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Introduction
Microscopy assays enable the identification of cell biologi-
cal phenotypes through the quantification of cell morphology. 
These image-based methods are often used in genetically or 
environmentally sensitized conditions to probe the relationship 
between cell structure and function in response to a perturbation 
of interest (Liberali et al., 2015). For example, many groups 
have used light microscopy to investigate the phenotypic conse-
quences of single-gene knockouts on cell morphology (Turner 
et al., 2012). By integrating fluorescently labeled proteins or 
staining specific organelles, it is possible to investigate more 
complex subcellular phenotypes (Boutros et al., 2004; Negishi 
et al., 2009). Image-based assays of cellular and subcellular 
phenotypes have been performed in a variety of organisms and 
cell lines probing numerous cell biological processes, rang-
ing from the effects of chemical treatments on protein subcel-
lular localization in yeast (Chong et al., 2015) to the genetic 
contributors of more complex phenotypes such as the mitotic 
exit program in human cell lines (Schmitz et al., 2010; Matti-
azzi Usaj et al., 2016).

Technological advancements have led to the develop-
ment of automated fluorescent confocal microscopes that in-
crease throughput, enabling thousands of images to be acquired 
in a single day. This increase in data production has resulted 
in a new demand for efficient, automated computational im-
age-analysis strategies to overcome the resultant bottleneck 

associated with manual data scoring. Perhaps more importantly, 
computational analyses also enable identification and quanti-
fication of subtle phenotypes that would otherwise be impos-
sible to score manually.

Although there is no single solution for computational 
analysis of biological images, most image analysis pipelines 
follow a common workflow in which individual cells are iden-
tified as unique objects, from which phenotypic measurements, 
or features, are extracted from these single cells. These quanti-
tative features typically include measures of cell shape and size, 
pixel intensity, and texture. Depending on the research goal, the 
features can then be clustered or classified in a variety of dif-
ferent ways to enable an unbiased assessment of phenotypes of 
interest (Fig. 1). For classification or clustering, single-cell data 
from an individual experiment or treatment are typically aggre-
gated in a manner that reflects distributions within populations.

Several different groups have used this general imaging 
platform in a targeted approach to quantify a single process 
or cellular function, which is often referred to as phenotypic 
screening. During the analysis of screening data, specific 
features relevant to the phenotype of interest are considered 
(Caicedo et al., 2016). For example, in a screen designed to 
identify cell size mutants, size-based image features will be 
identified and used to discriminate populations of cells that are 
unusually small or large relative to a wild-type size distribu-
tion (Kitami et al., 2012). Many of the studies published using 
high-throughput microscopy have used this targeted approach, 
considering one or two single-cell features in their analysis 
(Singh et al., 2014). Alternatively, phenotypic profiling involves 
a less targeted approach in which many features of the sam-
ple are quantified, allowing for the identification of as many 
properties of the sample as possible and enabling the features 
that describe these properties to differentiate samples from 
one another in an unbiased manner (Caicedo et al., 2016). For 
example, in a high-throughput chemical screening project in 
which cell samples are exposed to an array of small molecules, 
changes in cell morphology can be quantified and used to infer a 
mechanism of drug action in downstream experiments (Perlman 
et al., 2004; Ljosa et al., 2013).

Given this unbiased approach to phenotypic profiling, 
multiple analysis strategies allow researchers to translate mor-
phological features into meaningful biological information. 

With recent advances in high-throughput, automated mi-
croscopy, there has been an increased demand for effec-
tive computational strategies to analyze large-scale, 
image-based data. To this end, computer vision ap-
proaches have been applied to cell segmentation and fea-
ture extraction, whereas machine-learning approaches 
have been developed to aid in phenotypic classification 
and clustering of data acquired from biological images. 
Here, we provide an overview of the commonly used com-
puter vision and machine-learning methods for generat-
ing and categorizing phenotypic profiles, highlighting the 
general biological utility of each approach.
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Chief among these analyses are machine-learning methods that 
encompass data-driven models for both supervised and unsu-
pervised learning (Tarca et al., 2007). Machine-learning models 
fit their internal parameters to the data being profiled, meaning 
that in a biological context, these approaches can be used to 
learn functional relationships from the data with minimal in-
tervention or bias. In this article, we focus on how both unsu-
pervised and supervised machine-learning strategies have been 
used to extract quantitative cell biological information from 
high-throughput, image-based data for phenotypic profiling.

