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DAAMT stabilizes epithelial junctions by restraining
WAVE complex—dependent lateral membrane motility
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Masatoshi Takeichi'
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2Department of Biology, Faculty of Sciences, Kyushu University, NishiKu, Fukuoka 819-0395, Japan

Epithelial junctions comprise two subdomains, the apical junctional complex (AJC) and the adjacent lateral membrane
contacts (LCs), that span the majority of the junction. The AJC is lined with circumferential actin cables, whereas the LCs
are associated with less-organized actin filaments whose roles are elusive. We found that DAAMT1, a formin family actin
regulator, accumulated at the LCs, and its depletion caused dispersion of actin filaments at these sites while hardly of-
fecting circumferential actin cables. DAAM1 loss enhanced the motility of LC-forming membranes, leading to their inva-
sion of neighboring cell layers, as well as disruption of polarized epithelial layers. We found that components of the
WAVE complex and its downstream targets were required for the elevation of LC motility caused by DAAMT loss. These
findings suggest that the LC membranes are motile by nature because of the WAVE complex, but DAAM1-mediated actin
regulation normally restrains this motility, thereby stabilizing epithelial architecture, and that DAAMT1 loss evokes inva-

sive abilities of epithelial cells.

Introduction

Epithelial cells organize into a polarized two-dimensional
sheet. These sheets are normally stable, but their ordered ar-
chitecture is often disrupted in various pathological processes
such as cancer invasion and metastasis. Invasive cancer cells
form podosomes or invadopodia from their basal membranes,
which allow them to infiltrate into extracellular matrices (Mur-
phy and Courtneidge, 2011). These cells also tend to lose their
original polarity and normal cell-cell association (Gupta and
Massagué, 2006; Etienne-Manneville, 2008; Yang and Wein-
berg, 2008). It is thus important to elucidate the mechanisms
by which epithelial cells maintain their integrity, including
stable cell—cell adhesion.

In simple epithelia, cuboidal or columnar cells attach to
each other via their lateral membranes. Adhesion between these
membranes is achieved by multiple junctional structures, which
include zonula occludens (ZO; also called tight junction [TJ]),
zonula adherens (ZA), and macula adherens (desmosome). TJ
and ZA are arranged next to each other at the apical-most edge of
cell—cell contacts, forming the apical junctional complex (AJC;
Farquhar and Palade, 1963; Vogelmann and Nelson, 2005). The
AJC is lined with a bundle of actin filaments (F-actin), which is
called the “circumferential actin belt or cables.” This actin belt
functions in a variety of morphogenetic processes, such as api-
cal constriction and intercalation of epithelial cells (Nishimura
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occludens.

The Rockefeller University Press  $30.00 m
J. Cell Biol. Vol. 215 No. 4  559-573 s

eck for
https://doi.org/10.1083/jcb.201603107 updates

et al., 2012; Martin and Goldstein, 2014; Walck-Shannon and
Hardin, 2014). The E-cadherin—fp-catenin—a-catenin complex
(CCC), a major adhesion receptor organizing the ZA, plays a
pivotal role in anchoring F-actin to the AJC (Takeichi, 2014).
Below the AJC, E-cadherin—positive junctions extend to the
basal ends of the cells, organizing the “lateral membrane con-
tacts” (LCs). Although LCs span the majority of the junctions,
the structure and function of LCs are not as well characterized
as those of AJCs. F-actin accumulates along the LCs, but with-
out forming defined subcellular structures. The role of this pop-
ulation of F-actin remains largely unknown, although previous
studies suggest that it is involved in junctional contractility (Wu
et al., 2014) or “cadherin flow” in restricted cell types (Ka-
metani and Takeichi, 2007).

Actin polymerization is regulated by several proteins.
The formin family is a group of proteins that is involved in
linear actin polymerization (Chesarone et al., 2010). Formins
bind to the elongating tips of F-actin and sustain its polym-
erization via their FH2 domain. In some formins, their actin-
polymerizing activity is regulated by small G proteins, such
as Rho. Another group of actin regulators is the Scar/WAVE
regulatory complex (WRC), whose activity depends on Rac
(Takenawa and Suetsugu, 2007). When activated by Rac, the
WRC in turn activates the Arp2/3 complex, which enables the
branching polymerization of actin (Ridley, 2011; Rotty et al.,
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2013). An adaptor protein, Lamellipodin, also interacts with
the WRC for modulating the action of the latter, as well as
for regulating actin polymerization via Ena/VASP proteins
(Law et al., 2013). These actin regulators are especially ac-
tive at the leading edges of cells to promote their migration
(Krause and Gautreau, 2014).

Several formins have been reported to be involved in cell-
cell adhesion (Kobielak et al., 2004; Carramusa et al., 2007,
Grikscheit et al., 2015). DAAMI1 (Dishevelled-associated acti-
vator of morphogenesis 1) is one such formin, which has been
identified as a regulator of cell polarity (Habas et al., 2001; Ang
et al., 2010; Ju et al., 2010; Nishimura et al., 2012). DAAMI1
interacts with Rho and Dishevelled via its N- and C-terminal
region, respectively, so as to be activated (Liu et al., 2008). In
the present study, we explored the role of DAAMI in epithelial
junction formation using a mouse mammary gland—derived epi-
thelial cell line, EpH4 (L6pez-Barahona et al., 1995). We found
that DAAMI1 localizes at the LCs, and it regulates actin assem-
bly at these sites. Our results suggest that the membranes of
LCs are motile by nature because of the action of the WRC, but
this motility is suppressed by DAAMI, resulting in the stabili-
zation of epithelial architecture.

