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Isolation of vacuolar protein sorting (vps) mutants using bud-
ding yeast opened inroads to the evolutionarily conserved mo-
lecular machinery responsible for sorting proteins from the 
TGN and endosomes to the lysosome-like vacuole. Subsequent 
characterization of Vps proteins, combined with analysis of 
trafficking defects in vps mutants, contributed to understanding 
fundamental principles of protein traffic, including those that 
govern transport vesicle formation, targeting, and fusion. De-
spite these advances, functions of several Vps proteins remain 
undefined. One enigma is Vps13, the founding member of a 
conserved family that includes four members in humans (Vp-
s13A–D), three of which (A–C) are associated with inherited 
nervous system disorders (Velayos-Baeza et al., 2004). In this 
paper, De et al. provide insights into the structure of Vps13 and 
its role in membrane transport and organelle fusion.

The VPS13 gene family encodes large proteins that share 
homologous regions at the N and C termini and an internal do-
main of unknown function (Velayos-Baeza et al., 2004). The 
C-terminal region contains a putative PH domain (Fidler et al., 
2016) but otherwise there are no clear similarities to other pro-
teins. Analyses of yeast Vps13 and homologues in other species 
present a complex puzzle that hints at broad participation in 
membrane dynamics (Fig. 1). In addition to a role in traffic be-
tween the TGN and endosomes, Vps13 is necessary during mei-
osis and sporulation for formation of the prospore membrane 
(Park and Neiman, 2012). Furthermore, yeast Vps13 localizes 
at membrane junctions between mitochondria and vacuoles, 
mitochondria and endosomes, and the nucleus and vacuoles 
(Lang et al., 2015; Park et al., 2016). Mutation of VPS13 re-
duces mitochondrial integrity and is lethal in combination with 
mutations that affect ER–mitochondrial connections, suggest-
ing a role in transfer of materials that is thought to occur at such 
organelle junctions. In other species, VPS13 family members 
have been implicated in autophagy, phagocytosis, organization 
of the Golgi complex, and actin cytoskeletal dynamics (Sama-
ranayake et al., 2011; Seifert et al., 2011; Shiokawa et al., 2013; 

Muñoz-Braceras et al., 2015). It is unclear which of these roles 
rely on common functions and which are a result of specializa-
tion of individual family members.

Given the plethora of attributed roles, specific assays are 
needed to define Vps13 function and build paradigms to test in 
other systems. De et al. (2017) assessed Vps13 function in two 
yeast cell-free assays developed to dissect vesicle-mediated 
transport from the TGN to the prevacuolar compartment (PVC)/
late endosome or homotypic fusion of TGN membranes. Such as-
says can provide direct measures of transport through a pathway 
without complexities of alternative routes and indirect effects that 
can occur in vivo. In the TGN-PVC assay, active fractions from 
semi-permeabilized cells are prepared from two yeast strains, one 
expressing a TGN-localized protease (donor) and the other ex-
pressing a substrate that resides in the PVC (acceptor). Mixing 
the two fractions results in transport of the protease to the PVC 
and cleavage of the substrate, dependent on factors necessary for 
transport vesicle formation at the TGN and vesicle fusion to the 
PVC in vivo. De et al. (2017) tested whether Vps13 was required 
for TGN-PVC transport by preparing fractions from wild-type 
or VPS13 deletion (vps13Δ) strains. By this assay, vps13Δ ac-
ceptor fractions were completely inactive, indicating that Vps13 
is critical at the PVC where vesicle docking and fusion occur. 
In contrast, Vps13 was partly dispensable in the donor fraction 
where transport vesicles containing the cargo protease form from 
the TGN. The TGN homotypic fusion assay is based on the same 
principles used for the TGN-PVC assay except the substrate is 
localized to the TGN rather than the PVC. In this case, the prote-
ase gains access to the substrate by direct fusion of the donor and 
acceptor TGN without vesicle intermediates. In this assay, Vps13 
was required in both donor and acceptor fractions, suggesting 
that Vps13 plays a key role in membrane docking and/or fusion.

A powerful advantage of cell-free transport assays is the 
opportunity to test for direct function by adding back a puri-
fied component to complement defects in extracts from mutant 
strains. De et al. (2017) used affinity purification strategies to 
isolate a soluble form of Vps13 from yeast cells engineered 
to overexpress the protein. Purified Vps13 fully restored both 
TGN-PVC transport and TGN homotypic fusion when added 
back to vps13Δ fractions, providing strong evidence that Vps13 
directly acts in both processes.