Generating phenotypic profiles
Cell segmentation.� Toward the generation of phenotypic 
profiles, individual objects of interest, such as cells or whole 
organisms, must first be identified and distinguished from the 
background of an image, in a process called segmentation 
(Bengtsson et al., 2004; Meijering, 2012; Kraus and Frey, 
2016). The most widely used segmentation algorithms include 
thresholding, region growing, edge detection, and Markov 

random fields (MRFs). In thresholding, objects of interest are 
differentiated from background based on an optimal difference 
in pixel intensity, whereas in region growing, objects are identi-
fied by expanding from a seed point, such as the labeled nucleus 
of a cell, to neighboring pixels based on a membership criterion 
such as texture or intensity (Bengtsson et al., 2004; Beneš and 
Zitová, 2015). Edge-detection algorithms, such as Canny edge 
detection (Canny, 1986), segment objects using cell boundaries 
(i.e., contours or edges) inferred in images based on pixel inten-
sity gradients. In MRFs, graphical models are used to incorpo-
rate information from a variety of sources, and segmentation is 
based on the class probability of each pixel assigned  
by approximate inference algorithms such as expecta-
tion-maximization (Chen et al., 2006).

There is no universally preferred segmentation approach; 
rather, the choice of algorithm depends on required computa-
tional efficiency, performance, and type of images being seg-
mented. For example, bright-field or differential interference 
contrast images typically require edge detection–based algo-
rithms (Chen et al., 2006), whereas fluorescent images can rely 
on thresholding and region-growing techniques (Wählby et al., 
2004). Another factor is the number of images that need to be 
processed. For large-scale datasets, it is preferable to use algo-
rithms that scale well, such as thresholding and region growing, 
in place of more complex methods such as MRFs, which can 
take considerably longer to run (Celeux et al., 2003).

Feature extraction
After segmentation, biologically useful information needs to 
be extracted from sample images (Fig. 2). As noted earlier, in 
phenotypic profiling, a large variety of features are typically 
extracted to achieve an unbiased quantification of sample mor-
phology. These methods are based on classic computer vision–
based feature extractors and include morphology and texture 
measurements. Morphological features characterize object 
size and shape, including direct measurements such as area, 
or more complex shape features (Boland et al., 1998). Texture 
features quantify spatial statistics of pixel intensities, includ-
ing measurements from different channels (e.g., mean, sum, 
standard deviation) and low-level patterns such as edges and 
blobs (Gabor, 1946; Haralick, 1979). Several groups have pack-
aged these sets of feature extractors with modular segmentation 
pipelines into software platforms that are publicly available and 
widely used (Eliceiri et al., 2012). Specific examples of popular 
platforms include CellProfiler (Carpenter et al., 2006), Cell-
Cognition (Held et al., 2010), and PhenoRipper (Rajaram et al., 
2012). Outputs from these platforms typically contain hundreds 
to thousands of different features for each object and image. Al-
though these methods are mostly applicable to 2D images, new 
tools are being developed to extract features from 3D images as 
well (Ollion et al., 2013).

Feature selection and dimensionality reduction
Because phenotypic profiling typically involves the extraction 
of many features, it is important to differentiate useful features 
for classifying cells from those that are uninformative, irrele-
vant, or redundant. Unnecessary features increase the dimen-
sionality of the feature space and introduce noise and irrelevant 
correlations that can negatively affect downstream analysis. 
The two classes of approaches that can be used to reduce the 
size of the feature space are feature selection and dimension-
ality reduction. Feature-selection techniques choose a subset 