EpH4 cells show typical epithelial junctions consisting of AJCs
and LCs, which associate with linear F-actin cables and amor-
phous F-actin networks, respectively (Fig. 1, A and B). These
groups of F-actin localized at AJCs and LCs are hereafter re-
ferred to as apical and lateral F-actin, respectively, when appro-
priate. In monolayer cultures of EpH4 cells, the LCs formed at
a variety of angles to the culture substrate, and the tilted LCs
allowed us to view their molecular composition in a direction
perpendicular to the cell layers. Double immunofluorescence
staining for DAAMI1 and F-actin showed that DAAMI1 local-
ized at LCs, colocalizing with lateral F-actin, whereas it rarely
colocalized with apical F-actin (Fig. 1 A). In vertically oriented
LCs, signals for DAAM1 and F-actin often appeared to overlap
at apical regions; however, this may be caused by insufficient
resolution of the two signals in confocal images. DAAMI1 also
colocalized with E-cadherin, except at the AJC where this cad-
herin was slightly up-regulated along with apical F-actin to or-
ganize the ZA (Fig. 1 A). To obtain more precise information
about the distribution of DAAMI1, we observed cells with the
super-resolution system of a confocal microscope (Fig. 1 B).
DAAMI essentially did not overlap with apical F-actin or E-cad-
herin signals, nor did the TJ protein ZO-1, although faint signals
of DAAMI1 were occasionally detected from the AJC region in
some specimens. These results confirmed that DAAM1 mainly
localizes at the LC. In addition, we noticed that the levels of
DAAMI, F-actin, and E-cadherin tended to increase around
the basal edges of LCs.

To determine how DAAMI1 localizes to LCs, we performed de-
letion analysis of DAAMI1. We prepared HA-tagged deletion
mutants DAAM1-N and -C (Fig. 2 A) and transiently expressed
them in EpH4 cells. DAAMI-N localized to cell junctions
in a pattern similar to that of full-length DAAMI1, whereas

DAAMI1-C did not concentrate at cell-cell contacts (Fig. 2 A).
Then, we immunoprecipitated HA-tagged DAAM1-N from the
lysates of its stable transfectants and analyzed coprecipitated
proteins by mass spectrometry (Fig. S1 A). The coprecipitates
contained E-cadherin and a-catenin, prompting us to confirm
this result. We expressed full-length HA-tagged DAAMI in
EpH4 cells and immunoprecipitated it from a lysate of the
transfectants. The results showed that DAAM1 coprecipitated
E-cadherin, a-catenin, and p-catenin (Fig. 2 B), suggesting that
the CCC is abinding partner for DAAM 1. To further confirm this
result, we coexpressed HA-tagged DAAM1 and FLAG-tagged
E-cadherin in HEK293T cells and performed immunoprecipita-
tion. The results again demonstrated the binding of E-cadherin
with DAAM1 (Fig. 2 C). Moreover, endogenous E-cadherin and
DAAM1 also coprecipitated together (Fig. 2 D). To determine
which components of the CCC bind DAAMI, we assayed the
interaction of DAAMI1-N with purified GST-tagged E-cadherin
cytoplasmic region, a-catenin, or f-catenin and found that only
E-cadherin specifically bound DAAM1 (Fig. 2 E).

To test the interaction of DAAMI1 with E-cadherin in
vivo, we depleted E-cadherin using a specific siRNA in con-
fluent cultures of EpH4 cells. In these cultures, DAAMI1 dis-
appeared or was greatly reduced at cell—cell contact sites, even
when another class of adhesion molecule, Nectin-1o (Mandai
et al., 2015), was concentrated there (Fig. 2 F, arrows). These
results suggest that DAAM1 localizes to cell junctions through
its binding to E-cadherin.

To investigate whether DAAM1 plays any role in LC formation,
we depleted (or knocked down; knockdown [KD]) DAAMI1
using its specific siRNAs (Fig. S1 B). DAAM1 depletion caused
a striking diffusion of F-actin and E-cadherin signals at the LCs
(Fig. 3, A and B; and Fig. S1 C), although the E-cadherin level
did not change (Fig. S1 B). In wild-type cells, E-cadherin over-
lapped with F-actin, whereas this relation became unclear after
DAAMI depletion. Simultaneously, the tilt angle of LCs tended
to increase, accompanied by cell height reduction, in DAAM1-de-
pleted cells (Fig. 3, A and B). Despite these changes, the apical
F-actin and E-cadherin appeared nearly normal, displaying a
sharp line along the apical edges, which suggests that the AJC
is hardly affected by DAAMI1 depletion. To confirm this, we im-
munostained for the TJ-associated proteins ZO-1 and Par-3, as
well as 1-afadin, a ZA protein, and found that the apical localiza-
tion of these proteins was not affected by DAAMI1 removal (Fig.
S1, D and E). Likewise, the apical distribution of Myosin-IIA,
Myosin-IIB and phosphorylated myosin regulatory light chain
was not affected in DAAMI1-depleted cells (Fig. S1 F). These
results support the idea that DAAMI regulates LCs, but not the
AJC. To further confirm this, we prepared a line of EpH4 cells
in which the genes for ZO-1 and ZO-2 were doubly removed
(Fig. S2 A). As reported previously (Umeda et al., 2006; Fan-
ning et al., 2012), these cells exhibited dramatic changes in AJC
organization: they lost TJ, as assessed by diffuse distribution of
claudin-3 (Fig. S2 B), also showing a strong up-regulation of
F-actin and E-cadherin along the AJC (Fig. S2 C). Despite these
changes, the pattern of DAAMI distribution was not affected
(Fig. S2 C). Furthermore, after DAAM1 depletion, LCs of these
cells were deformed in a way similar to that observed in control
EpH4 cells (Fig. S2 C). These results confirmed that DAAM1
functions independently of AJC organization.
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A DAAM1 F-actin