One prior clue to Vps13 function comes from studies 
of the sporulation defect in vps13Δ cells, which indicate that 
expansion of the prospore membrane is slowed (Park and 
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Neiman, 2012). Expansion occurs by vesicle fusion to the 
growing prospore membrane, which requires phospholipase 
D–mediated production of phosphatidic acid (PA), a phospho-
lipid that can promote membrane fusion. Vps13-deficient cells 
exhibit reduced levels of PA and its precursors, phosphatidyli-
nositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, 
in the prospore membrane, suggesting a role for Vps13 in regu-
lating these phospholipids. Following up on this clue, De et al. 
(2017) determined that purified Vps13 binds selectively to sev-
eral phospholipids in the context of synthetic liposomes, most 
avidly to PA but also to mono- and diphosphorylated phospha-
tidylinositols. Fragments from the conserved N- and C-terminal 
regions interacted with a subset of the lipids recognized by full-
length protein, suggesting multiple lipid-binding sites along 
Vps13. Although the significance of lipid binding remains to be 
determined, C- or N-terminal lipid-binding fragments inhibited 
cell-free TGN-PVC transport, perhaps by interfering with full-
length Vps13 present in the assay.

Purified Vps13 also allowed De et al. (2017) to pursue the 
functional significance of a long-standing observation that Vps13 
interacts with the yeast centrin Cdc31, a component of the spin-
dle pole body (SPB) that serves as the microtubule organizing 
center in yeast (Kilmartin, 2003). Cdc31 has a well-characterized 
role in SPB duplication during cell division, but has also been 
associated with independent processes including cell morpho-
genesis and integrity (Ivanovska and Rose, 2001). De et al. 
(2017) found that purified Vps13 was associated with Cdc31, 
suggesting that they form a stable complex. To assess possible 
roles in Vps13-mediated transport, strains expressing a collection 
of temperature-sensitive cdc31 (cdc31-ts) alleles were screened 
for defective vacuolar protein sorting in vivo. Many, but not all, 
of the alleles caused defects at the nonpermissive temperature. 
These alleles harbor single mutations spread throughout Cdc31, 
including two in the N-terminal region that do not affect SPB 
duplication or cell morphogenesis/integrity (Ivanovska and 
Rose, 2001). This provided evidence that Cdc31 acts specifically 
in vacuolar protein sorting, independently of roles in the other 
processes. In cell-free TGN-PVC and TGN homotypic fusion 
assays, fractions from strains expressing a cdc31-ts allele (affect-
ing multiple pathways) displayed defects that mirrored those of 
vps13Δ fractions. Activity of cdc31-ts fractions was restored in 

both assays by adding Vps13 purified from wild-type cells but 
not from cdc31-ts cells. Strikingly, Vps13 purified from cdc31-ts 
cells was also unable to complement fractions from vps13Δ cells 
even though the fractions presumably contained normal levels 
of wild-type Cdc31. Together these findings offer compelling 
evidence that a complex of Vps13 and active Cdc31 is required 
for Vps13 function in vesicle-mediated TGN-PVC transport 
and TGN homotypic fusion.

One final tantalizing finding was made possible by the 
availability of purified Vps13—the overall architecture as de-
termined by single particle electron microscopy. Vps13 par-
ticles have a distinctive shape, with an extended trunk region 
flanked by a loop at one end and a hook-like structure at the 
other (Fig. 1). Two types of class averages showed the hook pro-
truding from the trunk in either the same or opposite direction 
as the loop, suggesting rotational flexibility in the trunk. How 
Vps13 is arranged in the two particles, where Cdc31 is located, 
whether the loop can open and close, and how the distinguish-
ing features contribute to Vps13 function are just some of the 
questions raised by this remarkable shape.

The work of De et al. (2017) has brought parts of the 
Vps13 puzzle into focus and identified new pieces: cell-free 
assays suggest a prominent role in docking and/or fusion and 
a lesser role in vesicle formation, there are multiple sites for 
binding to phospholipids known to be important in membrane 
trafficking, association with Cdc31 is necessary for function, 
and the protein assumes an unusual architecture. The challenge 
for the future will be to put these pieces together for a more 
complete picture of Vps13 function.

