogenic mutants. In par-
ticular, recent studies have demonstrated that mTORC1 activ-
ity may predict drug efficacy (She et al., 2010; Corcoran et al., 
2013). 4EBP1, one of the downstream effectors of mTORC1, 
may represent a key molecule for organoid attachment as pre-
dicted when phosphorylation status was compared between the 
oncogenic combinations.

Because organoids can be established from various ep-
ithelial tissues in both mouse and human, the strategy is ap-
plicable to other types of cancers. A broad variety of GEMMs 
for human carcinomas exists (Kersten et al., 2017). Organoids 

generated from these models could be used for the mechanistic 
studies that use high throughput drug screening, and then fol-
lowed up with validation studies in the pertinent mouse model.

It should be mentioned that similarly defined cancer 
models can be engineered directly from human organoids by 
CRI​SPR/Cas9-mediated gene editing. Two studies (Drost et al., 
2015; Matano et al., 2015) have independently recapitulated 
CRC by introducing sequential mutations of genes that are 
commonly altered in CRC, i.e., APC, KRAS, TP53, SMAD4, 
and PIK3CA. Subsequent transplantation of these organoids 
into immunodeficient mice has allowed a detailed study of mi-
gration and metastasis in vivo (Fumagalli et al., 2017).

In conclusion, Riemer et al. (2017) show that oncogene- 
induced organoids derived from GEMM can be used as exqui-
site tools to understand oncogene-related signal pathways and 
cancer-related phenotypes in 3D organoids in vitro (Fig.  1). 
This strategy will facilitate the study of individual cancer- 
related gene changes and genetic interactions between these and 
provide the opportunity to accelerate the development of effec-
tive targeted cancer therapies.
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