Figure 1. DAAMT1 localizes at the lateral contacts in EpH4
cells. (A) Cells were co-stained for DAAM1 and F-actin (top)
or E-cadherin (bottom). Z-stack images are shown. Arrows
and arrowheads indicate the apical and basal edge, respec-
tively, of cell junctions. Densitometric traces along the dotted
lines (a and b) are also shown. Tracing starts from the api-
cal side. (B) Top (leff) and lateral (right) views of cells im-
munostained for the indicated molecules. Z-stacked confocal
images were subjected to super-resolution mode processing.
The lateral views were taken along the dashed lines. Arrows
indicate AJC positions. Bars: (A) 10 pm; (B, top view) 5 pm;
(B, lateral view) 2 pm.
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For closer analysis of F-actin and E-cadherin behavior at
LCs, we transfected EpH4 cells with Lifeact-EGFP to visualize
F-actin (Riedl et al., 2008) as well as with E-cadherin—~EGFP and
acquired their live images. At the LCs of control cells, F-actin
was detected as contiguous patches (Fig. 3 C and Video 1). In
DAAMI-depleted cells, in contrast, F-actin patches became
fragmented into tiny clusters, which vigorously moved around
(Fig.3 Cand Video 2). E-cadherin~-EGFP was also detected as dy-
namic clusters at LCs, although their morphological appearance
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did not differ significantly between control and DAAM1-depe-
leted cells, probably because of the overexpression of this mole-
cule. E-cadherin labeling additionally allowed us to visualize the
basal edges of LCs, and we found that the basal edges deformed
more dynamically in DAAM1-depleted cells than in controls
(Fig. 3 D and Videos 3 and 4). These results suggest that DAAM 1
functions to restrain the motility of the cell membranes at LCs.
To test whether the action of DAAMI depends on its actin-
polymerizing activity, we introduced a point mutation of I to A at
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Figure 2. DAAMI interacts with the CCC. (A) DAAM1 localizes at cell contacts via its N-terminal region. (Top) Schematic representation of the deletion
mutants of DAAM1. (Bottom) HA-tagged full-length or deletion mutants of DAAMT1 were transiently expressed in EpH4 cells and immunostained for HA
and o-catenin. (B) Interaction of DAAM1 with the endogenous CCC. Lysates of HAtagged DAAM1-expressing or parental EpH4 cells were subjected to
immunoprecipitation with anti-HA antibody, followed by immunoblotting with antibodies against E-cadherin, a-catenin, p-catenin, or HA. (C) Interaction of
DAAM1 with E-cadherin. HEK293T cells were transfected with FLAG-tagged E-cadherin with or without HAtagged DAAMT. Cell lysates were subjected
to immunoprecipitation using anti-HA antibody, followed by immunoblotting with antibodies against FLAG or HA. (D) Interaction between endogenous
DAAM1 and E-cadherin. EpH4 cell lysates were subjected to immunoprecipitation by anti-DAAMT1 antibody or normal rabbit IgG, followed by immuno-
blotting with anti-E-cadherin antibody. (E) Interaction of DAAM1-N with the cytoplasmic region of E-cadherin (E-cad—cyto). Lysates of EpH4 cells expressing
DAAM1-N were incubated with purified GSTtagged proteins as indicated and subjected to pull-down assays. Note that only GST-E-cad—cyto specifically
interacted with DAAM1-N. (F) Distribution of DAAM1 to cell junctions depends on E-cadherin. EpH4 cells were treated with an E-cadherin-specific siRNA
for 2 d and then immunostained. Arrows indicate Nectin-1o~positive cell-cell contacts in E-cadherin-depleted cells. (A and F) Bars, 10 pm.
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Figure 3. DAAMI1 depletion causes dispersion of lateral F-actin and E-cadherin, not affecting their apical moieties. (A) EpH4 cells were transfected with
DAAMT siRNA (DAAM1 KD) or control siRNA (Control KD) for 3 d and co-stained for E-cadherin and F-actin. DAAM1 depletion caused dispersion of
F-actin and E-cadherin at LCs without affecting their apical distribution. Densitometric traces were performed along the dotted lines (a and b) in an apical to
basal direction. Arrowheads point to the basal edges of the junctions. (B) Quantification of apical and lateral F-actin intensity (top), as well as tilting extent
of LCs and cell height (bottom), which are defined in the diagram at the right and also in Materials and methods. Histograms represent the mean of three
experiments. In each experiment, 50-100 junctions were examined. Two independent DAAM1 siRNAs (KD#1 and #2) were used. Error bars indicate SD.
** P <0.01; *** P <0.001; n.s., not significant. (C) Still images of Videos 1 and 2 taken for LifeactEGFP at the indicated intervals. On the right, the
images at 0, 2, and 4 min are merged after coloring Lifeact-EGFP signals red, green, and blue, respectively. The boxed portion is enlarged for the merged
images. Note that the majority of F-actin clusters change their positions every 2 min, especially in DAAM1-depleted cells. Yellow arrowheads point to the
basal edges of the junctions. (D) Still images of Videos 3 and 4 taken for E-cadherin~EGFP at the indicated intervals. Note that the basal edges, outlined
in green, move more dynamically in DAAM1-depleted cells than in controls. Blue, yellow, and pink arrowheads indicate the basal edge of the junction at
different points. Bars: (A, C [leff], and D) 10 pm; (C, right) 5 pm.
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Figure 4. DAAMI is important for epithelial integrity. (A)
EpH4 cells stably expressing DAAM1-specific (shDAAM1-1
cells) or control (shControl cells) shRNA were cultured for 2
wk in Transwells and stained for the indicated molecules. (Top)
Lateral views. Nuclei are mispositioned in DAAM1-depleted
cells. (Bottom) Top views focused on an apical or basal focal
plane. Abnormally large or small apical areas are detectable.
Arrows indicate AJC positions. Bars, 10 pm. (B) Distribution of
the apical area in shControl and shDAAM1 cells. Apical area
was defined as the area encircled by ZO-1 immunostaining.
144 shControl and 80 shDAAM1 cells from three and four
microscopic fields, respectively, were examined. (C) Rescue
of the DAAM1 depletion phenotypes. shDAAMT cells were
additionally transfected with RNAi-resistant EGFP-DAAMI
plasmid and cultured for 2 wk in Transwells; the apical area
variation was quantified. We examined 35-144 cells from
three or four microscopic fields for each experiment. Histo-
grams represent the mean of three experiments. Error bars
indicate SD. *, P < 0.05; **, P < 0.01; ***, P <0.001.
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2a698 into this protein, which is known to abolish its actin polym-
erization activity (Jaiswal et al., 2013). We generated an siRNA-
resistant DAAMI construct for this mutant (DAAMI1-1698A), as
well as a corresponding wild-type DAAMI. Although the wild-
type construct rescued all the DAAM1 KD phenotypes, DAAM1-
1698A did not (Fig. S3, A and B), confirming that DAAMI serves
LC stability via its ability to regulate actin polymerization.