The newly identified lipid binding properties of Vps13 may 
be a key to its function, thus it will be important to define the 
binding sites and test their roles in vitro and in vivo. By anal-
ogy to other components of the trafficking machinery, phospho-
inositide binding may be important for Vps13 recruitment to the 
appropriate membrane. Lipid binding could also contribute to 
activity in docking and/or fusion. For example, sites for different 
phosphoinositides could provide a way for Vps13 to bridge mem-
branes from two sources, as would occur in TGN-derived vesicle 
docking to the PVC. It is intriguing that purified Vps13 bound 
most strongly to PA, which can promote membrane fusion. Nota-
bly, the lipids that are preferentially bound by purified Vps13 are 

Figure 1.  Myriad roles of Vps13 family members. De et al. 
(2017) reveal the architecture of yeast Vps13 (center) and 
define roles with Cdc31 in TGN to PVC traffic and TGN ho-
motypic fusion (red arrow). Other arrows indicate functions 
associated with Vps13 in yeast (sporulation, mitochondrial 
integrity, and organelle junctions), humans (mitochondrial in-
tegrity, actin dynamics, autophagy, and Golgi organization), 
Dictyosteleum discoideum (autophagy), and Tetrahymena 
thermophila (phagocytosis). Human disorders caused by mu-
tations in VPS13 genes are shown in the dark green oval. 
VPS13D has not been linked to human disease. The Vps13 
image was originally published by De et al. (2017).
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reduced in Vps13-deficient cells during sporulation. If the same is 
true during normal growth, then a general property of Vps13 may 
be a regulatory loop where Vps13 binding to membranes leads to 
an increase in lipid determinants that can promote or otherwise 
regulate Vps13 interaction with the membrane. In this case, and 
in sporulating cells, the mechanism by which Vps13 regulates 
lipid levels needs to be addressed.

Cdc31 association raises other important questions. How 
does Cdc31 contribute to Vps13 activity? Cdc31 could be a 
core structural component that helps form/stabilize the unusual 
structure. It could also regulate Vps13 activity more dynami-
cally. Cdc31 is a calcium-binding protein and so could confer 
calcium sensitivity to Vps13 activity. Consistent with this idea, 
cell-free TGN homotypic fusion is blocked by rapid chela-
tion of calcium, suggesting involvement of transient calcium 
flux (Brickner et al., 2001). However, calcium binding is not 
required for some Cdc31-mediated activities. Consequently, 
it will be informative to assess the role of Cdc31 and calcium 
binding in Vps13 structure and function in TGN fusion, TGN-
PVC transport, and prospore membrane formation.

The possibility of roles for lipid binding and regulation, 
Cdc31 and calcium, and the distinctive structure also apply to 
Vps13 function at organelle junctions. Multiple lipid binding 
sites on Vps13 are well-suited for bridging two organelle mem-
branes at a junction and perhaps for facilitating lipid exchange. 
Vps13 is localized to junctions between organelles that are 
major repositories of calcium—ER/nuclear envelope, vacuole, 
and mitochondria—which may, in some yet-to-be defined way, 
contribute to calcium regulation of Vps13 via Cdc31.

Considering the findings of De et al. (2017), it appears that 
Vps13 may commonly act in processes that involve close jux-
taposition of membranes, making it tempting to speculate that 
one core function of Vps13 is to physically connect membranes. 
This hypothesis may also be useful in guiding models of Vps13 
function in other species (Fig. 1). In humans, mutations in three 
of the four VPS13 genes cause distinct neurodegenerative or 
developmental disorders: chorea acanthocytosis (VPS13A), Co-
hen’s syndrome (VPS13B), and autosomal recessive Parkinson’s 
disease (VPS13C). Relatively little is known about the genes or 
the molecular and cellular basis of the diseases, yet there are re-
semblances to yeast Vps13 that are consistent with a core func-
tion in bridging membranes. Vps13A has been localized to Golgi 
and/or vesicles in some cell types and plays a role in maintaining 
specific phosphoinositide levels (Park et al., 2015). Vps13B is 
associated with the Golgi complex and is implicated in connect-
ing adjacent membrane stacks in the Golgi ribbon (Seifert et al., 
2011). Vps13C partly localizes to mitochondria and plays a role 
in mitochondrial integrity (Lesage et al., 2016). In a recent study, 
disease-causing missense mutations in VPS13A, when trans-
ferred to yeast Vps13, most frequently caused specific defects 
in mitochondrial integrity, suggesting that disease might stem in 
part from mitochondrial dysfunction (Park et al., 2016). How-
ever, to date VPS13A has not been detected on mitochondria in 
human cells, so the significance of the yeast phenotypes for the 
human disease awaits resolution. As experiments such as these 
add to the complexity of the Vps13 puzzle, advances in under-
standing the fundamental properties of Vps13, like those of De 
et al. (2017), will be critical for piecing together the full picture.
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