Figure 1.  General workflow for the generation and classification of 
phenotypic profiles. (A) Generation of phenotypic profiles involves 
high-throughput image acquisition, followed by segmentation, feature ex-
traction, and feature selection. (B) A variety of machine-learning tasks can 
then be applied depending on the research goal, including clustering, out-
lier detection, and classification.
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of features from the original feature space that are determined 
to be most relevant to the machine-learning task (Saeys et al., 
2007). For example, Loo et al. (2007) selected a subset of in-
formative features by iteratively removing other subsets that did 
not affect downstream performance of their classifier. In con-
trast, dimensionality-reduction techniques transform the orig-
inal feature space into lower dimensions using linear methods 
(such as principal components analysis [PCA]) or nonlinear 
techniques (such as t-distributed stochastic neighbor embed-
ding; Van Der Maaten and Hinton, 2008) that preserve the vari-
ance in the dataset. The selected or transformed set of features 
can then be treated as a single vector representing the pheno-
typic profile of a given sample.

Dimensionality-reduction algorithms can be fitted di-
rectly to most datasets and automatically provide reduced 
feature representations. In contrast, feature-selection methods 
require more effort and domain expertise to implement. How-
ever, a significant benefit of feature selection is that the original 
features are maintained, thereby preserving the interpretability 
of the features used in downstream models.

Clustering and classifying phenotypic profiles
After selecting the features that best represent the phenotypic 
information in a dataset, a variety of computational strategies 
can be used to cluster or classify the resultant profiles into bio-
logically interpretable groups. The choice of approach is largely 
dependent on the distribution of distinct phenotypes repre-
sented in the dataset as well as any prior knowledge of what 
those phenotypes might be.

In machine-learning terminology, clustering is a form of 
unsupervised learning in which models are trained using an un-
labeled dataset and patterns are discovered by grouping similar 
data points. In contrast, classification is a form of supervised 
learning in which models are trained on labeled datasets to gen-
erate predictions on unseen data points (Libbrecht and Noble, 
2015). Choosing whether to use unsupervised or supervised 
learning ultimately depends on how well defined classes of 

phenotypes are a priori, as well as how many training examples 
can be identified for each phenotypic category. A third approach 
is outlier detection, in which normal or wild-type phenotypes 
are known and the goal is to find examples of rare phenotypes 
that differ significantly from the reference samples. Here we re-
view clustering, outlier detection, and classification approaches.

Clustering.� Clustering is typically the simplest ap-
proach for grouping phenotypic profiles into biologically inter-
pretable classes and is appropriate when the desired or expected 
output of classification is not known (Fig. 3 A). For example, 
Young et al. (2008) profiled a library of ∼6,500 compounds for 
cell cycle defects in HeLa cells. In that study, hierarchical clus-
tering of the profiles generated from imaging of the top ∼200 
most responsive compounds identified seven phenotypic cate-
gories. The cell cycle defects represented in those clusters cor-
responded with compound structure similarity, suggesting that 
the clusters were driven by related molecules that share a com-
mon biological target. Clustering was an ideal approach for 
classifying and interpreting these data, because the dataset in-
cluded a variety of complex phenotypes, and no knowledge of 
the phenotypes was required before classification. Furthermore, 
had the researchers assumed a specific phenotypic output, some 
significant classes may have been overlooked or misclassified, 
exemplifying the importance of the unsupervised approach. For 
this reason, hierarchical clustering has been implemented by 
many groups in several different organisms (Bakal et al., 2007; 
Seewald et al., 2010; Gustafsdottir et al., 2013; Handfield et al., 
2013) and is often the first approach used if there is any uncer-
tainty regarding the expected phenotypic output.

Outlier detection.� Although clustering is an ideal un-
supervised approach for classification of common phenotypes, 
it may fail to identify rare profiles within a dataset. For exam-
ple, if a particular phenotype is present at a low frequency, pro-
files representing that phenotype will likely get grouped into a 
similar, yet biologically distinct, cluster; this may cause rare 
profiles to be misclassified and their underlying biology to be 
misinterpreted or overlooked by the researcher.