To further investigate the role of DAAMI1 in the formation of ep-
ithelial architecture, we established KD cell lines, which stably

shControl shDAAM1 shDAAM1

+EGFP-
DAAM1

express shRNA specific for DAAM1 (shDAAMI1) or control
shRNA (shControl; Fig. S4 A), and cultured them in Transwell
plates, which allow the cells to grow into mature epithelial
sheets. At 2 wk, control cells formed a typical monolayer sheet.
In DAAMI1-depleted cell layers, however, the apical morphol-
ogy of cells became severely distorted with an increased hetero-
geneity of the apical surfaces (Fig. 4, A and B). Furthermore,
in these cells, nuclei became irregularly arranged, appearing as
if the cells were piled up. These abnormities were rescued by
expressing an RNAi-resistant EGFP-DAAMI1 (Fig. 4 C). These
results suggest that DAAMI1-deficient cells cannot maintain
normal epithelial architecture in long-term cultures.
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Figure 5. DAAM1 depletion causes extrusion of cells from
spherical cysts. (A) Sphere cultures of shControl or shDAAM1
cells. Cells were cultured in Matrigel Matrix for 6 d. Control
cells formed cysts with a radial cell arrangement, whereas
DAAM1-depleted cells aggregated in disordered fashions
with some cells being extruded from the sphere. Arrows indi-
cate extruded cells. The results obtained using the shDAAM1-2
line are shown. Bar, 10 pm. (B) Quantification of cell extru-
sion from the sphere. Cells with a nucleus whose center stuck
out of the sphere surface were regarded as extruded cells.
Histograms represent the mean of three experiments. Error
bars indicate SD. ***, P < 0.001.
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Severe deformation of cells might promote other patho-
logical behaviors. To explore this possibility, we cultured EpH4
cells in Matrigel to allow them to grow into spherical cysts.
Control cells formed typical epithelial cysts in which cells were
arranged radially (Fig. 5 A). In contrast, DAAM1-depleted cell
spheres lost such an ordered arrangement of cells, frequently
extruding a fraction of cells from their main body toward the
matrix (Fig. 5, A and B). These results further confirmed that
DAAMI is important in maintaining epithelial integrity.

To investigate the abnormal behavior of DAAM1-depleted cells
at the cellular level, we transfected shControl or shDAAMI1
cells with a membrane-bound EGFP and cultured them on col-
lagen gels. By applying a low transfection efficiency recipe,
we obtained confluent cultures in which a labeled cell was sur-
rounded by nonlabeled cells. Live imaging of EGFP in these
cells showed that DAAM1-depleted cell lines actively extended
protrusions from their basolateral sides, whereas control cells
were quiescent (Fig. 6, A and B; and Videos 5 and 6).

To examine whether the increased motility of DAAM1-de-
pleted cells occurred cell-autonomously, we prepared homol-
ogous or heterologous mixtures of shDAAMI1 and shControl
cells, in which either population was labeled with the fluores-
cent dye CMTPX (Hogan et al., 2009) before mixing. Strik-
ingly, DAAM1-depleted cells extended longer protrusions into
neighboring layers when surrounded by control cells than by
homologous cells (Fig. 6, C and D), suggesting that the pro-
trusion from DAAMI1-depleted cells is enhanced by adjacent
wild-type cells. As E-cadherin is detectable along the protru-
sions, this enhancement appeared to occur at the interface be-
tween the surfaces of wild-type and DAAMI1-depleted cells.

shControl shDAAM1 shDAAM1

-2

These findings, together with those shown in Fig. 5, suggest that
DAAMI depletion promotes cell extrusion, particularly when
DAAMI1-depleted cells are surrounded by normal cells.

We asked how the membranes of LCs acquired enhanced motil-
ity after DAAMI1 depletion. The small GTPase Rac is known to
be important for the motile ability of cell edges (Ridley, 2011).
We therefore asked whether Rac is involved in LC motility. We
treated DAAMI1-depleted cells with the Rac inhibitor EHT-
1864 and found that the dispersed distribution of E-cadherin
was abolished in the treated cells (Fig. S4 B). Live imaging of
E-cadherin—-EGFP confirmed that the basal edge motility of
LCs was almost completely inhibited by EHT-1864 treatment
(Video 7). Conversely, when a constitutively active Racl (HA-
Rac1-G12V) was transiently expressed in control EpH4 cells,
the transfected cells broadly extended their LCs under adjacent
untransfected cells, being accompanied by a reduction of their
apical surface area, even in the presence of DAAMI (Fig. S4
C), confirming that Rac mediates the deformation of LCs. We
then measured Rac activity by pull-down assays but did not find
any changes in its activity after DAAM1 KD (Fig. S4 D). These
results suggest that DAAM1 does not simply repress Rac activ-
ity but may interfere with processes downstream of Rac.

Then, we sought molecules acting downstream of Rac. As
the WRC is a well-known Rac effector, we explored whether
this complex regulates LC motility. Among the multiple com-
ponents of the WRC, we focused on WAVE2, as this subtype of
WAVE proteins has been shown to be involved in epithelial ad-
hesion (Yamazaki et al., 2007; Verma et al., 2012). WAVE?2 lo-
calized at LCs overlapping with F-actin clusters, although close
analysis of WAVE2 and DAAMI1 distributions revealed that
many of their immune signals did not overlap with one another

DAAM-mediated regulation of epithelial junctions
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Protrusion formation

Figure 6. DAAM1 depletion promotes protrusion
of cell edges. (A) Live imaging of membrane-EGFP
introduced into shControl or shDAAM1 cells in
confluent cultures. Cells were transfected with
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(Fig. 7 A). In contrast, WAVE2 strongly colocalized with other
components of the WRC, including Napl and Abil (Fig. S4 E),
consistent with the model in which they form a complex. These
observations suggest that DAAMI1 and the WRC organize dis-
tinct microdomains. In DAAMI1-depleted cells, WAVE2 re-
mained at LCs, partly colocalizing with diffuse F-actin signals
especially around the basal regions of LCs (Fig. 7 A).

Then, we knocked down WAVE?2 and examined its effects
on the phenotypes of DAAMI-depleted cells, using E-cad-
herin—-immunostained samples. WAVE2 depletion in wild-type
cells hardly affected junction morphology. When both DAAM1
and WAVE2 were depleted together (Fig. S4 F), the irregular
tilting of LCs induced by DAAM1 KD was abolished (Fig. 7,
B and C). E-cadherin—-EGFP live imaging also confirmed that
WAVE2 depletion suppressed the dynamic deformation of
LC edges caused by DAAM1 KD (Video 8). We also exam-
ined the effect of WAVE2 KD on the protrusion formation by

DAAMI-depleted cells mixed with wild-type cells and found
that WAVE2 KD effectively abolished this process (Fig. 7, D
and E; and Fig. S4 G). These results suggest that WAVE2 has the
ability to promote LC motility, but this ability is suppressed by
DAAMI1. As WAVE is regulated by phosphorylation at several
sites (Mendoza et al., 2011), we tested the effect of DAAMI de-
pletion on the phosphorylation of WAVE2 at Y150, a site that is
phosphorylated by Abl to activate the WAVE2 complex (Leng et
al., 2005). However, we did not detect any changes in the level
of the phosphorylation (Fig. S4 H).

Next, we explored which molecules work together with the
WRC, focusing on two candidates, lamellipodin and the Arp2/3
complex, that are known to interact with the WRC in Rac-
dependent manners (Krause and Gautreau, 2014). Lamellipodin
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Figure 7. WAVE2 is required for lateral mem-
brane motility. (A) Co-staining for DAAMI,
WAVE2, and F-actin in EpH4 cells treated with
control or DAAM1 siRNA. Enlarged views
of the boxed regions are shown at the right.
DAAM1 and WAVE2 showed distinct distribu-
tions, and WAVE2 overlapped with F-actin. (B)
Immunostaining for E-cadherin in EpH4 cells
treated with DAAMT1 and/or WAVE2 siRNAs.
WAVE2 KD tended to cause the sharpening of
E-cadherin signals at the basal edges of LCs
in both control and DAAM1-depleted cells. (A
and B) Arrowheads point to the basal edges of
the junctions. (C) Quantification of the tilting
extent of LCs. (D) DAAM1-depleted cells were
treated with control or WAVE2 siRNAs for 1
d and then labeled with CMTPX. After mixing
them with nonlabeled shControl cells, they
were cultured on collagen gels for 2 d. Protru-
sion in DAAM1-depleted cells was suppressed
by WAVE2 KD. Arrows indicate representative
protrusions. Bars: (A [left], B, and D) 10 pm;
(A, right) 5 pm. (E) Quantification of protrusion
number and length in the experiment shown in
D. (C and E) Histograms represent the mean of
three experiments. Error bars indicate SD. **,
P<0.01; ***,P <0.007; n.s., not significant.

localized at cell junctions in both control and DAAM1-depleted
cells, overlapping with lateral F-actin (Fig. 8 A), as well as with
Abil, a WRC component (Fig. 8 B). Although lamellipodin KD
hardly affected junction morphology in wild-type cells, code-
pletion of lamellipodin and DAAMI1 rescued the DAAMI de-
pletion phenotypes at least in part (Fig. 8, C and D; and Fig. S5
A). This suggests that lamellipodin is involved in the DAAM1
depletion—dependent enhancement of LC motility, likely as a

functional partner of the WRC (Law et al., 2013). Then, we
turned our analysis to Arp2/3. Treatment of cells with an Arp2/3
inhibitor, CK-666, showed that it suppresses the DAAM1 KD-
induced tilting of LCs, suggesting that Arp2/3 also works in
this process. However, depletion of ArpC3, a component of
the Arp2/3 complex, disrupted the junctional integrity even in
wild-type cells and did not rescue the DAAM1 depletion phe-
notypes (Fig. S5, B and C), suggesting that the Arp2/3 complex

DAAM-mediated regulation of epithelial junctions
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Figure 8. Lamellipodin and Arp2/3 are involved
in lateral membrane motility. (A) Co-staining for
lamellipodin (Lpd) and F-actin in EpH4 cells treated
with control or DAAM1 siRNA. Lpd overlapped with
F-actin at LCs. (B) Co-staining for Lpd and Abil. (C)
Immunostaining for E-cadherin in EpH4 cells treated
with DAAM1 and/or Lpd siRNAs. Depletion of Lpd
suppressed the diffused distribution of E-cadherin in-
duced by DAAM1 KD. (D) Quantification of the tilt-
ing extent in C. (E) Inmunostaining for E-cadherin in
control or DAAM1-depleted EpH4 cells treated with
150 pM of the Arp2/3 inhibitor CK-666 in DMSO
or DMSO only (0.15% in final concentration) for 30
min. Diffused distribution of E-cadherin induced by
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is fundamentally important to maintain epithelial junctions, in
accord with previous observations (Verma et al., 2004, 2012).
Thus, it appears that both Arp2/3 and lamellipodin work with
the WRC, although the role of Arp2/3 is not restricted to the
WRC-dependent regulation of LCs.

Finally, we attempted to characterize signals upstream of
DAAMI. In contrast with the Rac-WAVE signaling system,
DAAMI is activated by RhoA, B, or C (Higashi et al., 2008;
Liu et al., 2008). Immunostaining for RhoA showed that this
molecule localized at cell junctions overlapping with DAAM1
(Fig. 9 A). When RhoA was depleted (Fig. S5 D), lateral F-ac-
tin and E-cadherin became diffuse (Fig. 9 B and Fig. S5 E),
as found in DAAM1-depleted cells, although DAAMI signals
were not affected in the RhoA-depleted cells (Fig. 9 A). In con-
trast with DAAM1 depletion, however, the apical F-actin level
also tended to decrease (Fig. 9, B and D; and Fig. S5 E). Con-
sistently, live imaging of Lifeact-EGFP indicated that RhoA

" DAAM1 KD

depletion induced not only the fragmentation of lateral F-actin
but also the disturbance of apical F-actin dynamics. Com-
pared with the rather static appearance of apical F-actin cables
in control or DAAM1-depleted cells (Videos 1 and 2), these
cables became unstable in RhoA-depleted cells, reorganiz-
ing into irregular clusters whose positions changed minute by
minute (Fig. 9 E and Video 9). E-cadherin—-EGFP signals were
also unstable not only at the LCs but also at the AJC in RhoA-
depleted cells (Video 10). These results suggest that RhoA con-
trols both LCs and the AJC.

To test whether RhoA regulates DAAM1, we constructed
a constitutively active form of DAAMI1, DAAMI-ADAD,
which lacks the C-terminal DAD domain that functions to au-
toinhibit RhoA binding to the N-terminal domain (Liu et al.,
2008). When DAAMI1-ADAD was expressed in EpH4 cells,
it localized to LCs (Fig. 9 C) and suppressed the RhoA loss—
dependent dispersion of lateral F-actin and E-cadherin (Fig. 9, B
and D). Importantly, however, DAAM1-ADAD expression did
not rescue the apical RhoA depletion phenotypes (Fig. 9, B and
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D). These results are consistent with the idea that RhoA works
upstream of DAAMI to regulate lateral F-actin, although it also
regulates apical F-actin via some effectors not identified here.