Figure 2.  Micrographs of individual budding yeast cells identified during segmentation, with illustrative examples of four types of features that could be 
identified during feature extraction. In these micrographs, red pixels mark the cellular cytosol, whereas green pixels represent GFP-fusion proteins that 
localize to unique subcellular structures in each cell. Area features are concerned with the number of pixels in the segmented region, GFP intensity features 
consider overall green pixel brightness, shape features examine the contours of the cell objects, and texture examines the spatial arrangement of pixel 
intensities. These features, and many others, are quantified for each cellular object and then used in downstream clustering or classification.
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Outlier detection seeks to identify profiles that are highly 
dissimilar from the remaining data (Knorr and Ng, 1998; Hodge 
and Austin, 2004; Fig.  3  B). Many different algorithms exist 
for performing outlier detection based on statistics (Barnett and 
Lewis, 1994), distance (Knorr and Ng, 1998; Ramaswamy et 
al., 2000), density (Breunig et al., 2000), clustering (Jain et al., 
1999; He et al., 2003), and deviation (Arning et al., 1996). One 
of the most commonly used methods is density-based outlier de-
tection, which identifies outliers based on an object’s neighbor-
hood density (Breunig et al., 2000). The power of density-based 
methods is that they provide improved performance relative to 
methods that use statistical or computational geometry princi-
ples, but they suffer from an inability to scale well (Orair et 
al., 2010). A second commonly used approach is distance-based 
outlier detection, which is based on the k-nearest neighbor al-
gorithm (Knorr and Ng, 1998) and uses a well-defined distance 
metric (e.g., Euclidean, Mahalanobis) to determine outliers 
(Ramaswamy et al., 2000). Put simply, the greater the distance 
of the profile from its neighbors, the more likely it is to be an 
outlier. The power of distance-based outlier detection lies in its 
simplicity and scalability to large datasets with high dimension-
ality (Orair et al., 2010). However, outlier detection identifies 
images that are very different from other images, and these 
outliers must be manually inspected to assign them biological 
significance. This process may allow for the detection of rare 
phenotypes that are difficult to detect with other methods.

Although outlier detection algorithms have been widely 
used in fraud detection and equipment monitoring, as well as for 
removal of biological noise, they have been less developed for 
high-dimensional data such as images (Ju et al., 2015; Li et al., 
2015). One important biological application of outlier detection 
is in biomedical image analysis. For example, a statistical-based 
outlier detection method was used to provide reliable and fully 
automated quantitative diagnosis of white-matter hypersensitiv-
ities in the brains of elderly subjects (Caligiuri et al., 2015).

Classification.� Although clustering and outlier detec-
tion are powerful unsupervised methods for phenotypic profile 
classification, they both require substantial evaluation and vali-
dation of the identified categories to enable cogent biological 
interpretation. Alternatively, supervised methods necessitate 
that phenotypic categories are established before classification, 
making evaluation and validation of classes much easier. Clas-
sification is one of the most commonly used approaches for 
phenotypic analysis of image-based data. Broadly, classifiers 

are preassigned a distinct set of categorical class outputs (sub-
cellular localization classes, mutant compartment morphology 
classes, etc.), and the classifier is then trained to recognize fea-
ture profiles that are representative of each class, such that novel 
profiles can be classified into one or more discrete output classes 
based on feature similarity to the training data (Libbrecht and 
Noble, 2015). Next we review the two major types of classifiers, 
linear and nonlinear models.

Linear classifiers.� Linear classifiers combine input 
features in a linear combination and then assign classification 
based on the output value. As such, linear classifiers define a 
decision boundary, called a hyperplane, that separates the 
classes in the dataset (illustrated for a 2D example in Fig. 3 C). 
Several types of linear classifiers have been used to analyze im-
age-based data. For example, naive Bayes is a linear classifica-
tion model that uses Bayes theorem to analyze feature 
probabilities and assumes feature independence. This approach 
is particularly useful when the dataset is large and contains 
many different features. Jolly et al. (2016) recently applied a 
naive Bayes classifier to images generated from a genome-wide 
RNAi screen of lysosome motility in the Drosophila melano-
gaster S2 model cell system. Images were classified from more 
than 17,000 gene knockdowns, and samples with an abnormal 
degree of lysosomal motility were identified with 94% accu-
racy. A similar model that assumes equal covariance among the 
classes is Fisher’s linear discriminant (Wang et al., 2008). This 
approach assigns weights to each feature in the dataset, high-
lighting features that have high variance in the data and may be 
more useful for classification. This model was recently applied 
to the study of neuronal differentiation in PC12 cells (Weber et 
al., 2013) and has been used to classify a diverse range of 
image-based datasets (Wang et al., 2008; Horn et al., 2011; 
Pardo-Martin et al., 2013). Fisher’s method performs best for 
low-dimensional, small datasets, whereas the combination of 
PCA and naive Bayes can provide a performance similar to 
Fisher’s method when applied to large datasets.