Cell junctions are stably maintained in mature epithelial cells.
When DAAM1 was depleted in EpH4 cells, however, the cell
membranes forming LCs became mobile, similar to the lead-
ing edges of migrating cells. This enhancement of motility de-
pended on the Rac—-WRC signaling system, which is generally
important for the formation of leading edges or lamellipodia

DA

in migrating cells (Krause and Gautreau, 2014). These re-
sults suggest that the membranes of LCs are motile by na-
ture, like free cell edges, but this ability is normally restrained
by DAAMI1 (Fig. S5 F). Consistent with our observations, a
previous study using DAAMI1 gene trap mice showed that,
in cardiomyocytes with a marked reduction of DAAMI, the
distributions of F-actin, N-cadherin, and a-catenin were per-
turbed, leading to abnormal sarcomere organization and cell
misalignment (Li et al., 2011).

DAAMI, as a member of the formin family, is thought
to nucleate and/or accelerate the elongation of actin filaments.
DAAMI1 depletion induced fragmentation or diffusion of
F-actin patches that are present in normal LCs. This suggests

ANM-mediated regulation of epithelial junctions
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that DAAM1-mediated actin polymerization is necessary to
condense actin filaments at LCs. This view is supported by the
recent observation that DAAMI1 is required for maintaining the
subcortical actin web in ciliated epithelial cells (Yasunaga et al.,
2015). Our results also suggest that DAAM1 binds E-cadherin,
and this binding is important for DAAMI to localize to LCs,
consistent with a previous finding that DAAM?2, another formin
related to DAAMI1, binds the N-cadherin—a-catenin complex
(Welsh et al., 2013). It is known that the CCC requires binding
to F-actin via a-catenin for establishing firm cell-cell adhesion
(Takeichi, 2014). Therefore, a role of DAAMI1 at LCs might
be to supply actin filaments to the CCC via physical associ-
ation and to strengthen CCC-mediated intercellular junctions.
Notably, although E-cadherin was up-regulated along the ZA,
particularly in ZO-1/Z0O-2 DKO cells, the DAAMI level did
not correlate with this up-regulation. Therefore, there must
be a mechanism to suppress the interaction between DAAM1
and E-cadherin at the AJC.

How does DAAMI interact with the Rac—WRC system
for actin regulation? Here we propose two possible mech-
anisms: First, DAAMI1 could actively inhibit the WRC or its
downstream targets, but we failed to obtain evidence support-
ing this idea. Second, DAAMI1 and the WRC might regulate
F-actin independently, but in a conflicting manner. For exam-
ple, DAAMI might organize static actin networks to support
CCC function, whereas the WRC accelerates actin dynamics,
and their actions would be counterbalanced in normal junctions.
Under this circumstance, removal of DAAMI1 may allow the
WRC to dominate actin regulation at LCs. Consistent with this
idea, DAAMI1 and WAVE?2 appeared to localize in distinct mi-
crodomains. Testing these models is an important future subject.

Unlike the LCs, the AJC was hardly affected by DAAMI1
loss, suggesting that F-actin organization at the AJC and LCs
is controlled via distinct mechanisms. Nevertheless, our results
suggest that they share RhoA as a common regulator. To receive
Rho signals differentially, the AJC and LCs should have distinct
Rho effectors. DAAMI is likely to be one such Rho effector
that predominantly serves at LCs.

Extrusion of tumor cells from the basal side of epithe-
lial layers is thought to promote cancer invasion (Slattum and
Rosenblatt, 2014). It has been suggested that DAAMI1 deple-
tion may be involved in the invasiveness of astrocytoma cells
(Shu et al., 2011). Recent studies showed that Lamellipodin,
whose action is negatively regulated by DAAMI1 as shown in
the present study, also promotes invasive cancer cell migration
(Carmona et al., 2016). We found that, in prolonged cultures
of DAAMI-depleted EpH4 cells, some of the cells began to
relocate toward the basal sides. In spherical cultures of these
cells, a fraction of cells tended to be extruded from the main
body of the sphere, indicating that epithelial cells are unable
to maintain robust tissue structures when DAMM1 is lost. Fur-
thermore, DAAMI1-depleted cells protruded long processes
from LCs, especially when they were in contact with normal
cells, suggesting that the interaction between DAAMI-de-
pleted and normal cells promotes cell edge protrusion. Al-
though the infiltration of cancer cells into the extracellular
matrices is thought to be a major step in cancer metastasis,
our results suggest that neoplastic cells may also be able to
invade the boundaries between normal cells, when the motility
of LCs is enhanced. It will be intriguing to investigate whether
DAAMI1 loss indeed serves as a mechanism to enhance cancer
invasion and metastasis.

Plasmids and siRNAs

An expression plasmid for HA-tagged mouse DAAMI was de-
scribed previously (Nishimura et al., 2012). Its deletion mutants
were subcloned into a pCAH vector with a HA-tag attached to the
N terminus. Point mutations of DAAM1 were introduced using a
KOD-Plus Mutagenesis kit (TOYOBO). The plasmid for siRNA-
resistant DAAMI1 was prepared by introducing three silent muta-
tions at the corresponding sequence to DAAM1 siRNA #1. To pre-
pare the actin polymerization—deficient siRNA-resistant DAAM1
plasmid, an additional mutation, which changed 1698 to A698,
was further introduced (Jaiswal et al., 2013). EGFP-tagged mouse
E-cadherin plasmid was described previously (Taguchi et al., 2011),
and its insert was subcloned into a pCA-FLAG vector. Lifeact-EGFP
(Riedl et al., 2008) plasmid was constructed by inserting its corre-
sponding oligo DNA into a pCAH-EGFP vector. The plasmid for
membrane EGFP was provided by N. Ueno (National Institute for
Basic Biology, Okazaki, Aichi, Japan; Suzuki et al., 2010), and the
insert was subcloned into a pCA vector. The plasmid for HA-tagged
constitutively active Racl (G12V) was provided by Y. Nakaya (RIK
EN Quantitative Biology Center, Suita, Osaka, Japan; Nakaya et al.,
2004). The plasmid for HA-tagged wild-type and constitutively ac-
tive RhoA (G14V) were provided by K. Kaibuchi (Nagoya Univer-
sity, Nagoya, Aichi, Japan; Amano et al., 1996). Dominant-negative
RhoA (T19N) plasmid was prepared by introducing point muta-
tions into the wild type.

Custom-synthesized siRNA oligos (Stealth RNAs) were pur-
chased from Invitrogen, and the target sequences are as follows: mouse
DAAMI1 siRNA#1 and #2, 5'-GCCTGTCATGTATTCTCAACTTTCT-
3’ and 5'-GAGTTCTACATTGATCAGCTCAATT-3’, respectively;
mouse RhoA siRNA#1 and #2, 5'-CCATCAGGAAGAAACTGG
TGATTGT-3" and 5'-GAAGAAACTGGTGATTGTTGGTGAT-3', re-
spectively; mouse WAVE2 siRNA#1 and #2, 5'-GCAGGACACCAA
GGATATCATGAAA-3" and 5-AGCGGGTTGACCGAGTACAAG
TTAA-3’, respectively; mouse Lamellipodin siRNA, 5'-CAGCATGGA
TTCTCTGGATATTGAT-3'; mouse ArpC3 siRNA, 5'-CCTGGCTTT
CCTCTCAACGCCATTT-3’; and mouse E-cadherin siRNA, 5-CCG
ACCGGAAGTGACTCGAAATGAT-3'. Unless otherwise noted, we
used siRNA#1 throughout the experiments. We used the Stealth RNAi
siRNA Negative Control Medium GC Duplex #2 (12935-112; Invit-
rogen) as a control. For stable shRNA expression, a DNA oligo for
DAAMI siRNA#1 sequence was inserted into the pBAsi-mU6-PUR
vector (Takara Bio Inc.).

Antibodies and reagents

Rat anti—E-cadherin antibody clone ECCD2 (Shirayoshi et al., 1986),
rat anti-Nap1 antibody (Nakao et al., 2008), and rabbit anti-Nectin-1a
(Togashi et al., 2006) were described previously. The following anti-
bodies were purchased: mouse anti-DAAMI1 (for N terminus) and
anti-pY 150-WAVE2 (ECM Biosciences); rabbit anti-DAAM1 (for
C terminus; Abgent); rabbit anti-DAAMI1 (Proteintech); rabbit
anti—a-catenin, rabbit anti—f-catenin, rabbit anti—l-afadin, rabbit
myosin ITA/IIB, mouse anti—a-tubulin, and rabbit anti-FLAG (Sigma-
Aldrich); mouse or rabbit anti-ZO-1 (Invitrogen); rabbit anti-WAVE2
and mouse anti—phosphorylated myosin light chain (Cell Signal-
ing Technology); rabbit anti-lamellipodin (anti-RAPHI1; Atlas);
mouse anti-RhoA and rabbit anti-ZO-2 (Santa Cruz Biotechnology,
Inc.); mouse anti-Abil (MBL); mouse anti-HA clone 16B12 and
mouse anti-GST clone 4C10 (Covance); rat anti-HA clone 3F10
(Roche); Alexa Fluor—conjugated secondary antibodies (Molecular
Probes); Alexa Fluor 647— or peroxidase-conjugated anti-rat IgG
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(Jackson ImmunoResearch Laboratories, Inc.); CF488A-labeled
anti-rat IgG (Biotium); and peroxidase-conjugated anti—-mouse
or anti-rabbit IgG (GE Healthcare). Rac inhibitor EHT-1864 was
purchased from Tocris Bioscience. Arp2/3 inhibitor CK-666 was pur-
chased from EMD Millipore.

Cell culture and transfection

EpH4 cells (L6pez-Barahona et al., 1995; a gift of E. Reichmann, Uni-
versity of Zurich, Zurich, Switzerland) and HEK293T cells (RIKEN
BioResource Center) were grown in a 1:1 mixture of DMEM and Ham’s
F12 medium (Wako Pure Chemical Industries) supplemented with 10%
FBS (Nichirei Biosciences). Cells were transfected with plasmids for
1 d using Lipofectamine 2000 (Invitrogen). Stable transfectants were
selected and maintained in a culture medium containing hygromycin
B or puromycin (InvivoGen). For the expression of siRNAs, cells were
transfected for 3 d using Lipofectamine RNAi-MAX (Invitrogen).

For long-term cultures, EpH4 cell lines stably expressing control
or DAAMI1 shRNA were seeded in the upper chamber of Transwell
Permeable Supports (Coaster) and cultured for 2 wk, changing the
medium every other day. For mixed cultures on collagen gels, cells
precultured in 3.5-cm dishes were labeled with 10 pM CMTPX (Mo-
lecular Probes) in a serum-free medium at 37°C for 30 min. Then, the
labeled cells were mixed with nonlabeled cells at a 1:50 ratio, seeded
on cover glasses coated with 50 pl collagen-IA gel (Nitta Gelatin),
which were placed in 24-well plates, and cultured for 2 d. For sphere
cultures, cover glasses placed in 24-well plates were coated with 50 ul
Matrigel Matrix (Corning). Then, cells were seeded on them in culture
medium containing 2% Matrigel Matrix and cultured for 6 d, chang-
ing the medium every day.

Double knockout of ZO-1 and ZO-2 genes

An EpH4 cell line, in which the ZO-1 genes were knocked out, was
established by conventional homologous recombination (Umeda et al.,
2006). Then, this clone was used to further knock out the ZO-2 genes
using the CRISPR-Cas9 system. Oligonucleotides were phosphor-
ylated, annealed, and cloned into the BsmBI site of pLenti-CRISPR
v2 vector according to the Zhang laboratory protocols (F. Zhang,
MIT, Cambridge, MA). The target sequence for mouse ZO-2 was
5'-GCTTATGAACCCGACTACGG-3'.

Immunofluorescence staining of cells

Cells grown on cover glasses were fixed with 1% (wt/vol) PFA in the
medium at RT for 10 min. In the case of sphere cultures, 2% (wt/vol)
PFA was used for fixation. Cells were made permeable with 0.5%
Triton X-100 in TBS for 20 min. The samples were blocked with 3%
(wt/vol) BSA and 10% (vol/vol) goat serum in TBS containing 0.1%
Triton X-100 (TBS-T) and incubated with primary antibodies in the
Can Get Signal immunostain solution (TOYOBO) at RT for 2 h. After
washes, the cells were incubated with fluorescence-labeled secondary
antibodies for 1 h. After further washes, cells were incubated with
fluorescence-labeled phalloidin (Molecular Probes) for 30 min and
subsequently mounted using FluoroSave (EMD Millipore). Images
of cells were obtained using a laser-scanning confocal microscope
LSM710/780 (ZEISS) equipped with an aPlan-FLUAR 100x/1.45 oil
lens or Plan-Apochromat 63x/1.40 oil lens (ZEISS) at RT. Z-stack im-
ages were taken at every 0.3 um. For observation of the lateral views
with higher resolution, images were obtained by the laser-scanning
confocal microscope LSM880-Airyscan (ZEISS) equipped with an
oPlan-FLUAR 100x/1.45 oil lens at RT. Z-stack images were taken at
every (.17 pm and subjected to Airyscan super-resolution mode pro-
cessing. Images were processed using ZEN software (ZEISS) and Pho-
toshop CS5 (Adobe Systems).