A second major group of linear classifiers directly model 
decision boundaries. In other words, these models directly 
predict class membership given features, without modeling 
the joint probabilities of classes and features (Ng and Jordan, 
2002). A common example is a linear support vector machine 
(SVM), which defines a hyperplane that separates two classes 
by maximizing the distance between the hyperplane and the 
data points from opposite classes closest to each other (called 

Figure 3.  Schematic representation of unsupervised and supervised methods to classify phenotypic profiles. (A–D) Each shape represents one object in 
the dataset. All features associated with each object are reduced to 2D feature space. D
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support vectors; Noble, 2006). This hyperplane is generated 
based on images of manually annotated samples, and the SVM 
classifier assigns membership to new data points based on their 
positions relative to the hyperplane (Weston et al., 2000).

Chong et al. (2015) recently generated an ensemble of ∼60 
binary linear SVM classifiers to assign GFP-fusion proteins in 
images of budding yeast cells to 16 distinct subcellular com-
partments. Classification accuracy was compartment specific, 
but on average, the SVM classifier ensemble performed with 
>70% precision and recall. SVM classifiers were useful for an-
alyzing this set of protein subcellular localization data, largely 
because of the high quality of the training set. In this case, the 
training set was composed of high-quality ground-truth exam-
ples of GFP-fusion proteins localized to distinct compartments 
and reported in the abundance of literature on manually scored 
protein localizations in budding yeast.

Nonlinear classifiers.� Nonlinear classification algo-
rithms are required when the decision boundary is nonlinear 
and potentially discontinuous (Fig. 3 D). These algorithms are 
more complex than linear classifiers and generally require more 
training data to fit. For example, the SVM classifiers described 
earlier can be used to produce nonlinear decision boundaries if 
nonlinear kernel functions are used. These functions transform 
the feature space before fitting the SVM model for classifica-
tion, enabling nonlinear decision boundaries in the original fea-
ture space (Weston et al., 2000). Nonlinear SVM classifiers 
have been used to distinguish aberrant HeLa cell morphology 
after RNAi-mediated gene knockdown (Fuchs et al., 2010). In 
that study, cells were classified into one of 10 distinct morpho-
logical classes, including groups for elongated, enlarged, or 
condensed morphologies as well as cell cycle arrest phenotypes. 
Numerous other groups have also taken advantage of SVM 
classifiers to classify morphological phenotypes in human cells, 
including mutant morphology (Schmitz et al., 2010), cell cycle 
arrest phenotypes (Neumann et al., 2010), and subcellular local-
ization classes (Conrad et al., 2004).

Another example of a nonlinear classification algorithm 
is a random forest (RF) classifier. The underlying principle of 
an RF classifier is to use a series of decision/classification trees 
that map the features of a sample to a class output. These are 
referred to as classification trees because of their branch-like 
structure in which features are conjugated in a path such that 
a particular combination will trickle down to a resultant class 
output. RF classifiers combine an ensemble of uncorrelated 
decision trees with random feature combinations to reduce the 
variance in the data and help resolve issues with overfitting the 
data to the training set (Hastie et al., 2005). Roosing et al. (2015) 
performed an siRNA knockdown study of ∼18,000 genes in a 
human cell line to look for genes that might be implicated in 
cilia formation. After extracting and selecting 18 nonoverlap-
ping cellular features, an RF classifier was trained on positive 
(aberrant cilia) and negative (wild-type cilia) instances.

Considerations.� Validation and testing are both im-
portant steps that must be performed on separate datasets to en-
sure that a classifier can generalize to new datasets. Classifiers 
update their internal parameters during the training phase in a 
manner that reduces the error rates between predicted values 
and the given labels on the training set. With many nonlinear 
classifiers (and some linear classifiers), these updates may con-
tinue to the point where the model’s performance begins to de-
teriorate on unseen validation data but continues to improve on 
the training set. This behavior is referred to as overfitting to the 

training dataset. Overfitting becomes more severe as the model 
complexity (i.e., the number of trainable parameters in the 
model) increases relative to the size of the dataset. An approxi-
mate guideline is that the number of data points in the training 
set should be a small multiple of the number of parameters in 
the model (∼5–10). An additional class of techniques that pre-
vent complex models from overfitting to the training data are 
called model regularization. Regularization typically modifies 
the model training procedure in a manner that prevents the mod-
el’s parameters from fitting to noise or specificities in the train-
ing data. To evaluate whether models are overfitting, two 
separate datasets are typically held out and are used to ensure 
that models generalize to new datasets. The validation set is 
used to optimize the model, whereas the test set is a held-out 
dataset used only with the final implementation to compare dif-
ferent classification approaches. For small datasets, an alterna-
tive to held-out validation sets is k-fold cross validation, in 
which the model is repeatedly trained k times on k separate sub-
sets of the available data and evaluated on the remaining data 
during each repetition. In the extreme case, this is called leave-
one-out cross validation, in which the model is repeatedly 
trained by leaving out one data point and is then validated on the 
left-out data point. For both forms of cross validation, the mean 
of the validations across the repetitions is used as the valida-
tion metric (Bishop, 2006).

The approaches we have described so far aim to profile 
individual cells, but researchers often need to summarize these 
findings on a per-sample or population basis. Various methods 
are used to aggregate single-cell profiles, including techniques 
that maintain information regarding subpopulation heteroge-
neity. The most straightforward methods for aggregating sin-
gle-cell profiles across treatment conditions include calculating 
statistics, such as the mean or median across the population, for 
each feature (Ljosa et al., 2013). When comparing conditions, 
statistical tests that include variance estimates, such as t tests 
and Z-factors, may be used (Singh et al., 2014). In addition, 
the Kolmogorov–Smirnov statistic is a popular metric, as it 
does not assume normal distribution of features (Perlman et al., 
2004) and compares population distributions directly. Finally, 
pipelines that categorize individual cells based on clustering, 
classification, or small subsets of descriptive features can be 
used to study how the cell subpopulation proportions change 
under different conditions (Snijder et al., 2009).

Perspective
Typically, research groups implement the classification ap-
proach that works best for their particular dataset or that they 
are the most familiar with implementing. However, this strat-
egy can lead to duplicated efforts, as new image sets often re-
quire labeling new training sets for classification, even when 
classifying identical phenotypes seen in previous assays. This 
is largely because many of the classic machine-learning strat-
egies described here fail to discover the intricate structure of 
large datasets, making it difficult to apply them to multiple as-
says. This difficulty is partly a result of the feature extraction 
and dimensionality reduction steps, which typically vary for 
different assays. Recently, deep learning technologies have 
been developed that learn feature representations and classifi-
cation boundaries directly from raw pixel data. In deep learn-
ing, multilayer, nonlinear classifiers called neural networks 
use back-propagation during training to learn how the network 
should update its internal parameters to minimize classification 
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error in each layer, ultimately discovering intricate hierarchical 
feature representations that can be broadly applied to multiple 
image sets (LeCun et al., 2015).

Based on this approach, deep learning networks have re-
cently surpassed human-level accuracy at classifying modern 
object recognition benchmarks (Krizhevsky et al., 2012). Deep 
learning has been applied to numerous types of biological data 
for modeling gene expression (Chen et al., 2016a,b) and pre-
dicting protein structure (Zhou and Troyanskaya, 2015), DNA 
methylation (Wang et al., 2016), and protein–nucleic acid in-
teractions (Alipanahi et al., 2015). Deep learning has also been 
used to classify protein localization in yeast and mechanisms of 
action in a publicly available drug screen (Kraus et al., 2016; 
Pärnamaa and Parts, 2016 Preprint). Based on the success of 
deep learning, its application to biological image data should 
overcome the pitfalls associated with conventional analysis 
pipelines, with the potential to automate the entire process of de-
veloping analysis pipelines for classifying cellular phenotypes.
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