Immunoprecipitation and GST pull-down

For immunoprecipitation using HA-DAAM l-expressing cells, cells
were lysed at 4°C for 20 min in a lysis buffer consisting of 50 mM
Tris-HCI, pH 7.5, 1% Nonidet P-40, 150 mM NaCl, 10 mM MgCl,,
and a protease inhibitor cocktail (Roche). After centrifugation, super-
natants were incubated with anti-HA clone 3F10 affinity beads (Roche)
at 4°C for 2 h. After washing the beads, bound proteins were subjected
to SDS-PAGE and then Western blotting. Signals on the blots were
detected using the Western Blotting Substrate Plus detection system
(Thermo Fisher Scientific). In the case of mass spectrometry analysis,
immunoprecipitated proteins were eluted using HA peptides (Babco),
reprecipitated by TCA, and analyzed by silver staining (silver stain MS
kit; Wako Pure Chemical Industries). To immunoprecipitate endoge-
nous DAAMI, EpH4 cells were lysed in a lysis buffer consisting of
50 mM Tris-HCI, pH 7.5, 1% Triton X-100, 0.02% SDS, 0.5% deoxy-
cholate, 150 mM NaCl, 10 mM MgCl,, and a protease inhibitor cock-
tail. The supernatant was incubated with either anti-DAAM antibody
(Proteintech) or normal rabbit IgG (Santa Cruz Biotechnologies, Inc.)
and then with Protein G-Sepharose (GE Healthcare).

For GST pull-down assays, HA-tagged DAAMI1-N cell lysate
was incubated with purified GST-tagged E-cadherin cytoplasmic re-
gion (aa 734-884), B-catenin, a-catenin, or GST alone for 1.5 h and
then with Glutathione—Sepharose 4B (GE Healthcare). GST pull-
down for active Racl was performed using a Rac1/Cdc42 activation
assay kit (EMD Millipore).

Time-lapse imaging

Cells expressing Lifeact-EGFP or E-cadherin-EGFP were trans-
fected with siRNAs and cultured in glass-bottom dishes (IWAKI) for
3 d. In the case of membrane-EGFP imaging in DAAM1-depleted cell
lines, cells were seeded on glass-bottom dishes coated with 200 ul
collagen-IA gel, transfected with membrane-EGFP on the next day, and
cultured for one more day. Time-lapse imaging was performed using
a spinning-disc laser confocal microscope IX71 (Olympus) equipped
with CSU-X1 (Yokogawa Electric Corporation) and with an Uplan-
SApo 60x/1.35 oil lens or a LUCPlanFLN 60x/0.70 lens (Olympus) in
5% CO, at 37°C. Z-stack images were taken every 2 or 5 min. Images
were processed using MetaMorph software (Molecular Devices) and
Image] software (National Institutes of Health).

Quantification of junctions

Fluorescence intensity as well as the area or length of objects in photo-
graphic images were measured using ImagelJ software. Lateral F-actin
intensity was quantified as follows: Using Z-projected E-cadherin im-
ages, the LC region was first outlined. Next, using the F-actin channel
of the same images, cytoplasmic background intensity was subtracted,
and then the mean gray value per pixel at the LC region was measured.
Apical F-actin intensity was quantified by drawing a line along AJC
using the background-subtracted F-actin images and then by measur-
ing the mean gray value on this line. The degree of tilting of LCs was
quantified as follows: LC area was defined as above. Then, the width
of the border between the LC and AJC areas was measured. Subse-
quently, the LC area was divided by the width of the border to obtain
a mean LC area per AJC unit (1 pm). This value was defined as the
“tilting extent.” Quantifications were performed for 50-100 junctions
from four microscopic fields in each experiment. For the mixed culture
experiments, 25-80 cells from four microscopic fields were quantified
for protrusion number and length in each experiment. For the sphere
culture experiments, 13—16 spheres were quantified for cell extrusion
in each experiment. Mean and SD were calculated from three sepa-
rate experiments. Statistical analyses were performed using R soft-
ware (The R Foundation).
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Online supplemental material

Fig. S1 shows a summary of mass spectrometry analysis, DAAM1
siRNA efficiencies, and the distribution of junctional proteins in con-
trol and DAAMI1-depleted cells. Fig. S2 shows characteristics of the
Z0-1/Z0-2 DKO EpH4 cell line and the effect of DAAM1 KD on this
line. Fig. S3 shows the effects of the expression of a siRNA-resistant
DAAMI, as well as its mutant that is unable to support actin polymer-
ization, in DAAM1-depleted cells. Fig. S4 shows Western blot analy-
sis of DAAMI-depleted stable lines and active Rac pull-down assay
of these cells; the effects of a Rac inhibitor and the expression of a
constitutively active Racl mutant on lateral contacts are also shown;
distribution of WAVE complex components and the Western blotting
analysis of WAVE2 siRNA efficiency are also provided. Fig. S5 shows
analyses of the cells treated with siRNAs specific for lamellipodin,
ArpC3, and RhoA; a schematic summary of the lateral contact regula-
tion by DAAMI1 and WRC is also shown. Videos 1 and 2 show F-actin
dynamics in control and DAAM1-depleted EpH4 cells. Videos 3 and
4 show E-cadherin dynamics in control and DAAMI1-depleted EpH4
cells. Videos 5 and 6 show movement of cell membranes in control
and DAAM-depleted EpH4 cells. Video 7 shows E-cadherin dynamics
in DAAM1-depleted EpH4 cells treated with a Rac inhibitor. Video 8
shows E-cadherin dynamics in EpH4 cells simultaneously transfected
with DAAMI1 and WAVE2 siRNAs. Videos 9 and 10 show F-actin and
E-cadherin dynamics in RhoA-depleted EpH4 cells.
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